JPS6022513B2 - piezoelectric porcelain - Google Patents
piezoelectric porcelainInfo
- Publication number
- JPS6022513B2 JPS6022513B2 JP55057080A JP5708080A JPS6022513B2 JP S6022513 B2 JPS6022513 B2 JP S6022513B2 JP 55057080 A JP55057080 A JP 55057080A JP 5708080 A JP5708080 A JP 5708080A JP S6022513 B2 JPS6022513 B2 JP S6022513B2
- Authority
- JP
- Japan
- Prior art keywords
- porcelain
- piezoelectric
- frequency
- crystal grain
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052573 porcelain Inorganic materials 0.000 title claims description 28
- 239000000203 mixture Substances 0.000 claims description 13
- 239000013078 crystal Substances 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- -1 NQ 03 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- NKZSPGSOXYXWQA-UHFFFAOYSA-N dioxido(oxo)titanium;lead(2+) Chemical compound [Pb+2].[O-][Ti]([O-])=O NKZSPGSOXYXWQA-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Description
【発明の詳細な説明】
本発明は、電気機械結合係数が大きく、誘電率が小さく
周波数定数が大きく、さらに結晶粒子径が小さくて均一
で微細な磁器組織を持ち、高周波での電気機械変換素子
として有用な圧電性磁器に関する。Detailed Description of the Invention The present invention provides an electromechanical transducer that has a large electromechanical coupling coefficient, a small dielectric constant, a large frequency constant, a small crystal grain size, and a uniform and fine porcelain structure, and which can be used at high frequencies. This invention relates to piezoelectric porcelain useful as a material.
従釆、圧電性磁器としてチタン酸バリウム系磁器ジルコ
ン・チタン酸鉛系磁器が知られている。Additionally, barium titanate-based porcelain and zircon/lead titanate-based porcelain are known as piezoelectric porcelain.
特にジルコン・チタン酸鉛系磁器は電気機械結合係数(
K)、誘電率(ど)が大きく、電気機械変換素子として
多方面で実用されている。ところで最近電子回路の発達
から高周波域特に数M位以上で使用できる電気機械変換
素子の出現が強く要望されている。In particular, zircon-lead titanate-based porcelain has an electromechanical coupling coefficient (
It has a large dielectric constant (K) and a large dielectric constant (d), and is used in many fields as an electromechanical transducer. Recently, with the development of electronic circuits, there has been a strong demand for an electromechanical transducer that can be used in a high frequency range, particularly in a range of several megawatts or more.
従来のチタン酸バリウム系磁器、ジルコン・チタン酸鉛
系磁器では誘電率が大きい為にかかる高周波城では損失
が大きくなる。又、周波数定数が小さい為にかかる高周
波城で実用する場合、素子の厚味を極〈薄くする等非常
な小寸法の素子とすることが必要となり、実用上良好な
結果を得ていない。これらの点を解決する組成物として
NaNbo3一LiNbo3系固溶体が見出されている
。Conventional barium titanate-based porcelain and zircon-lead titanate-based porcelain have large dielectric constants, so losses are large in such high-frequency applications. In addition, since the frequency constant is small, when it is put into practical use in such a high-frequency device, it is necessary to make the device very small in size, such as by making the thickness of the device extremely thin, and good results have not been obtained in practice. A solid solution based on NaNbo3-LiNbo3 has been found as a composition that solves these problems.
これらの組成物は譲霞率が小さく、高周波定数が大きい
特徴を有している。しかし、これらの組成物は磁器組織
として微細で均一なものが得難い。すなわち、暁結に適
する温度範囲が狭い為に異状粒成長が起きやすく、結晶
粒子径が大きくかつ不均一となりさらに気孔を多く残存
させる。ところで高周波城では、これらの磁器組織の不
均一性は電気機械変換素子としての性能を箸るしく低下
させ、さらに結晶粒子径が大きいことが素子としての強
度、特にかかる高周波用として必要な小寸法での強度を
極めて低下させ、これらのことが実用上大きな障害とな
っている。These compositions are characterized by a low yield factor and a large high frequency constant. However, with these compositions, it is difficult to obtain a fine and uniform porcelain structure. That is, since the temperature range suitable for crystallization is narrow, abnormal grain growth is likely to occur, resulting in large and non-uniform crystal grain sizes, and furthermore, many pores remain. By the way, in high frequency castles, the non-uniformity of these porcelain structures significantly reduces the performance as an electromechanical transducer, and the large crystal grain size also reduces the strength of the element, especially the small size required for such high frequencies. These problems pose a major obstacle in practical use.
これらの点を解決する方法として特殊な製造方法、例え
ばホットプレス法による焼結等が見し、出されているが
、それでも焼結温度等の条件範囲は狭くて充分な結果は
得られず、かつ製造方法を複雑にすることから実用上好
ましくない。Special manufacturing methods such as hot press sintering have been proposed as a way to solve these problems, but even then, the range of conditions such as sintering temperature is narrow and satisfactory results cannot be obtained. In addition, it complicates the manufacturing method, which is not preferred in practice.
本発明は上記の様な従来のものの欠点を除去し、高周波
域電気機械変換子として利用できる全く新しい圧電性磁
器を提供するものである。即ち、本発明は一般式(Na
,★,Lix)(NL‐y,SQ)03〔1〕で示され
×,yの値が0.03<×<0.14,0.001<y
<0.03の範囲の組成を有する圧電性磁器である。本
発明による圧電性磁器は、通常の焼成方法によって結晶
粒子径の小さい、均一微細な磁器組織が得られさらに電
気機械結合係数が大きく、誘電率が小さく周波数定数が
大きい特徴を有し、高周波城特にM位以上でその電気機
械変換素子として実用するに好適な材料である。第1図
に本発明になる圧電性磁器の組成範囲を示した。The present invention eliminates the above-mentioned drawbacks of the conventional piezoelectric ceramics and provides a completely new piezoelectric ceramic that can be used as a high-frequency electromechanical transducer. That is, the present invention is based on the general formula (Na
,★,Lix)(NL-y,SQ)03[1], and the value of ×,y is 0.03<x<0.14,0.001<y
Piezoelectric porcelain with a composition in the range <0.03. The piezoelectric porcelain according to the present invention has the characteristics that a uniform fine porcelain structure with small crystal grain size can be obtained by a normal firing method, a large electromechanical coupling coefficient, a small dielectric constant, a large frequency constant, and high frequency resistance. In particular, it is a suitable material for practical use as an electromechanical transducer at the M position or higher. FIG. 1 shows the composition range of the piezoelectric ceramic according to the present invention.
図中のx,yは〔1〕式のx,yに対応し番号は後述す
る第1表の試料番号に対応している。ここで本発明の圧
電性磁器は図中の4点A,B,C,Dで囲まれる範囲、
即ち0.03<文<0.140.001<y<0.03
に限定され、特に結晶粒子径、誘電率の点から0.03
<×<0.10では0.002<yo.01が、0.1
び<×<0.14では0.002ミyミ0.03が望ま
しい。x and y in the figure correspond to x and y in formula [1], and the numbers correspond to sample numbers in Table 1, which will be described later. Here, the piezoelectric porcelain of the present invention has a range surrounded by four points A, B, C, and D in the figure.
That is, 0.03<text<0.140.001<y<0.03
0.03, especially from the point of view of crystal grain size and dielectric constant.
<x<0.10, 0.002<yo. 01 is 0.1
When <×<0.14, 0.002 mm and 0.03 are desirable.
本発明における組成限定の理由はx<0.03では分極
処理に要する印加電圧が極めて大きくなり、実用に供す
ることは難しい。他方又>0.14では単一相からなる
焼縞体が得られず濠相となり、所定の圧電停性を示さな
い。又、y<0.001では暁結が極めて進みやすく凝
結過程において結晶粒の成長が進展して結晶粒子径が1
0山を超えて、さらに異状粒成長を起す為通常の競結方
法では均一な磁器組成が縛られない。他方y>0.03
では、yく0.001と同様に均一な磁器組織が得られ
ない。本発明の圧電性磁器を製造するには、例えばNa
2CQ,Lj2C03,Nb203,Sb203の様な
成分原料を所定量、秤量、混合しその混合物を800〜
1,000つ0で2〜8時間仮暁する。The reason for the composition limitation in the present invention is that when x<0.03, the applied voltage required for polarization treatment becomes extremely large, making it difficult to put it to practical use. On the other hand, if it is >0.14, a burnt striped body consisting of a single phase is not obtained, but a moat phase is obtained, and the predetermined piezostatic property is not exhibited. In addition, when y<0.001, crystal grains grow very easily during the solidification process, and the crystal grain size decreases to 1.
Since abnormal grain growth occurs beyond the zero peak, a uniform porcelain composition cannot be secured by the normal competitive bonding method. On the other hand y>0.03
In this case, a uniform porcelain structure cannot be obtained as in the case where y is 0.001. To produce the piezoelectric porcelain of the present invention, for example, Na
2CQ, Lj2C03, Nb203, Sb203 and other component raw materials are mixed in predetermined amounts and weighed, and the mixture is heated to 800~
1,000 times zero for 2 to 8 hours.
仮焼物を粉砕後、成形し、次いで成形物を1,130〜
1.300℃で暁結して磁器を得る。この磁器に所定の
方法で分極処理を施し、圧電特性を持たせる。実施例
出発原料粉末としてNa2C03,Li2C03,NQ
03,Sb203を用いた。After pulverizing the calcined product, it is molded, and then the molded product is
1. Porcelain is obtained by crystallization at 300°C. This porcelain is polarized using a predetermined method to give it piezoelectric properties. Examples Starting raw material powders include Na2C03, Li2C03, NQ
03, Sb203 was used.
純度は炭酸塩で99.5%以上NQ03,Sら03は共
に99.5%以上である。これらの原料を所定量、秤量
し、エタノールによるボールミルで湿式混合した後混合
物を乾燥した。得られた混合粉末を850〜90ぴ0で
4時間空気中で仮暁した。得られた仮焼物を粉砕後厚さ
2肋、直径25側の円板に500〜600k9/仇の圧
力で加圧成形した。この円板試料を115び0ないし1
280℃のある温度で空気中で焼結させた。得られた磁
器の高比重、真比重を測定し、又磁器組織の観察によっ
て結晶粒子径の測定を行った。磁器組織の観察は、まず
得られた円板磁器の円面を鏡面研磨し、次にこの面を1
.050qoで15分間程度空気中加熱することにより
熱エッチさせ、この面を顕微鏡観察する方法によって行
った。次に圧電特性については、得られた円板磁器を厚
さ1柵、直径18肌の円板に成形研磨し、この円板の両
面にAg電極を焼きつけて100℃のシリコンオイル中
に入れて両電極間に4なし、し腿V/側のある直流電圧
を30分間印加して分極処理を施した。The purity of carbonate is 99.5% or more, and both NQ03 and S et al. 03 are 99.5% or more. A predetermined amount of these raw materials was weighed, wet mixed in a ball mill using ethanol, and then the mixture was dried. The obtained mixed powder was suspended in air at 850 to 90 psi for 4 hours. The obtained calcined product was pulverized and then pressure-molded into a disk with a thickness of 2 ribs and a diameter of 25 mm at a pressure of 500 to 600 k9/cm. This disk sample is 115 and 0 to 1
It was sintered in air at a temperature of 280°C. The high specific gravity and true specific gravity of the obtained porcelain were measured, and the crystal grain size was also measured by observing the porcelain structure. To observe the porcelain structure, first mirror-polish the circular surface of the obtained disc porcelain, and then polish this surface once.
.. Thermal etching was carried out by heating in the air at 0.050 qo for about 15 minutes, and the surface was observed under a microscope. Next, regarding the piezoelectric properties, the obtained disk porcelain was molded and polished into a disk with a thickness of 1 inch and a diameter of 18 mm, Ag electrodes were baked on both sides of this disk, and the disk was placed in silicone oil at 100 degrees Celsius. Polarization treatment was performed by applying a DC voltage between both electrodes for 30 minutes with a DC voltage on the thigh V/side.
分極した試料を2鰹時間放置した後、圧電特性を評価す
る為、径万向振動における電気機械結合係数(Kp)及
び周波数定数(NP:共振周波数×直径)を測定した。After the polarized sample was left for 2 hours, the electromechanical coupling coefficient (Kp) and frequency constant (NP: resonant frequency x diameter) in radial vibration were measured in order to evaluate the piezoelectric properties.
測定は1,R.E.の標準回路の方法に従い、Kpの算
出は共振及び反共振周波数がら算出した。さらに、誘電
率(ご/ごo)及び誘電体損失(tan6)をIKHz
の周波数で測定した。実施例を第1表に、また、比較例
を第2表にこの様にして得られた種々の組成の試料にお
ける特性を一般式(Na,〜,Lix)(Nb,‐y,
Sby)03におけるx,yの値と共に示した。第1表
において、本発明の実施例である試料番号1〜15のも
のは、全て結晶粒子径が10仏以下で優れた圧電特性を
有していた。Measurements were made at 1, R. E. Kp was calculated from the resonance and anti-resonance frequencies according to the standard circuit method. Furthermore, the dielectric constant (go/goo) and dielectric loss (tan6) are adjusted to IKHz.
Measured at the frequency of Examples are shown in Table 1, and comparative examples are shown in Table 2. Characteristics of samples with various compositions obtained in this way are shown using the general formula (Na, ~, Lix) (Nb, -y,
It is shown together with the x and y values in Sby)03. In Table 1, samples Nos. 1 to 15, which are examples of the present invention, all had crystal grain sizes of 10 French or less and had excellent piezoelectric properties.
これに対して、第2表に示される比較例では、y=0<
0.001である試料番号16〜22のものは、結晶粒
径が10山を越えて10〜20山乃至10〜40仏であ
った。また、同様にy=0.05>0.03である試料
番号24〜28のものも結晶粒径が大きかった。またx
=0.02<0.03である試料番号1023のものは
、前述分極処理をしても共振−反共振が観察できなく、
圧電特性を計測することができなかった。x=0.15
>0.14である試料番号22,27のものは、X線回
折像でみて均一相ではなかった。第1
第2
第1表に示した試料は全て比重は真比重の97%以上で
あり、又周波数定数は3.55一3.77(KHz.m
)の範囲にある。On the other hand, in the comparative example shown in Table 2, y=0<
Samples Nos. 16 to 22 with a grain size of 0.001 had crystal grain sizes of more than 10 grains, ranging from 10 to 20 grains to 10 to 40 grains. Similarly, samples Nos. 24 to 28 where y=0.05>0.03 also had large crystal grain sizes. Also x
For sample number 1023 where =0.02<0.03, resonance-antiresonance could not be observed even after the above polarization treatment.
It was not possible to measure piezoelectric properties. x=0.15
Sample numbers 22 and 27 with >0.14 did not have a homogeneous phase as seen in the X-ray diffraction images. 1 2 All the samples shown in Table 1 have a specific gravity of 97% or more of the true specific gravity, and a frequency constant of 3.55-3.77 (KHz.m
) is within the range.
第1表及び上記の特性から明らかな様に、本発明による
圧電性磁器は結晶子径が小さく均一であり、さらに大き
い電気機械結合係数(Kp)を有し、誘電率(ごノごo
)が小さいという特徴を有し、さらに周波数定数が大き
いので高周波での電気機械変換素子用の圧電性磁器とし
て好適である。As is clear from Table 1 and the above characteristics, the piezoelectric porcelain according to the present invention has a small and uniform crystallite diameter, a large electromechanical coupling coefficient (Kp), and a dielectric constant (Kp).
) and has a large frequency constant, making it suitable as a piezoelectric ceramic for electromechanical transducers at high frequencies.
第1図は本発明になる圧電性磁器の組成範囲を示す。 1〜15:実施例、16〜27:比較例。 愛/函 FIG. 1 shows the composition range of the piezoelectric ceramic according to the present invention. 1 to 15: Examples, 16 to 27: Comparative examples. love/box
Claims (1)
,Sb_yO_3で示される組成で構成され、0.03
≦X≦0.14,0.001≦y≦0.03の範囲内の
組成を有する圧電性磁器。 2 x,yが、 0.03≦x≦0.10で0.002≦y≦0.01
,0.10≦x≦0.14で0.002≦y≦0.03
の範囲の組成を有することを特徴とする特許請求の範囲
第1項記載の圧電性磁器。[Claims] 1 (Na_1_-_x, Li_x) Nb_1_-_y
, Sb_yO_3, 0.03
Piezoelectric porcelain having a composition within the range of ≦X≦0.14, 0.001≦y≦0.03. 2 x, y are 0.03≦x≦0.10 and 0.002≦y≦0.01
, 0.10≦x≦0.14 and 0.002≦y≦0.03
The piezoelectric porcelain according to claim 1, having a composition in the range of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55057080A JPS6022513B2 (en) | 1980-05-01 | 1980-05-01 | piezoelectric porcelain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55057080A JPS6022513B2 (en) | 1980-05-01 | 1980-05-01 | piezoelectric porcelain |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56155579A JPS56155579A (en) | 1981-12-01 |
JPS6022513B2 true JPS6022513B2 (en) | 1985-06-03 |
Family
ID=13045493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55057080A Expired JPS6022513B2 (en) | 1980-05-01 | 1980-05-01 | piezoelectric porcelain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6022513B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4631246B2 (en) * | 2002-03-20 | 2011-02-16 | 株式会社豊田中央研究所 | Piezoelectric ceramic composition, manufacturing method thereof, piezoelectric element and dielectric element |
JP4156461B2 (en) * | 2002-07-16 | 2008-09-24 | 株式会社デンソー | Piezoelectric ceramic composition, method for producing the same, and piezoelectric element |
JP5011140B2 (en) * | 2002-07-16 | 2012-08-29 | 株式会社デンソー | Piezoelectric ceramic composition, method for producing the same, and piezoelectric element |
JP4163068B2 (en) * | 2003-01-23 | 2008-10-08 | 株式会社デンソー | Piezoelectric ceramic composition and piezoelectric element |
JP5022926B2 (en) * | 2003-01-23 | 2012-09-12 | 株式会社デンソー | Piezoelectric ceramic composition and piezoelectric element |
CN102351246B (en) * | 2011-07-05 | 2013-06-12 | 深圳大学 | A kind of preparation method of rod-shaped NaNbO3 crystal |
CN110713383B (en) * | 2019-10-25 | 2020-07-31 | 四川大学 | Piezoelectric ceramic material and preparation method thereof |
-
1980
- 1980-05-01 JP JP55057080A patent/JPS6022513B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56155579A (en) | 1981-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62202576A (en) | Piezoelectric ceramics and manufacture of the same | |
JPH11228227A (en) | Piezoelectric ceramic composition | |
JP3282576B2 (en) | Piezoelectric ceramic composition | |
CN113698204A (en) | Potassium-sodium niobate-based lead-free piezoelectric textured ceramic with high piezoelectric response and high Curie temperature and preparation method thereof | |
JPH04349164A (en) | Piezoelectric ceramics and production thereof | |
JPS6022513B2 (en) | piezoelectric porcelain | |
CN110078508B (en) | Manganese-doped lead indium niobate zincate-lead titanate piezoelectric ceramic, and preparation method and application thereof | |
CA1045370A (en) | Method of preparing ferroelectric ceramics | |
JPH0226794B2 (en) | ||
JP3732967B2 (en) | Porcelain composition | |
JP2884635B2 (en) | Piezoelectric ceramics and method of manufacturing the same | |
US4601841A (en) | Ferroelectric ceramic composition | |
JPS6132838B2 (en) | ||
JPH01242464A (en) | Piezoelectric or pyroelectric ceramic composition | |
CN113563067B (en) | A kind of preparation method of high-density thin-layer electronic ceramic material | |
JPS6141864B2 (en) | ||
JPH06239663A (en) | Microwave dielectric material porcelain composition and its production | |
JPS62172776A (en) | Manufacture of piezoelectric ceramics | |
JP2965417B2 (en) | Dielectric porcelain composition | |
JPH06116024A (en) | Production of bismuth laminar compound | |
JPS63152815A (en) | Dielectric ceramic | |
CN117303899A (en) | A piezoelectric ceramic material with high voltage coefficient and its preparation method and application | |
JPS62147604A (en) | Ferroelectric porcelain compound | |
JP3239510B2 (en) | Piezoelectric ceramic composition | |
JPH0555661A (en) | Method of manufacturing piezoelectric ceramic |