JPS60215571A - Manufacturing method for high-strength zirconia-based sintered bodies - Google Patents
Manufacturing method for high-strength zirconia-based sintered bodiesInfo
- Publication number
- JPS60215571A JPS60215571A JP59071829A JP7182984A JPS60215571A JP S60215571 A JPS60215571 A JP S60215571A JP 59071829 A JP59071829 A JP 59071829A JP 7182984 A JP7182984 A JP 7182984A JP S60215571 A JPS60215571 A JP S60215571A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- sintered body
- based sintered
- powder
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、安定化剤を少量含有するジルコニアとアルミ
ナ、アルミナ−マグネシア系酸化物又はアルミナ−シリ
カ系酸化物とからなる極めて高強度ジルコニア系焼結体
の製法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an extremely high-strength zirconia sintered body made of zirconia containing a small amount of a stabilizer and alumina, an alumina-magnesia oxide, or an alumina-silica oxide.
近年、安定化剤としてイツ) IJアを少量添加した正
方品を含有するジルコニア焼結体(以下Y −PSZ焼
結体と略記する)が、高強度、高靭性を発現することか
ら、機械構造材料として利用する開発が活発化している
。一方、Y−PSZ−Al、O,系焼結体については、
文献(ジャーナルマテリアル サイエンス 17,24
7−254(1982))や特開昭58−32066号
公報等で報告されているが、これらの報告されている焼
結体の曲げ強度は最高1200 MPa程度であり、十
分満足できる強度とはいい難い。従って、これらの強度
を更に高強度とすることにより、焼結体の用途を大きく
拡大できるので、その為の焼結体がめられている。In recent years, zirconia sintered bodies (hereinafter abbreviated as Y-PSZ sintered bodies) containing square pieces to which a small amount of IJA (IJA) has been added as a stabilizer have been developed to be used in mechanical structures because they exhibit high strength and toughness. Development of its use as a material is becoming more active. On the other hand, regarding the Y-PSZ-Al, O, based sintered body,
Literature (Journal Materials Science 17, 24
7-254 (1982)) and Japanese Unexamined Patent Publication No. 58-32066, the bending strength of these reported sintered bodies is at most about 1200 MPa, and it is difficult to define a sufficiently satisfactory strength. Good and difficult. Therefore, by making these strengths even higher, the uses of the sintered body can be greatly expanded, and sintered bodies for this purpose are being sought.
本発明者等は、これらの事情に鑑み、Y−PSZ焼結体
の強度特性をさらに優れたものにするべく鋭意研究を重
ねた結果、出発原料化合物を含む水溶液に炭酸アンモニ
ウム添加して生成する沈殿を熱分解して得られるジルコ
ニア系粉末を用いて、熱間静水圧プレス処理することに
より、従来のY−PSZ焼結体に比較して、格段に高強
度であるジルコニア系焼結体が得られることを見出し、
本発明を完成させるに至った。In view of these circumstances, the present inventors have conducted extensive research in order to further improve the strength characteristics of Y-PSZ sintered bodies. By hot isostatic pressing using zirconia powder obtained by thermally decomposing precipitate, a zirconia sintered body with much higher strength than conventional Y-PSZ sintered body is produced. Find out what you can get,
The present invention has now been completed.
即ち本発明は、(a)ジルコニウム、(b)安定化剤と
してのイツトリウム、ランタン又はランタン系希土類元
素及び(C)アルミニウム、アルミニウムとマグネシウ
ム又はアルミニウムとケイ素の各々の元素の塩、有機金
属化合物又は酸化物を含有する水溶液に、炭酸アンモニ
ウムを添加し、生成した沈殿を熱分解してジルコニア系
粉末を得、さらに該粉末を50 MPa以上の圧力、1
300〜1700℃の温度で熱間静水圧プレス処理して
、高強度のジルコニア系焼結体を製造する方法を提供す
るものである。That is, the present invention provides salts, organometallic compounds, or Ammonium carbonate is added to an aqueous solution containing an oxide, the resulting precipitate is thermally decomposed to obtain a zirconia-based powder, and the powder is further heated at a pressure of 50 MPa or more for 1
The present invention provides a method for producing a high-strength zirconia-based sintered body by hot isostatic pressing at a temperature of 300 to 1700°C.
以下本発明をさらに詳細に説明する。The present invention will be explained in more detail below.
本発明方法で得られる焼結体は、イツトリウム。The sintered body obtained by the method of the present invention is yttrium.
ランタン又はランタン系希土類元素の酸化物を安定化剤
として1.5〜5モル%含有するジルコニア50〜98
重量%とアルミナ、アルミナ−マグネシア系酸化物又は
アルミナ−シリカ系酸化物50〜2重量%とからなり、
かつ3点曲げ強度が1700 MPa以上の高強度ジル
コニア系焼結体である。Zirconia 50-98 containing 1.5-5 mol% of lanthanum or lanthanum-based rare earth element oxide as a stabilizer
% by weight and 50 to 2% by weight of alumina, alumina-magnesia-based oxide or alumina-silica-based oxide,
Moreover, it is a high-strength zirconia-based sintered body with a three-point bending strength of 1700 MPa or more.
該高強度ジルコニア系焼結体を得るには、焼結性に優れ
た原料粉末を用いなければならない。これは、焼結体の
強度が、原料粉末の焼結性に極めて敏感に依存するため
である。そのために、(a)としてジルコニウム、(b
)として安定化剤及び(c)としてアルミニウムのそれ
ぞれの塩、有機金属化合物又は酸化物からなる水溶液に
炭酸アンモニウムを添加し、沈殿を生成させた後、熱分
解する方法により焼結性の優れたジルコニア系粉末を得
る。In order to obtain the high-strength zirconia-based sintered body, raw material powder with excellent sinterability must be used. This is because the strength of the sintered body depends extremely sensitively on the sinterability of the raw material powder. For this purpose, (a) zirconium, (b)
) and (c) a salt, organometallic compound or oxide of aluminum, ammonium carbonate is added to an aqueous solution, a precipitate is formed, and then thermally decomposed, the resulting product has excellent sinterability. Obtain zirconia powder.
また、上記水溶液には(c)としてアルミニウムに加え
てマグネシウム又はケイ素の塩、有機金属化合物又は酸
化物を加えた水溶液を用いてもよい。Further, as the aqueous solution (c), an aqueous solution containing a magnesium or silicon salt, an organometallic compound, or an oxide in addition to aluminum may be used.
出発原料化合物としては、オキシ塩化ジルコニウム、塩
化アルミニウム、塩化マグネシウム、塩化イツトリウム
などの塩化物の他、硝酸塩、硫酸塩などを用いることが
できる。また、ケイ素の酸化物や安定化剤の酸化物を用
いることもできる。As the starting material compound, chlorides such as zirconium oxychloride, aluminum chloride, magnesium chloride, and yttrium chloride, as well as nitrates, sulfates, and the like can be used. Furthermore, silicon oxides and stabilizer oxides can also be used.
これら出発原料化合物は、ジルコニア系焼結体として、
前述した構成割合となる様に適宜選択された量溶解して
水溶液とする。These starting material compounds are used as zirconia-based sintered bodies.
An aqueous solution is prepared by dissolving an appropriately selected amount to achieve the above-mentioned composition ratio.
炭酸アンモニウムの添加は、そのまま添加してもよいが
、水溶液とした方が好ましい。添加方法は、溶液のpH
が9前後となるように激しく攪拌しながら溶液中に一度
に添加するのが好ましい。Although ammonium carbonate may be added as it is, it is preferable to form it into an aqueous solution. The addition method is based on the pH of the solution.
It is preferable to add it all at once to the solution while stirring vigorously so that the ratio is around 9.
また熱分解方法としては、炭酸アンモニウム添加により
生じた沈殿生成物を分離乾燥後、空気雰囲気下900〜
1150℃で行うことが好ましい。In addition, as a thermal decomposition method, after separating and drying the precipitated product produced by the addition of ammonium carbonate, the
Preferably, the temperature is 1150°C.
1150℃以上で行うと、粉末粒子間の強固な結合が生
じ、焼結性の優れた粉末とはならない。If it is carried out at a temperature of 1150° C. or higher, strong bonds between powder particles will occur, and the powder will not have excellent sinterability.
本発明の方法によると、沈殿生成物が炭酸根を含有し、
さらに熱分解過程で、該含有炭酸根が激しく飛散するた
めに、粉末粒子間結合のおこり難い、いわゆる二次凝集
の弱いジルコニア系粉末を得ることができる特徴を有し
ている。According to the method of the invention, the precipitated product contains carbonate radicals,
Furthermore, during the thermal decomposition process, the contained carbonate radicals are violently scattered, so that it is possible to obtain a zirconia-based powder in which bonding between powder particles is difficult to occur, so-called weak secondary aggregation.
該ジルコニア系粉末の平均−次粒子径は、[L1μm以
下であることが好ましい。The average primary particle size of the zirconia-based powder is preferably [L1 μm or less].
さらに本発明方法により得られるジルコニア系粉末は、
各構成成分の金属イオンを含む水溶液を蒸発乾固した後
、熱分解する方法や同様の水溶液にアンモニア水を添加
して生成した沈殿を熱分解する方法から得られる粉末と
比較して、その焼結体とした際、決定的な相違を与える
。即ち、本発明方法による粉末は、常圧1400℃の焼
結温度で、理論密度の98%以上のカサ密度を有する緻
密な焼結体を与えるが、他方法粉末では、95%以下の
カサ密度であり、焼結体中に多数の亀裂状空洞を含んだ
ものとなる。この亀裂状空洞は焼結体の強度を著しく低
下させる原因となる。従って、常圧焼結による場合の曲
げ強度にってでも、本発明方法粉末では1000 MP
a以上となるが、他方法粉末では600 MPa程度し
か与えない。Furthermore, the zirconia powder obtained by the method of the present invention is
Compared to powders obtained by evaporating an aqueous solution containing metal ions of each constituent component to dryness and then thermally decomposing it, or by thermally decomposing a precipitate produced by adding aqueous ammonia to a similar aqueous solution, When put together, it makes a decisive difference. That is, the powder produced by the method of the present invention yields a dense sintered body having a bulk density of 98% or more of the theoretical density at a sintering temperature of 1400° C. under normal pressure, whereas powder produced by other methods produces a bulk density of 95% or less. Therefore, the sintered body contains many crack-like cavities. These crack-like cavities cause a significant decrease in the strength of the sintered body. Therefore, even in the case of pressureless sintering, the bending strength of the powder produced by the method of the present invention is 1000 MP.
However, other method powders give only about 600 MPa.
本発明においては、該粉末をさらに熱間静水圧プレス(
以下H工Pと略記する)することを特徴としている。H
工P処理の方法としては粉末成形体をガラス、金属など
のカプセル中に真空封入した後、プレス焼結する方法と
あらかじめ粉末成形体を常圧で予備焼結した後、プレス
装置により再焼結する方法の2通りが知られている。本
発明方法においては、どちらの方法も可能であるが、後
者の方法を用いた方が、カプセル封入の操作が不要であ
り、生産性においても有利である。該H工P処理の条件
は、圧力50 MPa以上、温度1300〜1700℃
で行う必要がある。この条件により、1700 MPa
以上という強度のジルコニア系焼結体が得られる。圧力
50 MPa以下、温度1300℃以下では期待される
高強度焼結体とはならない。In the present invention, the powder is further subjected to hot isostatic pressing (
(hereinafter abbreviated as H-P). H
Processing methods include vacuum sealing the powder compact in a capsule made of glass, metal, etc., and press sintering; or pre-sintering the powder compact under normal pressure, and then re-sintering it using a press machine. There are two known methods for doing this. Although either method is possible in the method of the present invention, the latter method does not require an encapsulation operation and is advantageous in terms of productivity. The conditions for the H-P treatment are a pressure of 50 MPa or more and a temperature of 1300 to 1700°C.
It is necessary to do so. Under these conditions, 1700 MPa
A zirconia-based sintered body having a strength of the above can be obtained. If the pressure is 50 MPa or less and the temperature is 1300° C. or less, the expected high strength sintered body will not be obtained.
他方法による粉末を本発明のH工P処理したとしても1
200 MPa程度の焼結体しか得られない。Even if powder obtained by other methods is treated with H-P according to the present invention, 1
Only a sintered body of about 200 MPa can be obtained.
予備焼結は、ジルコニア系粉末をラバープレス法などに
より成形体とした後、1200〜1500℃で焼結する
ことにより緻密な予備焼結体が得られる。In the preliminary sintering, a compact preliminary sintered body is obtained by forming the zirconia-based powder into a compact by a rubber pressing method or the like, and then sintering it at 1200 to 1500°C.
本発明における安定化剤は、イツトリウム、ランタン又
はランタン系希土類元素の酸化物であり、その量がジル
コニアに対して1.5〜5モル%の範囲であればよい。The stabilizer in the present invention is an oxide of yttrium, lanthanum, or a lanthanum-based rare earth element, and the amount thereof may be in the range of 1.5 to 5 mol% relative to zirconia.
また、安定他剤含有ジルコニアとアルミナ、アルミナ−
マグネシア系醸化物又はアルミナ−シリカ系酸化物の割
合は50150〜98/2(重量%)でなければならず
、この範囲外では、1700MPa以上という例をみな
い曲げ強度を得ることができない。In addition, zirconia and alumina containing other stabilizers, alumina
The proportion of magnesia-based brew or alumina-silica-based oxide must be 50,150 to 98/2 (wt%); outside this range, it is not possible to obtain an unprecedented bending strength of 1700 MPa or more.
また、本発明方法により得られるジルコニア系焼結体に
おいて、ジルコニアの結晶相は正方晶又は正方晶と立方
晶の混合相を主体としていなければならない。しかしな
がら、他の相として単斜晶が60重量%以下であれば共
存していてもさしつかえない。また、焼結体結晶の平均
粒子径は2μm以下である。2μm以上の結晶粒子が存
在すると、熱的に不安定となり、正方晶が単斜晶へ転移
しやすくなり好ましくない。つまり、200〜300℃
の比較的低い温度で長時間保持した場合、正方晶から単
斜晶への転移による体積膨張により、焼結体に亀裂が発
生し破壊してしまう。2μm以下とすることにより熱経
時劣化現象を抑制することが可能となる。Furthermore, in the zirconia-based sintered body obtained by the method of the present invention, the crystalline phase of zirconia must be mainly tetragonal or a mixed phase of tetragonal and cubic crystals. However, monoclinic crystals may coexist as other phases as long as they are 60% by weight or less. Further, the average particle diameter of the sintered crystals is 2 μm or less. The presence of crystal grains of 2 μm or more is not preferable because it becomes thermally unstable and tends to transition from tetragonal crystal to monoclinic crystal. In other words, 200-300℃
If the sintered body is kept at a relatively low temperature for a long period of time, the sintered body will crack and break due to volume expansion due to the transition from tetragonal to monoclinic. By setting the thickness to 2 μm or less, it becomes possible to suppress the phenomenon of thermal deterioration over time.
出発原料にアルミニラミとマグネシウムの化合物を用い
た場合は、アルミナ−マグネシア系酸化物で主とする結
晶相としてスピネルが、アルミニウムとケイ素の化合物
の場合は、アルミナ−シリカ系酸化物でムライトが、ジ
ルコニア系焼結体中に存在する形態となる。When a compound of aluminum laminate and magnesium is used as the starting material, spinel is the main crystalline phase in the alumina-magnesia-based oxide, and when a compound of aluminum and silicon is used, mullite is the main crystal phase in the alumina-silica-based oxide, and zirconia is used as the main crystal phase. This is the form that exists in the system sintered body.
以上説明した様に、本発明方法により得られる焼結体は
、1700MPa以上という、従来みられない高強度の
ジルコニア系焼結体であり、機械構造材料(切削工具、
ダイス、ノズル、ベアリングなど)として有用である。As explained above, the sintered body obtained by the method of the present invention is a zirconia-based sintered body with a high strength of 1700 MPa or more, which has not been seen before, and is a mechanical structural material (cutting tool,
useful as dies, nozzles, bearings, etc.).
以下、本発明を実施例により説明するが、本発明はこれ
らに限定されるものではない。EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.
原料粉末製造実施例1
オキシ塩化ジルコニウム溶液(zroJl !l O1
9/Iり788rrLlと塩化アルミニウム溶液(A−
box濃度10”、、59/1)560rrtl及びイ
ツトリア96gを塩酸に溶解した溶液を容器に入れて激
しく攪拌し、そこに炭酸アンモニウム(Nl(、)、0
035009をアンモニア水(NH3含量13%)14
00m/に溶解した液を一度に添加した。得られた沈殿
を濾過し、減圧乾燥器で乾燥した後、1000℃の温度
で1時間焼成することによって、lh500 !;lの
ジルコニア−アルミナ系粉末(zro2:Al、os重
量比= 80 : 20 ZrO,: Y2osモル比
=98:2)を得た。Raw material powder production example 1 Zirconium oxychloride solution (zroJl !l O1
9/I 788rrLl and aluminum chloride solution (A-
A solution of 560 rrtl (box concentration 10'', 59/1) and 96 g of ittria dissolved in hydrochloric acid was placed in a container and stirred vigorously, and ammonium carbonate (Nl (, ), 0
035009 to ammonia water (NH3 content 13%) 14
00m/ solution was added at once. The obtained precipitate was filtered, dried in a vacuum dryer, and then calcined at a temperature of 1000°C for 1 hour to obtain lh500! ;1 of zirconia-alumina powder (zro2:Al, os weight ratio = 80:20 ZrO,:Y2os molar ratio = 98:2) was obtained.
同様の操作によって、ジルコニアとアルミナの重量比が
98:2,90:10,60:40になっている粉末を
調製した。また、ZrO2中のY、O5のモル%が5モ
ル%、4モル%のものについても、アルミナの添加量を
変えて同様の操作で粉末を得た。これらの粉末の焼結性
を調べる目的で、粉末全ラバープレス法によって成形し
た後、1400℃で2時間焼成して焼結体を得た。焼結
体密度はすべて理論密度の98%以上に到達しており、
すぐれた焼結性を有していることが判った。Powders having zirconia and alumina weight ratios of 98:2, 90:10, and 60:40 were prepared by similar operations. Powders were also obtained in the same manner with different amounts of alumina added for powders in which the mole percent of Y and O5 in ZrO2 was 5 mole percent and 4 mole percent. In order to examine the sinterability of these powders, the powders were molded by an all-powder rubber press method and then fired at 1400° C. for 2 hours to obtain sintered bodies. All sintered compact densities have reached 98% or more of the theoretical density,
It was found that it had excellent sinterability.
原料粉末製造実施例2 実施例1で用いたオキシ塩化ジルコニウム溶液。Raw material powder production example 2 Zirconium oxychloride solution used in Example 1.
塩化アルミニウム溶液1 ”Aの塩酸溶解液の混合溶液
に、さらに塩化マグネシウム溶液(MgO濃度40−4
9/1)5BOrttlを添加し、攪拌しながらfla
アンモニウム5009を含むアンモニア水(NH5含量
12%)を1400ml添加し、生成した沈殿を濾過乾
燥後、1050℃で1時間焼成することによって、約6
009のジルコニア−スピネル系粉末(ZrO2: A
1tMgo4重量比=75:25)を得た。Aluminum chloride solution 1 Add a magnesium chloride solution (MgO concentration 40-4
9/1) Add 5BOrttl and add fla while stirring.
By adding 1400 ml of ammonia water (NH5 content 12%) containing ammonium 5009, filtering and drying the resulting precipitate, and calcining it at 1050°C for 1 hour, approximately 6
009 zirconia-spinel powder (ZrO2: A
1tMgo4 weight ratio = 75:25) was obtained.
また、塩化マグネシウム溶液の代わりに、シリカゾル溶
液(51o2含量30 wt%)78mlを添加した溶
液を用いて上記と同様の操作でジルコニア−ムライト系
粉末(ZrO2: 3A120.・2SiO2重量比=
75:25)を得た。さらに、スピネル及びムライト含
量の異なる粉末を添加量を変えて、上記操作を繰り返す
ことによって合成した。Also, instead of the magnesium chloride solution, zirconia-mullite powder (ZrO2: 3A120.2SiO2 weight ratio =
75:25) was obtained. Further, powders having different contents of spinel and mullite were synthesized by changing the amounts added and repeating the above operation.
実施例1に記載した方法によって、粉末の焼結性を調べ
たが、焼結体密度はすべて理論密度の98%以上に到達
していた。The sinterability of the powders was examined by the method described in Example 1, and the sintered body densities all reached 98% or more of the theoretical density.
原料粉末製造実施例3
オキシ塩化ジルコニウム溶液、塩化アルミニウム溶液I
D72’/’塩酸溶解液を所定量混合した溶液に、炭
酸アンモニウムを含むアンモニア水を添加し沈殿を得、
それを濾過乾燥後、950℃で3時間焼成することによ
って、ジルコニア−アルミナ系粉末を得た。また、D7
tOsの代わりにYbAの塩酸溶解液を用いて、上記操
作によって本発明からなる粉末を得た。これらの粉末の
焼結性を調べる目的で、実施例1に記載した方法によっ
て焼結体を作成し、その密度を測定した。密度はすべて
理論密度の98%以上に到達していた。Raw material powder production example 3 Zirconium oxychloride solution, aluminum chloride solution I
Aqueous ammonia containing ammonium carbonate is added to a solution in which a predetermined amount of D72'/' hydrochloric acid solution is mixed to obtain a precipitate.
After filtering and drying it, it was calcined at 950°C for 3 hours to obtain a zirconia-alumina powder. Also, D7
A powder of the present invention was obtained by the above operation using a hydrochloric acid solution of YbA instead of tOs. In order to examine the sinterability of these powders, sintered bodies were prepared by the method described in Example 1, and their densities were measured. All densities reached 98% or more of the theoretical density.
焼結体製造実施例
原料粉末製造実施例1〜6で得られた粉末を用いて、ラ
バープレス法によって、厚さ9幅、長さがそれぞれ4t
nm、 40ms+、 56mmである板状成形体とし
、この成形体を1400℃、2時間予備焼結し、H工P
処理用予備焼結体とした。この予備焼結体を表1に示し
た1300〜1700°C250〜200M誉aの条件
下で0.5時間Arガス中でH工P処理して本発明のジ
ルコニア系焼結体を得た。このようにして作成した焼結
体について、Zr11)2の結晶相、平均粒子径及び曲
げ強度の測定を行った。これらの結果を表1に示す。Production Example of Sintered Body Raw Material Powder Production Using the powders obtained in Examples 1 to 6, the powders obtained in Examples 1 to 6 were made into sintered bodies with a thickness of 9 widths and a length of 4 tons each.
nm, 40ms+, 56mm, and pre-sintered this molded body at 1400°C for 2 hours to form H-P.
This was used as a preliminary sintered body for processing. This preliminary sintered body was subjected to H-P treatment in Ar gas for 0.5 hours under the conditions of 1300 to 1700°C and 250 to 200M a as shown in Table 1 to obtain the zirconia-based sintered body of the present invention. Regarding the sintered body thus produced, the crystal phase, average particle diameter, and bending strength of Zr11)2 were measured. These results are shown in Table 1.
なお、5点曲げ強度の測定は、’JIF3 R1601
−1981に基づき、幅4闘、厚さ5mm、長さ40酩
の試験体をスパン長さ30酩、クロスヘッドスピードQ
、 5 ram / minの条件で曲げ破壊したとき
得られる強度とし、表1の数値は10体以上の平均値を
示す。In addition, the measurement of 5-point bending strength is 'JIF3 R1601
- Based on 1981, a test specimen with a width of 4 mm, a thickness of 5 mm, a length of 40 mm, a span length of 30 mm, and a crosshead speed of Q
, 5 ram/min, and the values in Table 1 are the average values of 10 or more specimens.
Claims (3)
イツトリウム、ランタン又はランタン系希土類元素及び
(C)アルミニウム、アルミニウムとマグネシウム又は
アルミニウムとケイ素の各々の元素の塩、有機金属化合
物又は酸化物を含有する水溶液に、炭酸アンモニウムを
添加し、生成した沈殿を熱分解してジルコニア系粉末を
得、さらに、該粉末を50 MPa以上の圧力。 1300〜1700℃の温度で熱間静水圧プレス処理す
ることを特徴とするジルコニア系焼結体の製法。(1) Salts, organometallic compounds, or oxides of (a) zirconium, (b) yttrium, lanthanum, or lanthanum-based rare earth elements as stabilizers, and (C) aluminum, aluminum and magnesium, or aluminum and silicon. ammonium carbonate is added to an aqueous solution containing , the resulting precipitate is thermally decomposed to obtain a zirconia powder, and the powder is further heated under a pressure of 50 MPa or more. A method for producing a zirconia-based sintered body, characterized by hot isostatic pressing at a temperature of 1300 to 1700°C.
モル%含有するジルコニア50〜98重量%とアルミナ
、アルミナ−マグネシア系酸化物又はアルミナ−シリカ
系酸化物50〜2重量%とからなる特許請求の範囲第(
1)項記載のジルコニア系焼結体の製法。(2) The zirconia-based sintered body contains a stabilizer of 1.5 to 5
Claim No. 1, comprising 50 to 98% by weight of zirconia containing mol% and 50 to 2% by weight of alumina, alumina-magnesia-based oxide, or alumina-silica-based oxide (
1) A method for producing a zirconia-based sintered body as described in section 1).
MPa以上である特許請求の範囲第(1)項又は第(
2)項記載のジルコニア系焼結体の製法。 (滲 ジルコニア系焼結体を構成するジルコニアの結晶
相が、主として正方晶又は正方晶と立方晶からなり、か
つ焼結体結晶の平均粒子径が2μm以下である特許請求
の範囲第(1)項から第(3)項いずれかに記載のジル
コニア系焼結体の製法。(3) Three-point bending strength of zirconia-based sintered body is 1700
Claims (1) or (2) which is MPa or more
2) A method for producing a zirconia-based sintered body as described in section 2). (Claim No. 1) in which the zirconia crystal phase constituting the zirconia-based sintered body is mainly tetragonal or consists of tetragonal and cubic crystals, and the average particle size of the sintered body crystals is 2 μm or less. A method for producing a zirconia-based sintered body according to any one of paragraphs to (3).
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59071829A JPS60215571A (en) | 1984-04-12 | 1984-04-12 | Manufacturing method for high-strength zirconia-based sintered bodies |
DE8484307058T DE3472398D1 (en) | 1983-10-17 | 1984-10-15 | High-strength zirconia type sintered body and process for preparation thereof |
EP84307058A EP0140638B1 (en) | 1983-10-17 | 1984-10-15 | High-strength zirconia type sintered body and process for preparation thereof |
AU34254/84A AU573631B2 (en) | 1983-10-17 | 1984-10-15 | High strength zirconia type sintered body |
KR1019840006430A KR920007020B1 (en) | 1983-10-17 | 1984-10-17 | High-strength zirconia type sintered body |
US06/661,968 US4587225A (en) | 1983-10-17 | 1984-10-17 | High-strength zirconia type sintered body |
US06/704,037 US4774041A (en) | 1983-10-17 | 1985-02-21 | High-strength zirconia type sintered body and process for preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59071829A JPS60215571A (en) | 1984-04-12 | 1984-04-12 | Manufacturing method for high-strength zirconia-based sintered bodies |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60215571A true JPS60215571A (en) | 1985-10-28 |
JPH0362665B2 JPH0362665B2 (en) | 1991-09-26 |
Family
ID=13471822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59071829A Granted JPS60215571A (en) | 1983-10-17 | 1984-04-12 | Manufacturing method for high-strength zirconia-based sintered bodies |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60215571A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06263533A (en) * | 1993-08-23 | 1994-09-20 | Noritake Co Ltd | High-toughness ceramic sintered compact excellent in thermal stability and its production |
JP2003040673A (en) * | 2001-07-30 | 2003-02-13 | Kyocera Corp | High-strength zirconia sintered body |
WO2023140082A1 (en) * | 2022-01-18 | 2023-07-27 | 東ソー株式会社 | Sintered body and method for producing same |
-
1984
- 1984-04-12 JP JP59071829A patent/JPS60215571A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06263533A (en) * | 1993-08-23 | 1994-09-20 | Noritake Co Ltd | High-toughness ceramic sintered compact excellent in thermal stability and its production |
JP2003040673A (en) * | 2001-07-30 | 2003-02-13 | Kyocera Corp | High-strength zirconia sintered body |
WO2023140082A1 (en) * | 2022-01-18 | 2023-07-27 | 東ソー株式会社 | Sintered body and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH0362665B2 (en) | 1991-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920007020B1 (en) | High-strength zirconia type sintered body | |
US4772576A (en) | High density alumina zirconia ceramics and a process for production thereof | |
JP4470378B2 (en) | Zirconia sintered body and manufacturing method thereof | |
US20070179041A1 (en) | Zirconia Ceramic | |
FI87187C (en) | Precursor powder which can be transformed into a zirconia ceramic composite ceramic composite, composite made therefrom and process for making sinterable ceramic material | |
EP0199459A2 (en) | High toughness ceramic alloys | |
JP4670227B2 (en) | Zirconia ceramics and manufacturing method thereof | |
JPH0346407B2 (en) | ||
JPS60215571A (en) | Manufacturing method for high-strength zirconia-based sintered bodies | |
JPS6086073A (en) | High-strength zirconia-based sintered body and its manufacturing method | |
EP0351827B1 (en) | Zirconia-based sintered material and process for producing the same | |
JP3190060B2 (en) | Method for producing fine ceria solid solution tetragonal zirconia powder | |
US5362691A (en) | Sintered material based on Si3 N4 and processes for its production | |
JPS605067A (en) | Manufacture of zirconia sintered body | |
JPS6227328A (en) | Method for producing easily sinterable perovskite and its solid solution raw material powder | |
JP2607517B2 (en) | Method for producing zirconia ceramics | |
Maschio et al. | Microstructural Development and Mechanical Properties of Alumina Hexaluminate Composites As-Sintered and after Aging in Aqueous and Physiological Solution | |
JPS60226457A (en) | Manufacturing method of high strength zirconia sintered body | |
JPH0818870B2 (en) | Method for manufacturing lead zirconate titanate-based piezoelectric ceramic | |
JPH06263533A (en) | High-toughness ceramic sintered compact excellent in thermal stability and its production | |
JP3078462B2 (en) | Alumina sintered body and method for producing the same | |
JPS63156065A (en) | Method for manufacturing perovskite ceramics containing zirconium | |
Wojteczko et al. | Influence of elongated zirconia particles on microstructure and mechanical properties of yttria stabilized zirconia polycrystals | |
JPH03159960A (en) | Fine powder of zirconia and sintered body of zirconia | |
JPH0427166B2 (en) |