JPS60218894A - Compact CO↑2 laser device with high frequency stability and wide band sweep capability - Google Patents
Compact CO↑2 laser device with high frequency stability and wide band sweep capabilityInfo
- Publication number
- JPS60218894A JPS60218894A JP7458884A JP7458884A JPS60218894A JP S60218894 A JPS60218894 A JP S60218894A JP 7458884 A JP7458884 A JP 7458884A JP 7458884 A JP7458884 A JP 7458884A JP S60218894 A JPS60218894 A JP S60218894A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- frequency
- diffraction grating
- laser device
- parallel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/139—Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
- H01S3/1396—Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length by using two modes present, e.g. Zeeman splitting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08004—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
- H01S3/08009—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
技術分野
本発明は、光計測、分光分析等の分野におけるシステム
構成上重要な構成要素である気体レーザ装置として最も
多く用いられているOO,レーザ装置に関し1特に、小
型化するとともに、周波数を安定化し、しかも、そ゛の
周波数を安定に保ったまま広い帯域に亘って掃引し得る
ようにしたものである。Detailed Description of the Invention Technical Field The present invention relates to an OO laser device, which is most commonly used as a gas laser device, which is an important component in system configuration in fields such as optical measurement and spectroscopic analysis. In addition to stabilizing the frequency, it is also possible to sweep over a wide band while keeping the frequency stable.
従来技術
この種OO8レーザ装置は、従来、1mを超える長さの
元弁振器を備えた極めて大型のものであったので、その
小型化を図るために、従来から、種々の構成が提案され
ていた。まず、光共振器長を短縮するために、セラミッ
ク等の導波路に002等のガスを封入して両端に反射鏡
を配置したものが提案されたが、かかる従来の導波路型
CO,レーザ装置Vc扛当初何らの周波数安定化も施さ
れていなかった。ついで、その周波敷金安定化するため
に、ガスレーザ発振分枝全選定する機能を備えた・本発
明につき後述するのと同様の有機ガスセルを併置して基
準周波数のレーザ発振全生成させるようにしたものが提
案されたが、周波数安定化のためのガスセルを元弁振器
の外部に配置して組合わせていたために、周波数は安定
化するも、レーザ装置として社却って大型化する欠点が
あった。しかも、かかる手段により周波数を安定化した
場合には・周波数が選定した所定値に固定されてしまい
・必要があっても変化させ得ないという欠点も伴ってい
た。Prior Art This type of OO8 laser device has conventionally been extremely large with a main valve oscillator over 1 meter in length, so various configurations have been proposed in the past in order to reduce its size. was. First, in order to shorten the optical resonator length, it was proposed to fill a ceramic waveguide with a gas such as 002 and place reflective mirrors at both ends. At the beginning of Vc, no frequency stabilization was performed. Next, in order to stabilize the frequency deposit, an organic gas cell similar to that described later in the present invention, which has a function of selecting all gas laser oscillation branches, is installed in parallel to generate all laser oscillations at the reference frequency. was proposed, but because the gas cell for frequency stabilization was placed outside the main valve oscillator, the frequency was stabilized, but the laser device had the disadvantage of being rather large. Moreover, when the frequency is stabilized by such means, there is also the disadvantage that the frequency is fixed at a selected predetermined value and cannot be changed even if necessary.
一方、00gレーザにおいては約l OGHzおキニ発
振周波数帝、すなわち、いわゆる発振分枝が存在し、そ
れぞれ数百Uiz乃至I GHz程度の帯域幅を有して
いるので、00.レーザの発振周波数を安定化するには
、所望の発振分枝を選別する手段を設ける必要がある。On the other hand, in a 00g laser, the oscillation frequency is approximately 1 OGHz, that is, there are so-called oscillation branches, each of which has a bandwidth of several hundred UHz to I GHz. In order to stabilize the oscillation frequency of the laser, it is necessary to provide means for selecting a desired oscillation branch.
かかる発振分枝選別手段として回折格子を用いたC02
レーザ装置が従来から提案されていた。しかして、レー
ザ装置に用いる回折格子は、不要周波数成分を回折させ
て除外するものであるから、その周波数分解能を向上さ
せて有効に作用させるためにはレーザビームが広く回折
格子taう必要がある。かかるレーザビーム径の拡大を
行なうために、従来のOO,レーザ装置に詮いては凹面
鏡を介在させた折返し型共振器の形態に構成されており
、したがって、小型化に支障を来す欠点があった。しか
も、かかる構成により所望の発振分枝を選別して、その
分枝内において周波数を安定化すると、その同一分枝の
帯域内であっても発振周波数を安定に掃引することはほ
とんど不可能という欠点もあった。C02 using a diffraction grating as such an oscillation branch selection means
Laser devices have been proposed in the past. However, since the diffraction grating used in a laser device diffracts and excludes unnecessary frequency components, in order to improve its frequency resolution and work effectively, it is necessary for the laser beam to spread over a wide range of diffraction gratings. . In order to expand the laser beam diameter, conventional OO and laser devices are constructed in the form of a folded resonator with a concave mirror interposed therebetween, which has the drawback of hindering miniaturization. Ta. Furthermore, if a desired oscillation branch is selected using such a configuration and the frequency is stabilized within that branch, it is almost impossible to stably sweep the oscillation frequency even within the band of the same branch. There were also drawbacks.
発明の要点
本発明の目的は、上述した従来の欠点を一挙に除去し、
化学分析等に広く用いられるOO,レーザ装置について
、装置の小型化、発振周波数の高安定化および高安定を
保持したままの広い帯域に亘る発振周波数の掃引の8条
件を同時に満足し得る全く新たな構成のCO,レーザ装
置を提供することにおる。Summary of the Invention The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks at once;
Regarding OO and laser equipment widely used for chemical analysis, etc., we have created a completely new product that simultaneously satisfies eight conditions: miniaturization of the equipment, high stability of the oscillation frequency, and sweeping of the oscillation frequency over a wide band while maintaining high stability. The purpose of the present invention is to provide a CO laser device having the following configuration.
すなわち、本発明小型OO,レーザ装置は、00゜を含
むガスを封入したセラミック導波路に対し、一端に反射
鏡を近接配置するとともに、他端にビーム拡大用レンズ
を介し回折格子を配置して元弁振器を構成し、その光共
振器内の光路を挾む2枚の平行平板電極を備えて有機ガ
スを封入したシュタルクセルを配置し、前記平行平板電
極に印加した交流電圧に応じて前記有機ガスが呈する飽
和吸収信号の8次微分波形の中心周波数値にレーザ発振
周波数を安定化するとともに、前記平行平板電極に印加
した直流電圧に応じて前記安定化したレーザ発振周波数
を掃引するようにしたこと鷺特徴とするものでおる。That is, the small OO laser device of the present invention has a ceramic waveguide filled with a gas containing 00°, a reflecting mirror is placed close to one end of the waveguide, and a diffraction grating is placed on the other end via a beam expansion lens. A Stark cell comprising two parallel plate electrodes sandwiching the optical path in the optical resonator and filled with an organic gas is arranged to form a main valve oscillator, and a Stark cell is arranged in which an organic gas is filled. The laser oscillation frequency is stabilized to a center frequency value of the eighth-order differential waveform of the saturated absorption signal exhibited by the organic gas, and the stabilized laser oscillation frequency is swept in accordance with the DC voltage applied to the parallel plate electrode. This is a characteristic of the heron.
実施例
以下に図面を参照して実施例につき本発明の詳細な説明
する。EXAMPLES Below, the present invention will be described in detail by way of examples with reference to the drawings.
本発明小型00.レーザ装置の全体構成の例を第1図に
示す。図示の構成例において、レーザ発振を行なうレー
ザ装置本体に半透明の反射鏡1、少なくとも両端面全透
明にした気密容器からなる導波路2、導波路2の光軸に
対し適切に傾斜させて配置した回折格子8′J?よび導
波路2からの元ビームの径を拡大して回折格子8の面上
に投影するレンズ4からなる元弁振器をもって構成しで
ある。This invention small size 00. An example of the overall configuration of a laser device is shown in FIG. In the illustrated configuration example, a semi-transparent reflecting mirror 1 is provided in the main body of a laser device that performs laser oscillation, a waveguide 2 consisting of an airtight container with at least both ends completely transparent, and is arranged at an appropriate inclination with respect to the optical axis of the waveguide 2. Diffraction grating 8'J? and a lens 4 that enlarges the diameter of the original beam from the waveguide 2 and projects it onto the surface of the diffraction grating 8.
しかして、導波路2は、最大拡幅が数組程度の円形もし
くは長方形の断面を有する中空の気密セラミック管より
なり、その内部に002の他He 。The waveguide 2 is made of a hollow airtight ceramic tube having a circular or rectangular cross section with a maximum width of several pairs, and contains 002 and He in its interior.
N、 、 Xe 、 Me等からなる混合ガスを全圧力
数lO乃至100Torrに封入して高電圧電源5から
保護抵抗Rを介して直流高電圧を印加し、数mA程度の
電流を流してガス放電全生起させる。なお、走入混合ガ
スは、例えばCo、 ′t20〜25 % 、 Net
−601,N ’io 〜10%、 Xe f 5 %
程度にして混合し、適切な温度にて所望波長領域の赤外
発光が行なわれるようにする。かかる導波路2の両端に
反射鏡1および回折格子8f:配置して光共振器を構成
するとともに、回折格子8によジ所望波長範囲の発振分
枝を選別するが、その発振分枝選別の際の分解能を増大
させて十分な選別を行ない得るようにするには、前述し
たように、回折格子8の面上におけるレーザ光ビーム径
を拡大する必要がある。かかるビーム径拡大のために、
本発明装置においては、前述した従来装置とは異なり、
レンズ4を介在させて短距離にて所要のビーム径拡大を
行ない得るようにしている。A mixed gas consisting of N, , Xe, Me, etc. is sealed at a total pressure of several lO to 100 Torr, and a high DC voltage is applied from a high voltage power supply 5 through a protective resistor R, and a current of about several mA is passed to discharge the gas. Let it all happen. Incidentally, the incoming mixed gas is, for example, Co, 't20~25%, Net
−601, N'io ~10%, Xe f 5%
The components are mixed at appropriate temperatures so that infrared light emission in the desired wavelength range is achieved at an appropriate temperature. A reflecting mirror 1 and a diffraction grating 8f are arranged at both ends of the waveguide 2 to constitute an optical resonator, and the oscillation branch in a desired wavelength range is selected by the diffraction grating 8. In order to increase the resolution and perform sufficient selection, it is necessary to enlarge the diameter of the laser beam on the surface of the diffraction grating 8, as described above. In order to increase the beam diameter,
In the device of the present invention, unlike the conventional device described above,
A lens 4 is interposed so that the required beam diameter can be expanded over a short distance.
したがって、かかる構成の本発明co2レーザ装置は、
長さ1ocIrL程度の導波路2を用いてレンズ4′t
−介在させたときの反射鏡1から回折格子8に到る光共
振器の全長がaocIIL以下に納まって従来に比し極
めて小型となり、しかも、回折格子8の作用に基づき発
振分枝の選別性に優れた008.レーザ装置となる。な
お、出力レーザ光のパワーとして扛、放電電流値あるい
は封入ガスの混合比率乃至封入ガス圧を適切に調整する
ことにょ多数10mW乃至数Wの広い範囲に亘って可変
とすることができる。また、選別可能の発振分枝の波数
は、回折格子3を、手動により、もしくは、ステップモ
ータなどを用いて自動的に回転させて導波路2の元軸に
対する傾斜角を変化させることにより、10.6μm帯
および9.6μm帯の双方を合わせて数10程度が得ら
れる。Therefore, the CO2 laser device of the present invention having such a configuration,
A lens 4't is formed using a waveguide 2 with a length of about 1ocIrL.
- When interposed, the total length of the optical resonator from the reflecting mirror 1 to the diffraction grating 8 is kept below aocIIL, making it extremely compact compared to the conventional one, and the ability to select oscillation branches based on the action of the diffraction grating 8 Excellent 008. It becomes a laser device. Note that the power of the output laser beam can be varied over a wide range from many 10 mW to several W by appropriately adjusting the discharge current value or the mixture ratio of the filled gas or the filled gas pressure. The wave number of the oscillation branch that can be selected can be changed to 10 by rotating the diffraction grating 3 manually or automatically using a step motor or the like to change the inclination angle with respect to the original axis of the waveguide 2. Approximately several dozen bands can be obtained including both the .6 μm band and the 9.6 μm band.
しかして一本発明小型co2レーザ装置においては、上
述した基本構成に加えて、選別した所望の発振分枝の周
波数帯域における発振周波数を安定化するために、光共
振器内に回折格子8に近接して’/:L1kg*ル6を
配設する。このシュタルクセル6は、少なくとも両端を
透明にした気密容器内に・導波路20元軸を挾み、数關
程度の間隔をもって対向する2枚の平行平板電極を設け
、所望の発振分枝帯域内において光吸収を呈する種類の
有機ガス金敷m Torr 9度のガス圧にて封入した
ものである。本発明小型00.レーザ装置においては、
発振周波数安定化のために光共振器に付加するこの種ガ
スセルを、前述した従来装置と位置なり、光共振器内に
配設するので、C02レーザ装置の小屋化に対しては何
ら妨けとはならず、基本構成の小型!l:を保持したま
まで1、以下に述べるようにして、その発振周波数の安
定性を従来に比し格段に増大させている。In addition to the above-mentioned basic configuration, the compact CO2 laser device of the present invention has a diffraction grating 8 placed close to the optical resonator in order to stabilize the oscillation frequency in the selected frequency band of the desired oscillation branch. Then, arrange L1kg*L6. This Stark cell 6 has two parallel plate electrodes facing each other with an interval of several degrees between them, sandwiching the 20-element axis of the waveguide in an airtight container with at least both ends transparent. An organic gas anvil of a type that exhibits light absorption at m is sealed at a gas pressure of 9 Torr. This invention small size 00. In laser equipment,
This type of gas cell, which is added to the optical resonator to stabilize the oscillation frequency, is placed inside the optical resonator, which is the same position as in the conventional device described above, so there is no hindrance to the conversion of the C02 laser device into a shed. No, it's a small basic configuration! As described below, the stability of the oscillation frequency is significantly increased compared to the conventional one.
しかして、上述した構成のシュタルクセル6線、平行平
板電極間に印加する電圧値に応じたエネルギー準位の強
いレーザ光を吸収して数MFiz乃至数10 MHz程
度の狭いスペクトル幅の飽和吸収信号を発生させる。し
たがって、後述するように、回折格子8を負荷として搭
載した電歪素子(PZT)12の最高応動周波数に相当
するI Kl(z程度の発振周波数を有する正弦波発振
器7の発振出力電圧をシュタルクセル6内の平行平板電
極間に印加したときの導波路2からの出力レーザ光を受
光した光検出器10の検出出力信号を同期検波増幅器9
に導き、正弦波発振器7の発振出力により駆動した高調
波発生器8からの第3高調波電圧を印加して同期検波増
幅を行なうと、その増幅出力として・シュタルクセル6
内の封入有機ガスの種類および印加電圧に応じた周波数
帯域の入射レーザ光に対する飽和吸収信号の8次微分波
形が得られる。したがって、その8次微分波形の急峻な
スロープを周波数弁別に用い、その3次微分波形の中心
周波数にレーザ発振周波数を常時一致させるようにレー
ザ発振周波数を制御して安定化し得るようにするために
、同期検波増幅器9の増幅出力たるその8次微分波形信
号を電歪素子駆動回路llを介して電歪素子(PZT)
12に印加して微小振動を生起させ、もって、回折格子
3の位置を高精度に平行移動させることによジ、光共振
器の光学長を微細調整する。先兵振器光学長のかかる微
細調整により、本発明小型CO,レーザ装置においては
、そのレーザ発振周波数安定度を従来に比して10,0
00倍程度に向上させることができる。Therefore, the six-wire Stark cell configured as described above absorbs laser light with a strong energy level depending on the voltage value applied between the parallel plate electrodes, and produces a saturated absorption signal with a narrow spectrum width of several MFiz to several tens of MHz. to occur. Therefore, as will be described later, the oscillation output voltage of the sine wave oscillator 7 having an oscillation frequency of about IKl(z) corresponding to the highest response frequency of the electrostrictive element (PZT) 12 equipped with the diffraction grating 8 as a load is expressed by the Stark cell. The detection output signal of the photodetector 10 that receives the output laser light from the waveguide 2 when applied between the parallel plate electrodes in the synchronous detection amplifier 9
When synchronous detection amplification is performed by applying the third harmonic voltage from the harmonic generator 8 driven by the oscillation output of the sine wave oscillator 7, the amplified output is the Stark cell 6.
An eighth-order differential waveform of a saturated absorption signal with respect to the incident laser beam is obtained in a frequency band corresponding to the type of organic gas sealed in the chamber and the applied voltage. Therefore, in order to stabilize the laser oscillation frequency by using the steep slope of the 8th derivative waveform for frequency discrimination, the laser oscillation frequency can be controlled and stabilized so that the laser oscillation frequency always matches the center frequency of the 3rd derivative waveform. , the 8th order differential waveform signal, which is the amplified output of the synchronous detection amplifier 9, is sent to an electrostrictive element (PZT) via an electrostrictive element drive circuit ll.
12 to generate minute vibrations, thereby moving the position of the diffraction grating 3 in parallel with high precision, thereby finely adjusting the optical length of the optical resonator. Due to such fine adjustment of the optical length of the vanguard, the compact CO laser device of the present invention has a laser oscillation frequency stability of 10.0% compared to the conventional one.
This can be improved by approximately 00 times.
上述のようにしてレーザ発振周波数を高精度に安定化し
た状態において、正弦波発振器7からの正弦波電圧を加
算器14を介してシュタルクセル6の平行平板電極間に
印加するとともに、高電圧電源18からの直流高電圧を
加算器14に供給し、正弦波電圧に重畳加算してシュタ
ルクセル6内の平行平板電極間に重畳印加し、その直流
高電圧値を例えば連続的に変化させると、レーザ発振周
波数は、上述したように、飽和吸収信号の8次微分波形
の中心周波数位置に一致して従来の10,000倍程度
の安定度を保持したままで、各発振分枝それぞれの周波
数範囲の全域、例えば数100MHzの範囲全域に亘っ
て連続的に掃引されることになる0したがって、シュタ
ルクセル6内に封入する有機ガスとして、NH,D 、
0H8C1、02Ti、C1。With the laser oscillation frequency stabilized with high precision as described above, the sine wave voltage from the sine wave oscillator 7 is applied between the parallel plate electrodes of the Stark cell 6 via the adder 14, and the high voltage power source When the DC high voltage from 18 is supplied to the adder 14, superimposed and added to the sine wave voltage, and superimposed and applied between the parallel plate electrodes in the Stark cell 6, the DC high voltage value is changed continuously, for example. As mentioned above, the laser oscillation frequency coincides with the center frequency position of the 8th derivative waveform of the saturated absorption signal and maintains stability about 10,000 times that of the conventional one, while maintaining the frequency range of each oscillation branch. Therefore, as the organic gas sealed in the Stark cell 6, NH, D,
0H8C1, 02Ti, C1.
0H8Br 、 0H8F 、 Off、I 、 N)
I、 、 NF、 、 O,f(4F、 。0H8Br, 0H8F, Off, I, N)
I, , NF, , O,f(4F, .
0、H,F 、 PF、等をはじめとして各種の有機ガ
スを適切に選定して使用すれば、C02レーザにおいて
生起し得る全周波数領域内のあらゆる発振分枝について
、それぞれの周波数帯域全域に亘す、レーザ発振周波数
の極めて安定かつ広帯域の掃引全行なうことができる。If various organic gases such as 0, H, F, PF, etc. are appropriately selected and used, all oscillation branches within the entire frequency range that can occur in a C02 laser can be suppressed over the entire frequency band. Therefore, extremely stable and broadband sweeping of the laser oscillation frequency can be performed.
効果
以上の説明から明らかなように、本発明によれば、例え
ば長さ3QCm以下の極めて小型の元共振器を用いて、
従来に比し10,000倍程度に向上した発振周波数安
定度、したがって、1o−11乃至1g−12程度の極
めて高い周波数安定度を有し、しかも、10.6μmお
よび9#6μmの各波長領域の全域に亘る数10本の各
発振分枝のすべてについてそれぞれ数100 MHz
の全周波数範囲に亘ってそれぞれ周波数を掃引し得る極
めて優れた性能の小型CO,レーザ装置を実現し得る、
という格別の効果が得られる。かかる小型、周波数高安
定、周波数掃引可能の8条件を同時に満足した002レ
ーザ装置は、本発明装置以外にその例を見ないこと、冒
頭に述べたとおりである。Effects As is clear from the above explanation, according to the present invention, using an extremely small original resonator with a length of 3QCm or less, for example,
The oscillation frequency stability has been improved by about 10,000 times compared to the conventional one, and therefore has an extremely high frequency stability of about 1o-11 to 1g-12, and in each wavelength range of 10.6μm and 9#6μm. Each of the tens of oscillation branches over the entire area has a frequency of several hundred MHz.
It is possible to realize a compact CO laser device with extremely excellent performance that can sweep the frequency over the entire frequency range of
A special effect can be obtained. As stated at the beginning, there is no example of a 002 laser device other than the device of the present invention that satisfies the eight conditions of small size, high frequency stability, and frequency sweepability.
なお、以上の説明に追加するに、本発明小型00、レー
ザ装置においては、レーザ発振を安定化するために、反
射鏡lと導波路2とを、ベローズ・と微動ネジとを組合
わせた微動機構を介し、高精度に元軸調整可能の状態に
して互いに結合させておp5かかる高精度の微動機構の
実現も・本発明罠付随した顕著な効果でおる。In addition to the above explanation, in order to stabilize the laser oscillation in the compact 00 laser device of the present invention, the reflecting mirror l and the waveguide 2 are provided with a fine movement system using a combination of a bellows and a fine movement screw. It is also a remarkable effect of the present invention to realize a fine movement mechanism with high precision, which allows the base axes to be adjusted with high precision through a mechanism, and which are connected to each other.
第1図は本発明小型CO,レーザ装置の全体構成の例を
示すブロック線図である。
1・・・反射鏡、2・・・導波路、8・・・回折格子、
4・・・レンズ、5 、18・・・高電圧電源、6・・
・シュタルク・セル、7・・・正弦波発振器、8・・・
高調波発生器、9・・・同期検波増幅器、10・・・光
検波器、11・・・電歪素子駆動回路、1z・・・電歪
索子(PZT)、14・・・7111算器。FIG. 1 is a block diagram showing an example of the overall configuration of a compact CO and laser device according to the present invention. 1...Reflector, 2...Waveguide, 8...Diffraction grating,
4... Lens, 5, 18... High voltage power supply, 6...
・Stark cell, 7...Sine wave oscillator, 8...
Harmonic generator, 9... Synchronous detection amplifier, 10... Optical detector, 11... Electrostrictive element drive circuit, 1z... Electrostrictive element (PZT), 14... 7111 calculator .
Claims (1)
対し、一端に反射#IAを近接配置するとともに、他端
にビーム拡大用レンズを介し回折格子を配置して元弁振
器を構成し、その光共振器内の光路を挾む2枚の平行平
板電極を備えて有機ガス全封入したシュタルクセルを配
置し、前記平行平板電極に印加した交流電圧に応じて前
記有機ガスが呈する飽和吸収信号の8次微分波形の中心
周波数値にレーザ発振周波数を安定化するとともに、前
記平行平板電極に印加した直流電圧に応じて前記安定化
したレーザ発振周波数を掃引するようにしたことを特徴
とする小2u co、レーザ装置。 a 特許請求の範囲第1項記載のレーザ装置において、
前記回折格子を電歪素子により保持するとともに、前記
平行平板電極に印加した前記交流電圧に応じて周波数が
変化する前記元弁振器の出力レーザ光の検出出力信号を
前記交流電圧の高調波により同期増幅して前記電歪素子
に印加することにより、前記回折格子を前記元弁振器の
光軸方向に微動させて前記元弁振器の元学長を微調整す
るようにしたことを特徴とする小型CO,レーザ装置。[Claims] L 00. A reflection #IA is placed close to one end of a ceramic waveguide filled with a gas containing Fe, and a diffraction grating is placed at the other end via a beam expansion lens to form a base resonator, and the optical resonator is A Stark cell completely filled with an organic gas is arranged with two parallel plate electrodes sandwiching the optical path in the inner plate, and the 8th derivative of the saturated absorption signal exhibited by the organic gas is determined according to the AC voltage applied to the parallel plate electrodes. A small 2U CO laser, characterized in that the laser oscillation frequency is stabilized at the center frequency value of the waveform, and the stabilized laser oscillation frequency is swept in accordance with the DC voltage applied to the parallel plate electrodes. Device. a In the laser device according to claim 1,
The diffraction grating is held by an electrostrictive element, and a detection output signal of the output laser beam of the main valve oscillator whose frequency changes according to the alternating current voltage applied to the parallel plate electrodes is detected by harmonics of the alternating current voltage. By applying synchronous amplification to the electrostrictive element, the diffraction grating is slightly moved in the optical axis direction of the base valve vibrator, thereby finely adjusting the base length of the base valve vibrator. A small CO and laser device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7458884A JPS60218894A (en) | 1984-04-13 | 1984-04-13 | Compact CO↑2 laser device with high frequency stability and wide band sweep capability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7458884A JPS60218894A (en) | 1984-04-13 | 1984-04-13 | Compact CO↑2 laser device with high frequency stability and wide band sweep capability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60218894A true JPS60218894A (en) | 1985-11-01 |
Family
ID=13551469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7458884A Pending JPS60218894A (en) | 1984-04-13 | 1984-04-13 | Compact CO↑2 laser device with high frequency stability and wide band sweep capability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60218894A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6480084A (en) * | 1987-09-21 | 1989-03-24 | Hamamatsu Photonics Kk | Highly-repetitive pulse laser stabilizing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5248478A (en) * | 1975-10-16 | 1977-04-18 | Fujitsu Ltd | Process for production of semiconductor device |
JPS57136383A (en) * | 1981-02-16 | 1982-08-23 | Fujitsu Ltd | Hybrid laser |
-
1984
- 1984-04-13 JP JP7458884A patent/JPS60218894A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5248478A (en) * | 1975-10-16 | 1977-04-18 | Fujitsu Ltd | Process for production of semiconductor device |
JPS57136383A (en) * | 1981-02-16 | 1982-08-23 | Fujitsu Ltd | Hybrid laser |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6480084A (en) * | 1987-09-21 | 1989-03-24 | Hamamatsu Photonics Kk | Highly-repetitive pulse laser stabilizing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5353297A (en) | Gas slab laser with folded resonator structure | |
US3718868A (en) | I{11 {11 {11 {11 INVERTED LAMB DIP STABILIZED He-Ne LASER | |
EP0196856A2 (en) | Dual-wavelength laser apparatus | |
JPS60218894A (en) | Compact CO↑2 laser device with high frequency stability and wide band sweep capability | |
Moffatt et al. | High frequency optogalvanic signals and CO2 laser stabilisation | |
Minguzzi et al. | Optoacoustic laser Stark spectroscopy in the ν2 band of 14NH3 | |
JPS6163073A (en) | Frequency stabilizer of rf exciting laser | |
Jackson et al. | Broadly tunable pulsed laser for the infrared using color centers | |
US6084893A (en) | Apparatus and method of laser power and frequency stabilization of radio frequency excited laser using optogalvanic effect | |
JP4958349B2 (en) | Ring resonator and its fast tuning method | |
JPS59140B2 (en) | semiconductor laser equipment | |
Kanstad et al. | Tunable dual-line CO2 laser for atmospheric spectroscopy and pollution monitoring | |
Green et al. | A high-resolution cw dye laser spectrometer | |
Weiss | Optically bistable N2O-laser | |
Hamza et al. | Two-wavelength and power-balanced oscillation of a CO 2 laser for application to differential absorption measurements | |
Courtois et al. | Frequency and amplitude stabilization device for a cw CO2 laser | |
JP2951050B2 (en) | Two-wavelength oscillation Q switch CO2 laser device | |
Sun et al. | Precision tunable infrared source at 10 μm: CO 2-Laser/microwave-sideband system with an Evenson CO 2 laser and a Cheo waveguide modulator | |
Lang et al. | New far-infrared laser lines produced by resonant Q-branch-pumping of CH 3 F | |
SU1040559A1 (en) | Submillimeter laser working medium | |
JP2514084B2 (en) | Laser device | |
Lang et al. | New far-infrared laser lines from CH 3 Cl and CH 3 Br optically pumped with a continuously tunable high pressure CO 2 laser | |
SU1040560A1 (en) | Working substance of subllimetre-band gas laser | |
Kavaya et al. | Spectrophone stabilization and offset tuning of a carbon dioxide waveguide laser | |
Fraser et al. | Optothermal-detected microwave-sideband CO2-laser spectroscopy of NCH-NH3 |