JPS6019129B2 - Method for improving iron loss in transformer core - Google Patents
Method for improving iron loss in transformer coreInfo
- Publication number
- JPS6019129B2 JPS6019129B2 JP54160501A JP16050179A JPS6019129B2 JP S6019129 B2 JPS6019129 B2 JP S6019129B2 JP 54160501 A JP54160501 A JP 54160501A JP 16050179 A JP16050179 A JP 16050179A JP S6019129 B2 JPS6019129 B2 JP S6019129B2
- Authority
- JP
- Japan
- Prior art keywords
- iron loss
- laser beam
- core
- steel plate
- irradiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/06—Magnetic cores, or permanent magnets characterised by their skew
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Description
【発明の詳細な説明】
本発明は、一方向性電磁鋼板をCIまたはEI型に打抜
いて競層した鉄心を使用する変圧器の鉄損改善方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving iron loss in a transformer using a competitively laminated iron core punched from a unidirectional electrical steel sheet into a CI or EI type.
一方向性電磁鋼板を変圧器鉄心に使用するには巻鉄心構
造にするのが最もその磁気特性を効果的に使用する方法
であるが、巻鉄心は巻線作業が容易でないのでこの面か
らは通常のCIまたはEIコアが好まれる。When using a unidirectional electrical steel sheet for a transformer core, the most effective way to use its magnetic properties is to create a wound core structure, but winding the wound core is not easy, so from this point of view A regular CI or EI core is preferred.
しかしCIまたはEIコアでは直交する2辺であるから
一方の辺を磁化容易軸方向に選べば他の辺は磁化容易軸
方向ではなくなってしまう。これを避けるにはC型又は
E型部材をすべて1型部材の組合せで構成すればよいが
、この場合は多数の1型部材の突合せ部が発生し、突合
せ部には当然空隙があって大きな磁気抵抗を導入する。
2方向性の電磁鋼板もあるが、これはまだ低コストで量
産できる段階にはない。However, in a CI or EI core, since the two sides are perpendicular to each other, if one side is selected in the direction of the easy axis of magnetization, the other side will not be in the direction of the easy axis of magnetization. To avoid this, all C-type or E-type members should be constructed from a combination of type 1 members, but in this case, many butt parts of type 1 members will occur, and naturally there will be gaps in the butt parts, making it large. Introducing magnetic resistance.
There is also bidirectional electrical steel sheet, but this is not yet at a stage where it can be mass-produced at low cost.
そこで現状では、低コストで量産し得る一方向性電磁鋼
板を用い、適当な処理により特性を改善して巻鉄心に近
い性能を示し得るCLEIコアにする方法の開発が望ま
れる。本発明はか)る要求に応えようとするもので、パ
ルスレーザ光を用いて所望の特性を得ようとするもので
ある。Therefore, it is currently desired to develop a method that uses unidirectional electrical steel sheets that can be mass-produced at low cost and improves the characteristics through appropriate treatment to produce a CLEI core that can exhibit performance close to that of a wound core. The present invention attempts to meet these demands and attempts to obtain desired characteristics using pulsed laser light.
次に図面を参照しながらこれを詳細に説明する。周知の
ように一方向性電磁鋼板は(110)〔001〕組織を
持ち、圧延方向に磁化が容易である。Next, this will be explained in detail with reference to the drawings. As is well known, a unidirectional electrical steel sheet has a (110)[001] structure and is easily magnetized in the rolling direction.
か)る鋼板101こ対し第1図aに示すように圧延方向
Fに直角にパルスレーザ光を線状、鎖線状または点線状
等の線列状に照射すると(12は線状照射の場合におけ
るその照射部分を示す)鉄損が小になる。これは次のよ
うに説明できる。即ち一方向性電磁鋼板10は第2図a
に示すように圧延方向に延びる比較的大きな磁区14を
有する。一方向性電磁鋼板においては(110)〔00
1〕方位の圧延方向への集積度を高めるにつれて結晶粒
が大きくなり、また滋壁が粒界を貫通するために磁区は
大きくなり、磁区の大きさと鉄損値とは比例関係にある
ので、方向性を高めた割り合いには鉄損は小さくならな
いという矛盾した問題があるものである。これに対し、
レーザ光を圧延方向とほぼ直角な方向に照射すると、そ
の照射部分12の両側に4・突起群16が発生する。こ
れは走査型電子顕微鏡等で観察できる。なお図では簡単
化のため小突起は一部しか示していない。この小突起は
滋区(マグネチックドメィン)の芽であって、磁化され
るとき鋼板10の磁区14はこの芽から伸びる滋区18
による細分化される。従って鉄損は小になる。小突起群
16が生じるのは、鋼板10‘こパルスレーザ光を照射
すると転位が発生し、磁区の芽が発生確率はこの転位の
密度に比例することに依ると考えられる。第1図bに示
すようにレーザ光を圧延方向に照射すると、第2図bに
示すようにやはり磁区の芽である小突起群16が発生す
る。When the steel plate 101 is irradiated with pulsed laser light perpendicular to the rolling direction F in the form of a line, chain line, dotted line, etc. as shown in FIG. (showing the irradiated part) Iron loss is reduced. This can be explained as follows. That is, the unidirectional electrical steel sheet 10 is shown in FIG.
As shown in the figure, it has a relatively large magnetic domain 14 extending in the rolling direction. In unidirectional electrical steel sheets, (110) [00
1] As the degree of accumulation of orientation in the rolling direction increases, the crystal grains become larger, and the magnetic domain becomes larger because the wall penetrates the grain boundary, and there is a proportional relationship between the size of the magnetic domain and the iron loss value. There is a paradoxical problem in that the iron loss does not decrease even if the directionality is increased. On the other hand,
When the laser beam is irradiated in a direction substantially perpendicular to the rolling direction, protrusions 16 are generated on both sides of the irradiated portion 12. This can be observed using a scanning electron microscope or the like. Note that in the figure, only a portion of the small protrusions are shown for simplicity. This small protrusion is a bud of a magnetic domain, and when magnetized, the magnetic domain 14 of the steel plate 10 extends from this bud.
Subdivided by. Therefore, iron loss becomes small. It is thought that the small protrusions 16 are formed because dislocations occur when the steel plate 10' is irradiated with pulsed laser light, and the probability of occurrence of magnetic domain buds is proportional to the density of these dislocations. When laser light is irradiated in the rolling direction as shown in FIG. 1b, small protrusions 16, which are buds of magnetic domains, are generated as shown in FIG. 2b.
外部磁界日が作用するときこの芽16より微小ドメィン
が発生し鉄損を下げるものと考えられる。具体例を挙げ
ると第1図aの圧延方向の鉄損WL(磁束密度1.汀,
周波数50HZ)は1.00W/k9となり、圧延方向
と直角方向の鉄損Wc(磁束密度1.汀,周波数50H
Z)はしーザ光照射しないものと殆んど同じである。It is thought that when an external magnetic field acts, minute domains are generated from these sprouts 16, which lowers the iron loss. To give a specific example, iron loss WL in the rolling direction (magnetic flux density 1.
Frequency 50HZ) is 1.00W/k9, and iron loss Wc in the direction perpendicular to the rolling direction (magnetic flux density 1.T, frequency 50H
Z) is almost the same as that without laser light irradiation.
なおレーザ光照射前のWLは1.10W/kg、Wcは
2.84W/k9である。つまり第1図aのレーザ光照
射で10%のWLの減少が可能になる。第1図bの場合
はWLは殆んど変らず、Wcは2,04W/k9となり
、約28%と大幅なWcの減少が可能となった。このよ
うな効果を得るには、レーザ光照射に条件がある。Note that WL before laser beam irradiation is 1.10 W/kg, and Wc is 2.84 W/k9. In other words, the laser beam irradiation shown in FIG. 1a allows a 10% reduction in WL. In the case of FIG. 1b, WL hardly changes, and Wc becomes 2.04 W/k9, making it possible to significantly reduce Wc by about 28%. In order to obtain such an effect, there are conditions for laser light irradiation.
先ずレーザ光照射部分12の幅dとピッチーであるが、
第1図a,bの場合ともd=0.01〜1側、1=1〜
3仇蚊、レーザパルスの時間幅はlnS〜10仇hS、
ェネルギ密度Pは0.01〜1000J/のが好ましい
。なおパルスレーザ光を照射する場合、照射部分が鎖線
状あるいは点線状に配列されるときには第1図aにおい
てはL方向直径d=0.01〜1肌、照射点C方向間隔
aは3側以下、好ましくは1柳以下がよい。また第1図
bにおいてはC方向直径d;0.01〜1肌、照射点L
方向間隔aは3側以下、好ましくは1側以下にすること
がよい。また使用レーザは衝撃を与えるのが目的である
からパルスレーザが最もよい。連続レーザは照射ェネル
ギの一部が熱拡散によって面内に拡がり若千ェネルギ損
失を生じるためにパルスレーザより効率は悪くなる。第
1図a,b共レーザ照射部分12の向きはそれぞれ正確
に圧延方向に直角および平行に整列していなくても、そ
れよりも±300程度の範囲でずれる分には効果に格別
の差はない。そこで本発明ではEIまたはCIコァを構
成する各鋼板素子に対して第3図に示す如きレーザ光照
射を行なう。First, the width d and pitch of the laser beam irradiated portion 12 are
In both cases of Figure 1 a and b, d=0.01~1 side, 1=1~
3. The time width of the laser pulse is lnS ~ 10 hS,
The energy density P is preferably 0.01 to 1000 J/. In addition, when irradiating pulsed laser light, when the irradiated parts are arranged in a chain line shape or dotted line shape, the diameter d in the L direction is 0.01 to 1 skin in Fig. 1a, and the interval a in the irradiation point C direction is 3 sides or less. , preferably one willow or less. In addition, in Fig. 1b, the diameter d in the C direction is 0.01 to 1 skin, and the irradiation point L
The directional distance a is preferably 3 sides or less, preferably 1 side or less. Furthermore, since the purpose of the laser used is to give a shock, a pulsed laser is best. Continuous lasers are less efficient than pulsed lasers because part of the irradiation energy spreads within the plane due to thermal diffusion, resulting in a small energy loss. Even if the directions of the laser irradiated portions 12 in FIGS. 1a and 1b are not aligned exactly perpendicular and parallel to the rolling direction, there will be no particular difference in the effect as long as they deviate within a range of about ±300. do not have. Therefore, in the present invention, each steel plate element constituting the EI or CI core is irradiated with a laser beam as shown in FIG.
1型鋼板素子2川ま一方向性電磁鋼板の圧延方向にその
長手方向を合せて切出し、レーザ光照射部分12は1型
鋼板素子20の幅方向にとる。レーザ光照射部分12を
作るにはパルスレーザ光を逐次偏向するつまり走査して
もよく、またはスリットなどで制限して部分12に一致
する細帯状のパルスレーザ光を照射してもよい。この後
者のパターン照射の場合は更に複数個のレーザ光照射部
分12を同時に投射するようにしてもよい。磁束必ま点
線で示す向きに通るからこの様にすれば第1図aで説明
した理由によって鉄損が4・になる。E型鋼板素子22
はその3脚部22aの長手方向を圧延方向にとり、継鉄
部22bの長手方向をそれと直交方向にとり(この逆も
考えられる)、レーザ光照射区域12は3脚部22aお
よび雛鉄部22b共に幅方向にとる。このようにすれば
、3脚部22aでは第1図aで説明した理由により、ま
た継鉄部22bでは第1図bで説明した理由により、共
に鉄損が小になる。第3図bに示すC型コア24に対し
ても同機である。角部22c,22dは簡単にはしーザ
光照射しない。コア全体に対する角部の割合は小さいか
ら、これでも充分鉄損減少の実効を上げることができる
。あるいはこの角部22c,22dは第3図cに示すよ
うに脚部および継鉄部のレーザ光照射を、対角線26で
2分されるこの角度へそのまま延長させて行なってもよ
い。E型コアのT型部22eは、この部分の磁束はこの
EIコアを3相変圧器の鉄心に使用する場合はa→b,
b→c’C→aおよびこれらの逆の6方向へ通ることに
なり、従ってこの部分は本来無方向性であるのが好まし
いが、一方向性電磁鋼板を使用する場合は第3図aのよ
うにレーザ光照射しないか、または第3図dのように継
鉄部のし−ザ光照射をそのままT宇部へも行ないかつ中
央脚に対するレーザ光照射をそのままT字部内へ若千延
長させる。以上説明したように本発明によればパルスレ
ーザ光照射という簡単な手段により一方向性電磁鋼板使
用のCI,EIコアの鉄損を減少させることができる。The type 1 steel plate element 2 is cut out with its longitudinal direction aligned with the rolling direction of the unidirectional electrical steel plate, and the laser beam irradiation portion 12 is set in the width direction of the type 1 steel plate element 20. In order to create the laser beam irradiation portion 12, the pulsed laser beam may be sequentially deflected, that is, scanned, or the pulsed laser beam may be limited by a slit or the like and a narrow strip of pulsed laser beam that coincides with the portion 12 may be irradiated. In the case of the latter pattern irradiation, a plurality of laser beam irradiation portions 12 may be projected simultaneously. Since the magnetic flux necessarily passes in the direction shown by the dotted line, if this is done, the iron loss will be 4.0 for the reason explained in FIG. 1a. E type steel plate element 22
The longitudinal direction of the three leg parts 22a is set in the rolling direction, and the longitudinal direction of the yoke part 22b is set in the direction perpendicular to the rolling direction (the reverse is also possible), and the laser beam irradiation area 12 is Take it in the width direction. In this way, iron loss is reduced in both the three leg portions 22a for the reason explained in FIG. 1a and the yoke portion 22b for the reason explained in FIG. 1b. The same applies to the C-shaped core 24 shown in FIG. 3b. The corners 22c and 22d are not easily irradiated with laser light. Since the ratio of the corner portion to the entire core is small, this can also sufficiently increase the effectiveness of reducing iron loss. Alternatively, the corners 22c and 22d may be extended directly to the angle bisected by the diagonal line 26 for the laser beam irradiation of the legs and yoke as shown in FIG. 3c. In the T-shaped part 22e of the E-shaped core, the magnetic flux of this part is a → b, when this EI core is used as the iron core of a three-phase transformer.
It passes in the six directions b→c'C→a and the opposite directions. Therefore, it is preferable that this part is essentially non-directional, but when using a grain-oriented electrical steel sheet, the direction shown in Figure 3a is Either the laser beam is not irradiated, or the laser beam irradiation of the yoke part is directly applied to the T-section as shown in FIG. As explained above, according to the present invention, the iron loss of CI and EI cores made of unidirectional electrical steel sheets can be reduced by the simple means of pulsed laser beam irradiation.
周知のように鉄損は変圧器の稼動中常時発生するもので
あり、この僅かな減少でも当該変圧器の全寿命中の電力
節減は極めて大きく、従って本発明は省エネルギの観点
からも極めて有効である。As is well known, iron loss occurs constantly during the operation of a transformer, and even a small reduction in iron loss results in extremely large power savings over the entire life of the transformer.Therefore, the present invention is extremely effective from an energy saving perspective. It is.
第1図a,bはしーザ光照射要領を説明する図、第2図
a,bは鉄損改善理由の説明図、第3図a〜bは本発明
のEIおよびCIコア素子へのレーザ光照射要領を説明
する図である。
図面で20はCIまたはEI鉄心の1型鉄心素子、22
はE型鉄心素子、24はC型鉄心素子、12はしーザ光
照射部分である。
第1図
第2図
第3図Figures 1a and b are diagrams explaining the procedure for laser light irradiation, Figures 2a and b are diagrams explaining the reason for iron loss improvement, and Figures 3a to b are diagrams explaining the method of irradiation with laser light. It is a figure explaining the laser beam irradiation procedure. In the drawing, 20 is a type 1 core element of CI or EI core, 22
24 is an E-type core element, 24 is a C-type core element, and 12 is a laser beam irradiation portion. Figure 1 Figure 2 Figure 3
Claims (1)
方向性電磁鋼板の圧延方向にその長手方向を合せて該鋼
板より切取り、E型またC型鉄心はその脚部の長手方向
を圧延方向に合せて該鋼板より切取り、そのまゝ、ある
いは歪除去焼鈍後該I型鋼板素子およびE,C型鋼板素
子に対して、そのほゞ、幅方向に所定幅のレーザ光照射
部分が延びかつ該部分が該幅方向と直角な方向に所定ピ
ツチで配列されるようにパルスレーザ光を照射すること
を特徴とした変圧器の鉄損改善方法。1 The CI or EI type core of a transformer is cut from a unidirectional electrical steel sheet with its longitudinal direction aligned with the rolling direction, and the E or C type core is cut with its legs aligned in the longitudinal direction. The I-type steel plate element and the E, C-type steel plate element are cut out from the steel plate in the rolling direction and are irradiated with a laser beam with a predetermined width approximately in the width direction. 1. A method for improving iron loss in a transformer, comprising irradiating pulsed laser light so that the portions extend and are arranged at a predetermined pitch in a direction perpendicular to the width direction.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54160501A JPS6019129B2 (en) | 1979-12-11 | 1979-12-11 | Method for improving iron loss in transformer core |
GB8033178A GB2062972B (en) | 1979-10-19 | 1980-10-15 | Iron core for electrical machinery and apparatus and well as method for producing the iron core |
FR8022231A FR2468191A1 (en) | 1979-10-19 | 1980-10-17 | IRON CORE FOR ELECTRICAL MACHINES AND APPARATUS, AND METHOD FOR MANUFACTURING THE CORE |
DE3039544A DE3039544C2 (en) | 1979-10-19 | 1980-10-20 | Iron core for electrical systems and process for its production |
US06/615,871 US4613842A (en) | 1979-10-19 | 1984-05-31 | Iron core for electrical machinery and apparatus as well as method for producing the iron core |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54160501A JPS6019129B2 (en) | 1979-12-11 | 1979-12-11 | Method for improving iron loss in transformer core |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5683012A JPS5683012A (en) | 1981-07-07 |
JPS6019129B2 true JPS6019129B2 (en) | 1985-05-14 |
Family
ID=15716296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54160501A Expired JPS6019129B2 (en) | 1979-10-19 | 1979-12-11 | Method for improving iron loss in transformer core |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6019129B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1263160A (en) * | 1984-06-15 | 1989-11-21 | Gary C. Rauch | Nonuniform laser scribing techniques and resulting products |
JPS61248507A (en) * | 1985-04-26 | 1986-11-05 | Nippon Steel Corp | Method for improving magnetism of amorphous alloy laminated core |
CN101896626B (en) | 2007-12-12 | 2012-07-18 | 新日本制铁株式会社 | Method for manufacturing grain-oriented electromagnetic steel sheet whose magnetic domains are controlled by laser beam application |
JP5533133B2 (en) * | 2010-03-30 | 2014-06-25 | Jfeスチール株式会社 | Directional electrical steel sheet cutting apparatus and method |
CN104795211B (en) * | 2015-04-10 | 2017-05-31 | 海鸿电气有限公司 | Hollow type three-dimensional wound core and manufacturing process thereof |
JP7375728B2 (en) * | 2020-10-26 | 2023-11-08 | Jfeスチール株式会社 | Manufacturing method and manufacturing equipment for core members for stacked core transformers |
-
1979
- 1979-12-11 JP JP54160501A patent/JPS6019129B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5683012A (en) | 1981-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5371486A (en) | Transformer core | |
EP0744757A1 (en) | D.c. reactor | |
JPS6019129B2 (en) | Method for improving iron loss in transformer core | |
US20230005659A1 (en) | Systems and methods for improving winding losses in planar transformers | |
KR920006258B1 (en) | Magnet core | |
KR950015006B1 (en) | Transformer core | |
JPH0631122U (en) | reactor | |
JP2714997B2 (en) | Coil device | |
JP3684104B2 (en) | core | |
JPS61115313A (en) | Core for transformer | |
JPH04142013A (en) | Coil device | |
JPS59218714A (en) | Electromagnetic equipment for high frequency power circuits | |
JPH09246058A (en) | Wound iron core | |
JPH0126090Y2 (en) | ||
JPS6133618Y2 (en) | ||
JPS5958810A (en) | High frequency leakage transformer | |
JPS5953684B2 (en) | Method for improving iron loss in magnetic steel sheet coils | |
JPS58147011A (en) | Thin transformer | |
JPH04142015A (en) | Coil device | |
JP2521549Y2 (en) | Magnetic field generator | |
JPS63110711A (en) | Iron core of transformer | |
JPH11121240A (en) | Inductor | |
JP2865671B2 (en) | Optical disk drive | |
JPS5828342Y2 (en) | Iron core tightening device for electrical equipment | |
JPS5831384Y2 (en) | Houdentouyo Antique |