[go: up one dir, main page]

JPS60220381A - Destaticizing device - Google Patents

Destaticizing device

Info

Publication number
JPS60220381A
JPS60220381A JP7705384A JP7705384A JPS60220381A JP S60220381 A JPS60220381 A JP S60220381A JP 7705384 A JP7705384 A JP 7705384A JP 7705384 A JP7705384 A JP 7705384A JP S60220381 A JPS60220381 A JP S60220381A
Authority
JP
Japan
Prior art keywords
voltage
recording paper
charger
impressed
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7705384A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakajima
中嶋 嘉宏
Atsushi Arai
荒井 温
Itaru Matsuda
松田 格
Noriyuki Usui
碓井 則之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7705384A priority Critical patent/JPS60220381A/en
Publication of JPS60220381A publication Critical patent/JPS60220381A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6532Removing a copy sheet form a xerographic drum, band or plate
    • G03G15/6535Removing a copy sheet form a xerographic drum, band or plate using electrostatic means, e.g. a separating corona

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE:To flow a large current without causing the falling of a thundervolt to attain a desirable separating capacity by shaping the waveform of an AC voltage impressed to a conductor so that the period when the voltage is equal to a maximum voltage and a minimum voltage practically exceeds 20% of each period of this AC voltage. CONSTITUTION:A prescribed DC high voltage is impressed to a transfer charger 14, and a toner image is transferred from a photosensitive drum 3 to a recording paper. A voltage where an AC voltage and a DC voltage are superposed is impressed to a wire 15a of a separating charger 15. When the recording paper passes this separating charger 15, corona discharging is generated between the wire 15a and the recording paper, and the electric charge on the recording paper is destaticized by the current of this corona discharging, and the attracton between the recording paper and the photosensitive drum 3 disappears, and therefore, the recording paper is separated from the photosensitive drum 3 naturally. High voltages impressed to an electrostatic charging charger 10, a developing device, the transfer charger 14, and the separating charger are outputted from a high voltage power supply unit 200. These voltages are impressed at prescribed timings respectively in accordance with indications from a copying process control unit 100.

Description

【発明の詳細な説明】 ■発明の分野 本発明は、例えば静電記録方式を用いた普通紙複写機に
おける分離部のように、交流コロナ発生器で記録シート
等の除電を行なう技術に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for eliminating static electricity from a recording sheet or the like using an AC corona generator, such as in a separating section in a plain paper copying machine using an electrostatic recording method.

■従来の技術 静電記録方式の普通紙複写機においては、感光体上に静
電潜像を形成し、それをトナーで可視像に現像し、感光
体上に記録シートを送り込んで可視像と記録シートとを
密着させ、ここで所定の電気的処理を行なうことにより
、感光体上の可視像を記録シート側に転写させ、次いで
分離部において、所定の電気的処理を行なうことにより
、記録シート上の電荷を除電して、感光体と記録シート
との吸着力をなくし、可視像が転写された記録シートを
感光体から分離する。
■Conventional technology In plain paper copying machines using electrostatic recording, an electrostatic latent image is formed on a photoreceptor, it is developed into a visible image using toner, and a recording sheet is fed onto the photoreceptor to make it visible. The visible image on the photoreceptor is transferred to the recording sheet by bringing the image and the recording sheet into close contact and performing a predetermined electrical process there, and then by performing a predetermined electrical process at a separating section. , the charge on the recording sheet is removed to eliminate the adhesion between the photoreceptor and the recording sheet, and the recording sheet to which the visible image has been transferred is separated from the photoreceptor.

記録シートを感光体から分離するための除電処理におい
ては、従来より、正弦波状の交流高電圧を印加したワイ
ヤを記録シートに近接配置することにより、ワイヤと記
録シートとの間でコロナ放電を生じさせて、除電してい
る。
Conventionally, in the static elimination process to separate the recording sheet from the photoconductor, a wire to which a sinusoidal AC high voltage is applied is placed close to the recording sheet to generate a corona discharge between the wire and the recording sheet. The static electricity is removed.

分離性能を高めるためには、ワイヤに印加する交流高電
圧の振幅を大きくして、除電に十分なコロナ電流を流す
必要がある。ところが、あまり交流高電圧の振幅を大き
くすると、感光体表面上に落雷と呼ばれる損傷を生ずる
。これは、一時的に印加される高電圧(正弦波のピーク
電圧)によって生ずる、絶縁破壊現象である。落雷が生
ずると、その部分では正常なコピーができなくなる。従
って、従来の分離装置においては、落雷があまり生じな
い程度のなるべく大きい振幅の正弦波電圧を印加して分
離を行なっている。しかし、落雷を防止するために交流
電圧の振幅を小さくすると分離性能が悪くなる。
In order to improve separation performance, it is necessary to increase the amplitude of the AC high voltage applied to the wire to flow a corona current sufficient for static elimination. However, if the amplitude of the AC high voltage is increased too much, damage called lightning strikes will occur on the surface of the photoreceptor. This is a dielectric breakdown phenomenon caused by a temporarily applied high voltage (sine wave peak voltage). When lightning strikes, normal copying cannot occur in that area. Therefore, in conventional separation devices, separation is performed by applying a sinusoidal voltage of as large an amplitude as possible to prevent lightning strikes from occurring. However, if the amplitude of the AC voltage is reduced to prevent lightning strikes, the separation performance will deteriorate.

■発明の目的 本発明は、落雷を生じさせることなく、十分な除電を行
なって、好ましい分離性能を得ることを目的とする。
■Object of the Invention The object of the present invention is to sufficiently eliminate static electricity without causing lightning strikes, and to obtain preferable separation performance.

■構成 十分な除電を行なうためには、実質的に大きなコロナ電
流を流す必要がある。一般に、この種の除電装置の電極
は容量性の電気的特性を有している。このため、電流は
その電極に印加する交流電圧の波高値近傍で急激に流れ
始め、その後すぐに指数関数的なカーブで減少する。こ
の場合の電流の実効値は、電流が流れる期間に大きく依
存する。
■Construction In order to perform sufficient static elimination, it is necessary to flow a substantially large corona current. Generally, the electrodes of this type of static eliminator have capacitive electrical characteristics. Therefore, the current begins to flow rapidly near the peak value of the AC voltage applied to the electrode, and then immediately decreases in an exponential curve. The effective value of the current in this case largely depends on the period during which the current flows.

従って、電流が流れる期間を長くすれば電流の実効値を
大きくしうる。従来のような正弦波の場合だと、その電
圧は最大値に達した後すぐに低下し始めるので、電流の
流れる期間が比較的短い。そこで、例えば電極に印加す
る交流電圧を短形波状にすれば、電圧が最大値である期
間が長いので、正弦波に比べて電流の流れる期間が長く
なる。このようにすれば、交流電圧の振幅を大きくする
ことなく十分な電流を流せるので、落雷を生ずることが
なくなる。
Therefore, by lengthening the period during which the current flows, the effective value of the current can be increased. In the case of a conventional sine wave, the voltage begins to drop immediately after reaching its maximum value, so the period during which the current flows is relatively short. Therefore, for example, if the alternating current voltage applied to the electrodes is made into a rectangular waveform, the period during which the voltage is at its maximum value is longer, so the period during which the current flows is longer than when it is a sine wave. In this way, sufficient current can flow without increasing the amplitude of the alternating current voltage, so lightning strikes will not occur.

■実施例 以下、図面を参照して本発明の詳細な説明する。■Example Hereinafter, the present invention will be described in detail with reference to the drawings.

第1a図に、本発明を実施する一形式の複写機の構成を
示し、第1b図に第1a図に示す装置の後ろ側から見た
駆動系の構成を示す。
FIG. 1a shows the structure of one type of copying machine embodying the present invention, and FIG. 1b shows the structure of the drive system seen from the rear side of the apparatus shown in FIG. 1a.

第1a図を参照して装置の構成を説明する。1が原稿を
乗せるコンタクトガラスである。コンタクトガラス1の
下方には光学走査系2が備わっており、原稿からの反射
光による像が、この光学走査系2を介して感光体ドラム
3上に結像される。
The configuration of the apparatus will be explained with reference to FIG. 1a. 1 is a contact glass on which the original is placed. An optical scanning system 2 is provided below the contact glass 1, and an image of light reflected from the original is formed on the photoreceptor drum 3 via the optical scanning system 2.

感光体ドラム3は第1a図では時計方向に回転する。The photoreceptor drum 3 rotates clockwise in FIG. 1a.

一方、給紙系は2段になっており、給紙カセット4.5
のいずれか選択されたものから給紙コロ6又は7により
記録紙の給紙が行なわれる。給紙された紙は、レジスト
ローラ8と先端折り曲げローラ9の間を通って感光体ド
ラム3に導びかれる。
On the other hand, the paper feed system has two stages, with 4.5 paper cassettes.
The recording paper is fed by the paper feed roller 6 or 7 from the selected one. The fed paper passes between a registration roller 8 and a leading end bending roller 9 and is guided to the photosensitive drum 3.

第2図に示すように、感光体ドラム3の周囲には、帯電
チャージャlO,イレーサ11.現像器12゜転写前除
電ランプ13.転写チャージャ142分離チャージャ1
51分離爪16.ファーブラシI7、除電ランプ18等
が配置されている。
As shown in FIG. 2, around the photoreceptor drum 3, there is a charger lO, an eraser 11. Developing device 12° Pre-transfer static elimination lamp 13. Transfer charger 142 Separation charger 1
51 separation claw 16. A fur brush I7, a static elimination lamp 18, etc. are arranged.

概略のコピープロセスを説明する。感光体ドラム3は、
帯電チャージャ10によって表面が一様の高電位に帯電
する。感光体ドラム3が原稿からの反射光の照射を受け
ると、その光強度に応じて表面電位が変化し、これによ
って感光体ドラム3の表面に静電潜像が形成される。こ
の静電潜像は、現像器12を通ると、その電位分布に応
じてトナーが付着し、可視化される。給紙された記録紙
は、感光体ドラム3の回転に応じた所定のタイミングで
レジストローラ8によって送られ、このトナー像が形成
された感光体ドラム3の表面に重なる。
Explain the general copy process. The photosensitive drum 3 is
The surface is charged to a uniform high potential by the charger 10. When the photoreceptor drum 3 is irradiated with reflected light from the original, the surface potential changes depending on the intensity of the light, thereby forming an electrostatic latent image on the surface of the photoreceptor drum 3. When this electrostatic latent image passes through the developing device 12, toner adheres thereto according to its potential distribution and becomes visible. The fed recording paper is sent by registration rollers 8 at a predetermined timing according to the rotation of the photoreceptor drum 3, and overlaps the surface of the photoreceptor drum 3 on which the toner image is formed.

この後、転写チャージャ14に所定の直流高電圧が印加
され、これによってトナー像は感光体ドラム3から記録
紙側に転写する。この状態では、感光体ドラム3上の電
荷と記録紙上の電荷とが吸引し合うため、記録紙が感光
体ドラム3に密着している。分離チャージャI5のワイ
ヤ1.5 aには後述する交流電圧と直流電圧とが重畳
した電圧が印加される。記録紙が分離チャージャ15を
通ると、ワイヤ15aと記録紙との間でコロナ放電を生
じ、この電流によって、記録紙]二の電荷が除電される
Thereafter, a predetermined DC high voltage is applied to the transfer charger 14, whereby the toner image is transferred from the photosensitive drum 3 to the recording paper side. In this state, the charges on the photoreceptor drum 3 and the charges on the recording paper attract each other, so that the recording paper is in close contact with the photoreceptor drum 3. A voltage obtained by superimposing an alternating current voltage and a direct current voltage, which will be described later, is applied to the wire 1.5a of the separate charger I5. When the recording paper passes through the separation charger 15, a corona discharge occurs between the wire 15a and the recording paper, and the charge on the recording paper is eliminated by this current.

記録紙上の電荷が除電されると、記録紙と感光体ドラム
3との吸引力がなくなるため、記録紙は自然に感光体ド
ラム3から分離される。分離した記録紙は、搬送ベルト
I9に向かう。そして、記録紙はヒータを内蔵した定着
ローラ20を通ってトナー像を定着された後、排紙ロー
ラ21を通ってコピートレイ22に向かう。
When the charge on the recording paper is removed, the attraction force between the recording paper and the photoreceptor drum 3 disappears, so that the recording paper is naturally separated from the photoreceptor drum 3. The separated recording paper heads toward the conveyor belt I9. Then, the recording paper passes through a fixing roller 20 having a built-in heater and has the toner image fixed thereon, and then passes through a paper discharge roller 21 and heads toward a copy tray 22 .

帯電チャージャ10.現像器12.転写チャージャ14
および分離チャージャに印加される高電圧は、高圧電源
ユニット200から出力される。これらの電圧は、複写
プロセス制御ユニ・ット100からの指示によって、そ
れぞれ所定のタイミングで印加される。
Electric charger 10. Developing device 12. Transfer charger 14
The high voltage applied to the separate charger is output from the high voltage power supply unit 200. These voltages are applied at predetermined timings according to instructions from the copying process control unit 100.

第3図に、第2図に示す高圧電源ユニットに含まれる1
分離電源装置の構成を示す。第3図を参照して説明する
。この分離電源装置は、大きく分けると交流電源ユニッ
トPWIと直流電源ユニツhPW2とでなっている。ま
ず交流電源ユニットPWIについて説明する。このユニ
ットは、簡単に言うと直流交流変換器であり、具体的に
は24Vの直流電圧を供給され、5KV程度の波高値を
有する短形波状の交流高電圧を出力する。
Figure 3 shows 1 included in the high voltage power supply unit shown in Figure 2.
The configuration of the separate power supply unit is shown. This will be explained with reference to FIG. This separate power supply device is roughly divided into an AC power supply unit PWI and a DC power supply unit hPW2. First, the AC power supply unit PWI will be explained. Simply put, this unit is a DC/AC converter, and specifically, it is supplied with a DC voltage of 24V and outputs a rectangular wave-shaped AC high voltage having a peak value of about 5KV.

発振器OSCIは、この例では2m5ecの周期を有す
るデユーティが50%の短i波信号を出力する。従って
、2m5ecの周期でトランジスタQ3が常時オン/オ
フを繰り返す。ここで、制御信号0N10FFが高レベ
ルHであると、トランジスタQ4がオンし、直流電源(
T)C24V)からの電流が、トランジスタQ1を介し
て昇圧トランスT1の一次側に流れる。
The oscillator OSCI outputs a short i-wave signal with a duty of 50% and a period of 2 m5 ec in this example. Therefore, the transistor Q3 constantly repeats on/off with a period of 2m5ec. Here, when the control signal 0N10FF is at a high level H, the transistor Q4 is turned on, and the DC power supply (
A current from T)C24V) flows to the primary side of the step-up transformer T1 via the transistor Q1.

この電流は2m5ecの周期でオン/オフする短形波状
波形である。従って、トランスTIの2つの二次側巻線
には、巻線比に応じて昇圧された短形波状交流電圧が発
生する。一方の二次側巻線には高電圧が発生し、もう一
方の二次側巻線に比較的低い電圧が発生する。低い電圧
は、ブリッジダイオードBDIによって整流され、直流
に平滑された後、増幅器AMP Iに印加される。
This current has a rectangular waveform that turns on and off at a cycle of 2 m5ec. Therefore, a rectangular waveform AC voltage is generated in the two secondary windings of the transformer TI, which is boosted according to the winding ratio. A high voltage is developed in one secondary winding and a relatively low voltage is developed in the other secondary winding. The low voltage is applied to the amplifier AMP I after being rectified by the bridge diode BDI and smoothed to direct current.

増幅@AMPIからの出力信号は、ト・ランジスタQ2
に印加される。昇圧トランスT1の二次側巻線に現われ
る電圧が所定よりも低いと、増幅器AMPIから出力さ
れる電圧が所定より低くなってトランジスタQ2のオン
抵抗が増大し、これによってトランジスタQ1のベース
電位が上がるので、トランジスタQl内の電圧降下が小
さくなり、トランスT1の一次側巻線に印加される電圧
が高くなり、二次側の電圧が−に昇する。また二次側巻
線に呪われる電圧が所定よりも高いと、増幅器AMP】
から出力される電圧が所定より高くなって、トランジス
タQ2のオン抵抗が所定より小さくなり、これによって
トランジスタQlのベース電位が下がるので、トランジ
スタQl内の電圧降下が大きくなり、トランスTIの一
次側巻線に印加される電圧が低下して二次側の電圧が低
下する。つまり、トランスTIの二次側すなわち出力端
子に呪われる電圧(振幅)は、予め定めた所定値になる
ように自動的に調整される。
The output signal from the amplifier @AMPI is transferred to transistor Q2.
is applied to When the voltage appearing on the secondary winding of the step-up transformer T1 is lower than a predetermined value, the voltage output from the amplifier AMPI becomes lower than the predetermined value, and the on-resistance of the transistor Q2 increases, thereby increasing the base potential of the transistor Q1. Therefore, the voltage drop within the transistor Ql becomes smaller, the voltage applied to the primary winding of the transformer T1 becomes higher, and the voltage on the secondary side rises to -. Also, if the voltage cursed on the secondary winding is higher than the specified value, the amplifier AMP]
The voltage output from the transistor Q2 becomes higher than a predetermined value, and the on-resistance of the transistor Q2 becomes smaller than a predetermined value. This lowers the base potential of the transistor Ql, so the voltage drop in the transistor Ql increases, and the primary winding of the transformer TI The voltage applied to the line decreases and the voltage on the secondary side decreases. In other words, the voltage (amplitude) applied to the secondary side of the transformer TI, that is, the output terminal, is automatically adjusted to a predetermined value.

直流電源ユニットPW2の構成および動作は、交流電源
ユニットPW1と大部分が似ているが、次の部分が異な
っている。発振器03C2は、正弦波信号を出力する。
The configuration and operation of DC power supply unit PW2 are mostly similar to AC power supply unit PW1, but differ in the following parts. Oscillator 03C2 outputs a sine wave signal.

従って、トランスT2の二次側巻線に現われる電圧も正
弦波である。また、この正弦波電圧はダイオードDI、
D2によって全波整流され直流電圧として出力される。
Therefore, the voltage appearing on the secondary winding of transformer T2 is also a sine wave. Also, this sine wave voltage is applied to the diode DI,
It is full-wave rectified by D2 and output as a DC voltage.

この電圧は約300vである。この直流電圧と、前記交
流電源ユニットPWIから出力される交流電圧とが重畳
して、分離チャージャのワイヤ15aに印加される。直
流電源ユニットPW2では、アナログ比較器OPIを用
いているが、この動作は交流電源ユニットPWIのトラ
ンジスタQ2.ツェナーダイオードZDI等でなる回路
と同様である。
This voltage is approximately 300v. This DC voltage and the AC voltage output from the AC power supply unit PWI are superimposed and applied to the wire 15a of the separate charger. The DC power supply unit PW2 uses an analog comparator OPI, but this operation is performed by the transistor Q2. of the AC power supply unit PWI. This is similar to a circuit made of a Zener diode ZDI or the like.

第4図に、分離チャージャのワイヤ15aに印加される
電圧vou七とそれに流れる電流I ouLとを示す。
FIG. 4 shows the voltage vou7 applied to the wire 15a of the separate charger and the current IouL flowing therein.

第4図を参照すると、電流1 ouLは、電圧vout
の波高値に対応する位相で急激に大きくなっている。な
お分離チャージャが容量性であるため、電流は電圧より
位相が進んでいる。このピーク電流(γの領域)は、電
圧Voutが最大値になる期間αが大きい程、大きくな
る傾向を示す。
Referring to FIG. 4, the current 1 ouL is equal to the voltage vout
It suddenly increases at the phase corresponding to the peak value of . Note that since the separate charger is capacitive, the current leads the voltage in phase. This peak current (region of γ) tends to increase as the period α during which the voltage Vout reaches its maximum value increases.

つまり、交流電圧の周期βに対して電圧が最大値になる
期間αの割合いを大きくすれば、振幅を大きくすること
なく、すなわちピーク電圧を大きくすることなく、分離
チャージャI5に流す電流を大きくすることができる。
In other words, by increasing the ratio of the period α during which the voltage reaches its maximum value to the period β of the AC voltage, the current flowing through the separate charger I5 can be increased without increasing the amplitude, that is, without increasing the peak voltage. can do.

第5図に、分離性能ΔIdcとα/βとの関係を示す。FIG. 5 shows the relationship between separation performance ΔIdc and α/β.

これは、コピー像の品質を許容範囲に維持した状態で、
流すことのできる電流(電圧は一定)を示している。つ
まり、印加する交流電圧波形が短形波で、特に第5図か
ら分かるようにα/βが0.2より大きいと、大きな電
流を流せるので、好ましい分離を行なうことができる。
This is done while maintaining the quality of the copy image within an acceptable range.
It shows the current (voltage is constant) that can flow. In other words, when the applied AC voltage waveform is a rectangular wave, and in particular, as seen in FIG. 5, when α/β is greater than 0.2, a large current can flow, so that preferable separation can be achieved.

正弦波の場合だと、α/βが0に近いから分離性能が低
い。
In the case of a sine wave, the separation performance is low because α/β is close to 0.

なお、分離部がコピー像の品質を落とす原因は大きく分
けて2つある。1つは、分離不良によって記録紙に分離
爪16の跡が付く現象である。もう1つは、除電過剰に
よって記録紙に転写したトナーが感光体ドラムに再転写
されて生ずる転写不良、いわゆる版画画像現象である。
It should be noted that there are two main reasons why the separating section degrades the quality of the copied image. One is a phenomenon in which marks of the separation claw 16 are left on the recording paper due to poor separation. The other is a so-called print image phenomenon, which is a transfer failure caused when toner transferred to the recording paper is retransferred to the photoreceptor drum due to excessive charge removal.

なお、上記実施例においては、交流電源波形として短形
波を用いたが、例えば正弦波状の波形のピーク電圧部を
クリップして波形を変換してもよし1 。
In the above embodiments, a rectangular wave is used as the AC power waveform, but the waveform may be converted by clipping the peak voltage portion of a sinusoidal waveform, for example.

■発明の効果 以上のとおり、本発明によれば、落雷を生ずることなく
大きな電流を流して好ましい分離性能を得られる。
(2) Effects of the Invention As described above, according to the present invention, a large current can be passed without causing a lightning strike and favorable separation performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は本発明を実施する一形式の複写機の主要部を
示す正面図、第1b図は第1a図の複写機の駆動系を示
す背面図である。 第2図は、第1a図の感光体ドラムの近傍を示すブロッ
ク図である。 第3図は、高圧電源ユニット200に備わった分離電源
装置の電気回路を示すブロック図である。 第4図は、第3図に示す回路の出力電圧および出力電流
を示す波形図である。 第5図は、分離チャージャに印加する電圧の波形と分離
性能との関係を示すグラフである。 3:感光体ドラム lO:帯電チャージャ12:現像器
 14:転写チャージャ I5:分離チャージャ 15a:ワイヤ16:分離爪 200:高圧電源ユニット pwl:交流電源ユニット PW2 :直流電源ユニット 特許出願人 株式会社 リコー 第3阿 第4■ 第5阿 %
FIG. 1a is a front view showing the main parts of one type of copying machine embodying the present invention, and FIG. 1b is a rear view showing the drive system of the copying machine shown in FIG. 1a. FIG. 2 is a block diagram showing the vicinity of the photosensitive drum shown in FIG. 1a. FIG. 3 is a block diagram showing an electric circuit of a separate power supply device included in the high voltage power supply unit 200. FIG. 4 is a waveform diagram showing the output voltage and output current of the circuit shown in FIG. 3. FIG. 5 is a graph showing the relationship between the waveform of the voltage applied to the separation charger and separation performance. 3: Photosensitive drum IO: Charger 12: Developing device 14: Transfer charger I5: Separation charger 15a: Wire 16: Separation claw 200: High voltage power supply unit pwl: AC power supply unit PW2: DC power supply unit Patent applicant Ricoh Co., Ltd. 3A 4th■ 5th A%

Claims (2)

【特許請求の範囲】[Claims] (1)被除電部材に導電体を近接配置し、該導電体に交
流電圧を印加して、該導電体と被Ml!部材との間に放
電を生じさせる除電装置において;前記導電体に印加す
る交流電圧を、最大電圧および最大電圧と実質上同一の
電圧になる期間が、その交流電圧の各周期のうちの20
%を越える波形にしたことを特徴とする、除電装置。
(1) A conductor is placed close to the member to be neutralized, an AC voltage is applied to the conductor, and the difference between the conductor and the target Ml is removed. In a static eliminator that generates a discharge between the conductor and the conductor; the AC voltage applied to the conductor has a maximum voltage and a period where the voltage is substantially the same as the maximum voltage is 20 out of each cycle of the AC voltage.
A static eliminator characterized by having a waveform exceeding %.
(2)導電体に印加する交流電圧は矩形波である、前記
特許請求の範囲第(1)項記載の除電装置。
(2) The static eliminator according to claim 1, wherein the AC voltage applied to the conductor is a rectangular wave.
JP7705384A 1984-04-17 1984-04-17 Destaticizing device Pending JPS60220381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7705384A JPS60220381A (en) 1984-04-17 1984-04-17 Destaticizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7705384A JPS60220381A (en) 1984-04-17 1984-04-17 Destaticizing device

Publications (1)

Publication Number Publication Date
JPS60220381A true JPS60220381A (en) 1985-11-05

Family

ID=13623040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7705384A Pending JPS60220381A (en) 1984-04-17 1984-04-17 Destaticizing device

Country Status (1)

Country Link
JP (1) JPS60220381A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286876A (en) * 1987-05-19 1988-11-24 Canon Inc Transfer material separating device for image forming device
JPS63298265A (en) * 1987-05-29 1988-12-06 Canon Inc Transfer material separating device
EP0342600A2 (en) * 1988-05-16 1989-11-23 Canon Kabushiki Kaisha Image forming apparatus with transfer material separating means

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63286876A (en) * 1987-05-19 1988-11-24 Canon Inc Transfer material separating device for image forming device
JPS63298265A (en) * 1987-05-29 1988-12-06 Canon Inc Transfer material separating device
EP0342600A2 (en) * 1988-05-16 1989-11-23 Canon Kabushiki Kaisha Image forming apparatus with transfer material separating means
US5526106A (en) * 1988-05-16 1996-06-11 Canon Kabushiki Kaisha Image forming apparatus with transfer material separating means

Similar Documents

Publication Publication Date Title
EP0342600B1 (en) Image forming apparatus with transfer material separating means
JPS6252296B2 (en)
JPS60220381A (en) Destaticizing device
JP3107335B2 (en) Method and apparatus for reducing electrostatic level convergence time during operation of a three-level imaging device
JPS60216361A (en) Brush electrostatic charging and transferring device
US7227735B2 (en) Current regulated, voltage limited, AC power supply with DC offset for corona chargers
JPS61278879A (en) Corona discharging device
JPH0635327A (en) Transfer, detack polarity changing
JP2662121B2 (en) Electrophotographic equipment
JPH09152781A (en) Image forming device
JP4013453B2 (en) High voltage power supply apparatus for transfer, transfer apparatus using the same, and image forming apparatus using the transfer apparatus
JP3310069B2 (en) Image forming device
KR100580215B1 (en) Electrophotographic image forming apparatus
JPH0519636A (en) Image forming device
JPH0721671B2 (en) Image forming device
JPH0764410A (en) Transfer/separation device of image forming device
JPS5616153A (en) Transferring-discharging system of electronic copier
JPH01152517A (en) High voltage power unit
JPS6310829B2 (en)
JPH08160718A (en) Image forming device
JPH0564442A (en) High-voltage power supply equipment
JPS5818642A (en) Transferring method of copying machine
JPH0784469A (en) High voltage power source controller for image forming device
JPS62159165A (en) Separating device for electrostatic copying machine
JPH0721670B2 (en) Charging device