[go: up one dir, main page]

JPS60214630A - Complementary gate circuit - Google Patents

Complementary gate circuit

Info

Publication number
JPS60214630A
JPS60214630A JP59072117A JP7211784A JPS60214630A JP S60214630 A JPS60214630 A JP S60214630A JP 59072117 A JP59072117 A JP 59072117A JP 7211784 A JP7211784 A JP 7211784A JP S60214630 A JPS60214630 A JP S60214630A
Authority
JP
Japan
Prior art keywords
effect transistor
field effect
insulated gate
channel
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59072117A
Other languages
Japanese (ja)
Inventor
Toshio Oura
利雄 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59072117A priority Critical patent/JPS60214630A/en
Publication of JPS60214630A publication Critical patent/JPS60214630A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To reduce a penetration current by constituting the complementary gate circuit by connecting gates of an N and a PIGFET to drains of an N and a PIGFET whose sources are connected to an input terminal and then connecting the common drain of the former N and PIGFETs to an output terminal. CONSTITUTION:An input signal from a terminal 5 is applied to sources of N and PIGFETs Q3 and Q5, whose outputs are inputted to gates of N and PIGFETs Q4 and Q6 to obtain the output of the common drain at a terminal 8. The time when the FETs Q6 and Q4 are both on is the period from the ''L'' level to the ''H'' level of the input to the terminal 5 and a penetration current flows only in this period. This period is right before the FETQ4 turns on right before the FETQ6 turns off and the penetration current flowing from the FETQ6 to the FETQ4 is small. Further, almost no penetration current flows in the transition of the input signal from the ''H'' level to the ''L'' level because the FETQ6 begins to turn on and the FETQ4 begins to turn off nearly at the same time.

Description

【発明の詳細な説明】 (技術分野) 本発明は相補型の絶縁ゲート賊電界効果トランジスタを
用いた相補型ゲート回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a complementary gate circuit using complementary insulated gate field effect transistors.

(従来技術) 第1図は従来の相補型ゲート回路の一例を示す回路図、
第2図[a)、 [b)はその動作波形図である。
(Prior art) Figure 1 is a circuit diagram showing an example of a conventional complementary gate circuit.
FIGS. 2(a) and 2(b) are operational waveform diagrams.

Nチャネル絶縁ゲート我電界効果トランジスタ(以下、
NチャネルIGFET という。)Ql とPチャネル
IGFETQ*のドレインが出力2に共通接続され、ゲ
ートが入力1に共通接続され、PチャネルIGFETQ
2のソースは高電位電源Vccに、NチャネルIGFE
TQIのソースは低電位電源V8gに接続されている。
N-channel insulated gate field effect transistor (hereinafter referred to as
It is called an N-channel IGFET. ) Ql and the drains of P-channel IGFETQ* are commonly connected to output 2, the gates are commonly connected to input 1, and P-channel IGFETQ
The source of 2 is connected to the high potential power supply Vcc, and the N-channel IGFE
The source of TQI is connected to low potential power supply V8g.

本従来例においては、第2図+1)に示すように、入力
1が″′Lレベル1→″Hレベル“ aiHレベル“→
“Lレベル“に遷移する時に、IGFETQlとQ2と
が同時にオンとなる時間が存在するために、第2図(b
)に示すように電源vCCよりPチャネルIGFETQ
z及びNチャネルIGFETQlを通して電源Vl18
に貫通電流IDが流れる。
In this conventional example, as shown in FIG.
When transitioning to the "L level", there is a time when IGFETs Ql and Q2 are simultaneously turned on, so there is a time when IGFETs Ql and Q2 are turned on at the same time.
), the P-channel IGFETQ is connected to the power supply vCC.
Power supply Vl18 through z and N channel IGFETQl
Through current ID flows through.

同様に相補IIIGFET構成のNAND回路。Similarly, a NAND circuit with complementary III GFET configuration.

NO几回路等においても貫通電流が流れる。相補型IG
FET 構成のLSIでは、通常、あるクロックに同期
してゲート回路が同時に変化するので、その時貫通電流
の和の電流が流れ、LSIの端子からLSIの内部素子
への電源配線インピーダンスがあるため、電源Vcc及
びVSSの電源配線での貫通電流による電圧降下が大き
いという欠点があった。
Through current also flows in NO-circuit circuits and the like. Complementary IG
In an LSI with a FET configuration, the gate circuits usually change simultaneously in synchronization with a certain clock, so a current equal to the sum of the through current flows, and since there is power supply wiring impedance from the LSI terminal to the internal elements of the LSI, the power supply There is a drawback that the voltage drop due to the through current in the Vcc and VSS power supply wirings is large.

この電圧降下を少なくするためには電源vCC及びv1
18の電源配線インピーダンスを小さくすればよいが、
電源Vcc及びv8Bの電源配線幅を大くしなければな
らず、このためLSIのチップ面積が大きくなるという
欠点があった。また、VccとV[ll+の電圧降下に
よシ、スイッチング時間が遅くなるという欠点や、接地
レベルが浮き上がる事による回路誤動作の原因の一つに
もなっていた。
In order to reduce this voltage drop, the power supplies vCC and v1
It would be better if the power supply wiring impedance of 18 was made smaller,
The width of the power supply lines for the power supplies Vcc and V8B must be increased, which has the drawback of increasing the chip area of the LSI. In addition, the voltage drop between Vcc and V[ll+ has the disadvantage of slowing down the switching time, and is one of the causes of circuit malfunction due to the ground level rising.

(発明の目的) 本発明の目的は、上記の欠点を除去することによシ、貫
通電流が小さいゲート回路(インバータ回路も含む)を
提供することにある。
(Object of the Invention) An object of the present invention is to provide a gate circuit (including an inverter circuit) with a small through-current by eliminating the above-mentioned drawbacks.

(発明の構成) 本発明の相補をゲート回路は、一つの入力が第1ONチ
ヤネル絶縁ゲート型電界効果トランジスタのソース及び
第1のPチャネル絶縁ゲート型電界効果トランジスタの
ソースに接続され、前記第1のNチャネル絶縁ゲート型
電界効果トランジスタのドレインが第2のNチャネル絶
縁ゲー)IN電界効果トランジスタのゲートに接続され
、前記第10Pチヤネル絶縁ゲートe電界効果トランジ
スタのドレインが第2のPチャネル絶縁ゲートe電界効
果トランジスタのゲートに接続され、前記第1ONチヤ
ネル絶縁ゲート駿電界効果トランジスタのゲートは第1
の電源に接続され、前記第1のPチャネル絶縁ゲー)U
電界効果トランジスタの一ゲートは第2の電源に接続さ
れ、前記第2ONチヤネル絶縁ゲートe電界効果トラン
ジスタと前記第2のPチャネル絶縁ゲート型電界効果ト
ランジスタは相補型回路を構成するよう接続されてなる
回路を含むことから構成されている。
(Structure of the Invention) The complementary gating circuit of the present invention has one input connected to the source of the first ON-channel insulated gate field effect transistor and the source of the first P-channel insulated gate field effect transistor, and the first The drain of the tenth N-channel insulated gate field effect transistor is connected to the gate of the second N-channel insulated gate field effect transistor, and the drain of the tenth P-channel insulated gate field effect transistor is connected to the second P-channel insulated gate field effect transistor. e the gate of the field effect transistor, the first ON channel insulated gate is connected to the gate of the field effect transistor;
connected to the power supply of the first P-channel insulated gate) U
One gate of the field effect transistor is connected to a second power supply, and the second ON channel insulated gate field effect transistor and the second P channel insulated gate field effect transistor are connected to form a complementary circuit. It consists of a circuit.

(実施例) 以下、本発明の実施例について図面を診照して説明する
(Example) Examples of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例を示す回路図で、本発明の相
補晴ゲート回路の基本回路を表わしている。
FIG. 3 is a circuit diagram showing an embodiment of the present invention, and represents the basic circuit of the complementary gate circuit of the present invention.

本実施例は一つの入力5が第1ONチヤネルエGFET
Q3のソース及び第1のPチャネルIGFE T Q5
のソースに接続され、IGFETQ3のドレインが第2
のNチャネルIGFETQ4のゲートに接続され、IG
FETQsのドレインが第2のPチャネルIGFETQ
aのゲートに接続され、IGFB T Q3のゲートは
第1の電源としての高電位電源Vccに接続され、IG
FETQ5のゲートは第2の5− 電源としての低電位電源■8Bに接続され、IGFET
Q4のドレインはIGF’ETQIIのドレインと出力
8に、ソースは電源V s s K、IGFETQ11
+7)7−スは電源Vccにそれぞれ接続されることか
ら構成される。
In this embodiment, one input 5 is the first ON channel GFET.
Source of Q3 and first P-channel IGFE T Q5
is connected to the source of IGFETQ3, and the drain of IGFETQ3 is connected to the second
is connected to the gate of N-channel IGFETQ4 of
The drain of FETQs is the second P-channel IGFETQ
The gate of IGFB T Q3 is connected to the high potential power supply Vcc as the first power supply, and the gate of IGFB T
The gate of FETQ5 is connected to the second 5- low potential power supply ■8B as a power supply, and the gate of IGFET
The drain of Q4 is connected to the drain of IGF'ETQII and output 8, and the source is connected to the power supply VssK, IGFETQ11
+7) and 7- are connected to the power supply Vcc, respectively.

第4図Ta)〜ie)は、第3図の動作波形図で、入力
5(同図+8) ) 、接続点6(同図Fb) ) 、
接続点7(同図(C) ) 、出力8(同図(d))の
時間に対する電圧波形及び貫通電流Inの波形(同図(
e))を示したものである。接続点6の電圧は入力5の
低レベルカOvニナッテモ(vTP+ΔvTP)ノ電E
Eマチにしか下がらない。(ここで、VTPはPチャネ
ルIGFET のしきい値電圧、ΔVTPはバックゲー
トに対するその変化分である。)また、接続点7の電圧
は入力5の高レベルがVccになってもVcc−(Vテ
N+Δ■τN)までしか上がらない。(ここで、VtN
1jNチヤネルIGFET のしきい値電圧、ΔVTN
はバックゲートに対するその変化分である。)第4図[
blとte)でわかるように、IGFETQ6とQ4が
同時にオンしている時間は入力5が“Lレベル“6一 から“Hレベル“の間のtl の時間であり、貫通電流
はtl の期間に流れるだけである。更に【lの期間は
IGFETQsがオフしようとする直前に、IGPET
Q4がオンした直後で感シ、IGFE’l”Q6からI
GPETQ< に流れる貫通電流は、従来のインバータ
回路に対し、数分の1の大きさである。また、入力5が
“Hレベル“から“Lレベル”への遷移する時も、IG
PETQ6がオンし始めるのとIGPETQ4がオフし
始めるのがほとんど同時々ので、貫通電流はほとんど流
れない。
Fig. 4 Ta) to ie) are the operating waveform diagrams of Fig. 3, including input 5 (+8 in the same figure)), connection point 6 (Fb in the same figure)),
The voltage waveform of connection point 7 ((C) in the same figure) and output 8 ((d) in the same figure) with respect to time and the waveform of the through current In (((d) in the same figure)
e)). The voltage at connection point 6 is the low level voltage of input 5 (vTP + ΔvTP)
It only goes down to E gusset. (Here, VTP is the threshold voltage of the P-channel IGFET, and ΔVTP is its change with respect to the back gate.) Furthermore, even if the high level of the input 5 reaches Vcc, the voltage at the connection point 7 is Vcc - (V It can only rise up to TEN+Δ■τN). (Here, VtN
Threshold voltage of 1jN channel IGFET, ΔVTN
is its change with respect to the back gate. ) Figure 4 [
As can be seen from bl and te), the time when IGFETs Q6 and Q4 are on simultaneously is the time tl when the input 5 is between "L level" 6-1 and "H level", and the through current is during the period tl. It just flows. Furthermore, during the period [l], just before IGFETQs is about to turn off, IGPET
Immediately after Q4 is turned on, IGFE'l'' is turned on from Q6.
The through current flowing through GPETQ< is several times smaller than that of a conventional inverter circuit. Also, when input 5 transitions from “H level” to “L level”, IG
Since PETQ6 starts to turn on and IGPETQ4 starts to turn off almost at the same time, almost no through current flows.

第5図は本発明の他の実施例を示す回路図で、2人力N
AND ゲートを表わす。Q71 Q81 Q9+QI
OはPチャネルIGFET、 Qll、 Ql2. Q
ts、 Ql4はNチャネルIGFET であシ、Nチ
ャネルIGFETQII、 Ql2とPチャネルIGF
ETQy、Qsとで第3図に示す基本回路を構成してい
る。従って本実施例は、第3図、第4図と同様に貫通電
流が少ないNAND ゲートを提供できる。
FIG. 5 is a circuit diagram showing another embodiment of the present invention.
Represents an AND gate. Q71 Q81 Q9+QI
O is a P-channel IGFET, Qll, Ql2. Q
ts, Ql4 is N-channel IGFET, N-channel IGFETQII, Ql2 and P-channel IGF
ETQy and Qs constitute a basic circuit shown in FIG. Therefore, this embodiment can provide a NAND gate with a small through-current as in FIGS. 3 and 4.

また第5図の電源Vll[lとVccを入れ換え、Pチ
ャネル型とNチャネル型を入れ換えると2人力のNo几
ゲートになシ、貫通電流の少ないNO几回路を提供でき
る。
Furthermore, by exchanging the power supplies Vll[l and Vcc in FIG. 5 and exchanging the P-channel type and the N-channel type, it is possible to provide an NO-operation circuit with less through-current than a two-man powered NO-operation gate.

(発明の効果) 以上、詳細説明したとおシ、本発明の相補型ゲート回路
は、上記の構成によシ、貫通電流の大きさが従来のゲー
ト回路に対し、数分の−に減少できるという効果を有す
る。
(Effects of the Invention) As described above in detail, the complementary gate circuit of the present invention has the above structure, and the magnitude of the through current can be reduced to several times lower than that of the conventional gate circuit. have an effect.

従って、電源配線インピーダンスによる電圧降下も数分
の−にすることができ、電源の電圧降下及び接地レベル
の上昇によるスイッチング時間の遅れを少なくすること
ができ、電圧降下及び接地レベルによる電圧の浮き上が
シによる娯動作を防ぐことができ、ゲート回路への電源
や接地のAe配線幅を小さくすることができ、その分チ
ップサイズが小さいa相補111GFETL8Iを提供
でき、その効果は犬である。
Therefore, the voltage drop due to the power supply wiring impedance can be reduced to a few minutes, and the delay in switching time due to the voltage drop in the power supply and the rise in the ground level can be reduced, and the voltage drop due to the voltage drop and the rise in the ground level can be reduced. It is possible to prevent idle operation due to collisions, to reduce the width of the Ae wiring for power supply and ground to the gate circuit, and to provide an a-complementary 111GFET L8I with a correspondingly smaller chip size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の相補型ゲート回路の一例を示す回路図、
第2図fat、 [blはその動作波形図、第3図は本
発明の一実施例を示す回路図、第4図ta)〜fe)は
その動作波形図、第5図は本発明の他の実施例を示す回
路図である。 1・・・・・・入力、2・・・・・・出力、訃・・・・
・入力、8・・・・・・出力、A、B・・・・・・入力
、Vcc、 Vss・・・・・・電源、Ql。 Qs、 Q4+ Qlll Ql21 Ql31 Ql
4・・・・・・Nチャネル絶縁ゲート電界効果トランジ
スタ、Q21 Qs、 Qs、 Q?。 Q8.Q9. Qlo・・・・・・Pチャネル絶縁ゲー
ト型電界効果トランジスタ。 9− Vss z l 図 V?図 z3 図 箔 5図 7゜ 名 4 図
FIG. 1 is a circuit diagram showing an example of a conventional complementary gate circuit.
FIG. 2 is a diagram of its operating waveforms, FIG. 3 is a circuit diagram showing one embodiment of the present invention, FIG. 4 is a diagram of its operating waveforms, and FIG. It is a circuit diagram showing an example of. 1...Input, 2...Output, Death...
・Input, 8... Output, A, B... Input, Vcc, Vss... Power supply, Ql. Qs, Q4+ Qlll Ql21 Ql31 Ql
4...N-channel insulated gate field effect transistor, Q21 Qs, Qs, Q? . Q8. Q9. Qlo...P-channel insulated gate field effect transistor. 9- Vss z l Figure V? Figure z3 Figure foil 5 Figure 7゜Name 4 Figure

Claims (1)

【特許請求の範囲】[Claims] 一つの入力が第1のNチャネル絶縁ゲート型電界効果ト
ランジスタのソース及び第1のPチャネル絶縁ゲート型
電界効果トランジスタのソースに接続され、前記第1の
Nチャネル絶縁ゲート型電界効果トランジスタのドレイ
ンが第2のNチャネル絶縁ゲート型電界効果トランジス
タのゲートに接続され、前記第1のPチャネル絶縁ゲー
ト型電界効果トランジスタのドレインが第2のPチャネ
ル絶縁ゲートを電界効果トランジスタのゲートに接続さ
れ、前記第1のNチャネル絶縁ゲート型電界効果トラン
ジスタのゲートは第1の電源に接続され、前記第1のP
チャネル絶縁ゲート型電界効果トランジスタのゲートは
第2の電源に接続され、前記第2のNチャネル絶縁ゲー
ト賊電界効果トランジスタと前記第2のPチャネル絶縁
ゲート型電界効果トランジスタは相補型回路を構成する
よう接続されてなる回路を含むことを特徴とする相補を
ゲート回路。
one input is connected to the source of the first N-channel insulated gate field effect transistor and the source of the first P-channel insulated gate field effect transistor, and the drain of the first N-channel insulated gate field effect transistor is connected to the source of the first N-channel insulated gate field effect transistor; the drain of the first P-channel insulated gate field-effect transistor is connected to the gate of the second N-channel insulated gate field-effect transistor; The gate of the first N-channel insulated gate field effect transistor is connected to a first power supply, and the gate of the first N-channel insulated gate field effect transistor is
The gate of the channel insulated gate field effect transistor is connected to a second power supply, and the second N channel insulated gate field effect transistor and the second P channel insulated gate field effect transistor constitute a complementary circuit. A complementary gating circuit characterized in that the circuit comprises a circuit connected in such a manner that
JP59072117A 1984-04-11 1984-04-11 Complementary gate circuit Pending JPS60214630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59072117A JPS60214630A (en) 1984-04-11 1984-04-11 Complementary gate circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59072117A JPS60214630A (en) 1984-04-11 1984-04-11 Complementary gate circuit

Publications (1)

Publication Number Publication Date
JPS60214630A true JPS60214630A (en) 1985-10-26

Family

ID=13480089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59072117A Pending JPS60214630A (en) 1984-04-11 1984-04-11 Complementary gate circuit

Country Status (1)

Country Link
JP (1) JPS60214630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111720A (en) * 1986-10-29 1988-05-17 Toshiba Corp Output buffer circuit
JPH0210918A (en) * 1988-03-10 1990-01-16 Advanced Micro Devices Inc Time modulation driving circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111720A (en) * 1986-10-29 1988-05-17 Toshiba Corp Output buffer circuit
JPH0210918A (en) * 1988-03-10 1990-01-16 Advanced Micro Devices Inc Time modulation driving circuit

Similar Documents

Publication Publication Date Title
JPH041440B2 (en)
JPH0355914A (en) semiconductor equipment
US6570414B1 (en) Methods and apparatus for reducing the crowbar current in a driver circuit
JPS60214630A (en) Complementary gate circuit
JP2543248B2 (en) BiCMOS full swing drive circuit
KR940025178A (en) Data output circuit
JP2001308694A (en) Low noise buffer circuit
KR100221757B1 (en) Signal level conversion circuit
JPH04281294A (en) Driving circuit
JPS6134690B2 (en)
JPS5926134B2 (en) latch circuit
US6963227B2 (en) Apparatus and method for precharging and discharging a domino circuit
JPH02196519A (en) Driver circuit
JP2935318B2 (en) Output buffer circuit
JPH04258017A (en) Delay circuit
JPS6061987A (en) Semiconductor memory
JP3348679B2 (en) Semiconductor integrated circuit
JP3665560B2 (en) Semiconductor integrated circuit
JPH07283717A (en) Through current preventing circuit for cmos inverter circuit
JP3249381B2 (en) Synchronous logic circuit
JP2699496B2 (en) Output circuit
KR100609994B1 (en) Data Output Circuit of Semiconductor Device with Low Leakage Current Characteristics
JPS60257624A (en) Complementary gate circuit
JPS6195615A (en) Driver circuit
JP3335819B2 (en) Latch circuit