JPS63110711A - Iron core of transformer - Google Patents
Iron core of transformerInfo
- Publication number
- JPS63110711A JPS63110711A JP61255717A JP25571786A JPS63110711A JP S63110711 A JPS63110711 A JP S63110711A JP 61255717 A JP61255717 A JP 61255717A JP 25571786 A JP25571786 A JP 25571786A JP S63110711 A JPS63110711 A JP S63110711A
- Authority
- JP
- Japan
- Prior art keywords
- core
- iron
- yoke
- cross
- leg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Transformers For Measuring Instruments (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は変圧器鉄心に係り、特に断面形状が概略り字形
をなす継鉄部を備えた内鉄形変圧器の鉄心に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transformer core, and more particularly to a core for an inner iron type transformer having a yoke portion having a generally angular cross-sectional shape.
変圧器の鉄心は薄い珪素鋼板を積層して構成されている
が、たとえば3相3脚内鉄形変圧器の鉄心では第4図に
示す様に珪素鋼板の端部がほぼ45“に切断された鉄板
を突き合わせながら交互に積み重ねてゆく構成が採用さ
れている。かかる鉄心は巻線が巻回される脚鉄1と閉磁
路を構成するための脚鉄間をつなぐ継鉄2とから成って
おり、脚鉄部の断面は通常第5図(a)に示す様に円に
内接する様な両段状に構成されている。これは脚鉄1に
巻回される巻線が円筒状であるためにこの鉄心構造が巻
線の中に最も多量の鉄板を収納でき小形・軽量化が可能
となるからである。一方、継鉄2の断面形状は脚鉄1と
同様な円形のほかに角形構造などが用いられるが、前者
の円形構造は脚鉄と継鉄の鉄板幅が等しいことから磁束
の不均一性が生じにくく鉄心特性は良いものの、鉄心が
大形化し重量が増加するという欠点がある。断面が角形
となる継鉄構造においては鉄心高さが低くなり鉄心重量
が軽くなるというメリットを有しているが、脚鉄と継鉄
との鉄板幅が異なることから積層方向に磁束の不均一性
を生じ、鉄損特性を増加させるという問題がある。これ
ら両者の長所を生かした継鉄の構造として第5図(b)
に示す様な継鉄の断面形状を英文字のDの字に似せたい
わゆるD形断面継鉄がある。この構造では脚鉄と継鉄の
鉄板幅が等しいため鉄損特性が良いことに加え。The core of a transformer is composed of laminated thin silicon steel plates. For example, in the core of a three-phase three-leg internal iron transformer, the ends of the silicon steel plates are cut into approximately 45" pieces, as shown in Figure 4. A structure is adopted in which iron plates are stacked alternately while butting against each other.This iron core consists of a leg iron 1 around which a winding is wound, and a yoke 2 that connects the leg irons to form a closed magnetic circuit. The cross section of the leg iron 1 is normally configured in a double-step shape inscribed in a circle as shown in Fig. 5(a).This is because the winding wire wound around the leg iron 1 is cylindrical. This is because this iron core structure can accommodate the largest amount of iron plates in the winding, making it possible to make it smaller and lighter.On the other hand, the cross-sectional shape of the yoke 2 is not only circular like the leg iron 1 but also A square structure is used, but the former circular structure has the same width as the iron plate of the leg iron and yoke, so it is less likely to cause uneven magnetic flux and has good core characteristics, but has the disadvantage that the iron core becomes larger and the weight increases. A yoke structure with a rectangular cross section has the advantage of lower core height and lighter core weight, but because the widths of the steel plates of the legs and yoke are different, the magnetic flux increases in the lamination direction. There is a problem that this causes non-uniformity and increases iron loss characteristics.A yoke structure that takes advantage of both of these advantages is shown in Fig. 5 (b).
There is a so-called D-shaped cross-sectional yoke, which has a cross-sectional shape similar to the letter D, as shown in the figure. This structure has good iron loss characteristics because the steel plate widths of the leg iron and yoke are equal.
継鉄の表層部に位置する板幅の狭い鉄板が鉄心窓内方向
に移動しているため、これと接合される脚鉄が短くて済
み鉄心重量を円形断面の継鉄よりも軽くすることができ
る特徴がある。しかし、かかるD形断面継鉄とした鉄心
構成では第6図に示す様に継鉄表層部での鉄板幅の中心
線Y−Yが内側部の中心線x−xに比べて鉄心窓側に移
動しているために、鉄心表層部での磁路長が相対的に短
くそこで、D形断面の継鉄を有する鉄心での上記した欠
点を除く方法として、特開昭57−53113号公報に
は鉄心の表層部と内部の磁気抵抗がほぼ等しくなる様に
、鉄心表層部の鉄板を他に比べ透磁率の小さい鉄板を用
いる構成や板厚の厚い鉄板を用いる構成のものが開示さ
れているが、いずれの構成においても鉄心の磁気抵抗の
均一化は図れるものの、同一材料の鉄板で鉄心をすべて
構成した場合に比べて鉄損特性を低下させる問題がある
6つまり、鉄心表層部だけに透磁率の小さい鉄板を用い
ることは通常の珪素鋼板よりも配向性の劣る鉄板を用い
ることに相当し鉄損増加の原因となる。さらに、鉄心表
層部で他に比べ板厚の厚い鉄板を用いることはうず電流
損を増加させる要因ともなり得るものであるため、これ
らの技術の実施だけではD形断面の継鉄を有する鉄心で
の鉄損特性の向上を十分に期待することができない。Since the narrow steel plate located on the surface of the yoke moves inward to the core window, the leg irons connected to it can be shortened, making the core lighter than a yoke with a circular cross section. There are features that allow it. However, in the core configuration with such a D-shaped cross-section yoke, as shown in Fig. 6, the center line Y-Y of the iron plate width at the surface layer of the yoke moves toward the core window side compared to the center line x-x of the inner side. Therefore, the length of the magnetic path in the surface layer of the core is relatively short. Therefore, as a method for eliminating the above-mentioned drawbacks of a core having a yoke with a D-shaped cross section, Japanese Patent Application Laid-Open No. 57-53113 discloses In order to make the magnetic resistance of the surface layer of the core almost equal to the magnetic resistance inside the core, configurations have been disclosed in which the iron plate in the surface layer of the core is made of an iron plate with lower magnetic permeability than other iron plates, or a steel plate with a thicker plate thickness is used. In either configuration, the magnetic resistance of the core can be made uniform, but there is a problem in that the core loss characteristics are lowered compared to when the core is all made of iron plates made of the same material. Using an iron plate with a small . Furthermore, the use of thicker steel plates in the surface layer of the core can increase eddy current loss, so implementing these techniques alone will not allow the core to have a yoke with a D-shaped cross section. It cannot be expected that the iron loss characteristics will be sufficiently improved.
上記従来技術は磁気抵抗をほぼ等しくするために透磁率
の小さい材料や板厚の厚い材料を一部用いているが、同
一材料の鉄板で鉄心を構成した場合に比べて鉄損を低減
できない問題があった。The above conventional technology partially uses materials with low magnetic permeability or thick materials in order to make magnetic resistance approximately equal, but the problem is that iron loss cannot be reduced compared to when the core is made of iron plates made of the same material. was there.
本発明の目的は、継鉄部の磁束密度が不均一になっても
鉄損が増加しない様に鉄心接合部での実効断面積を増や
して磁気特性を向上せしめた変圧器鉄心を提供すること
にある。An object of the present invention is to provide a transformer core that improves magnetic properties by increasing the effective cross-sectional area at the core joint so that iron loss does not increase even if the magnetic flux density at the yoke becomes uneven. It is in.
上記目的はD形断面を有する継鉄部で磁束の不均一によ
る影響が著しく出る鉄心接合部をステップラップし実効
断面積を増やして接合部での渡り磁束密度を低下させる
ことにより達成される。The above object is achieved by step-lapping the iron core joint where the yoke having a D-shaped cross section is significantly affected by non-uniform magnetic flux, thereby increasing the effective cross-sectional area and reducing the cross-over magnetic flux density at the joint.
D形断面を有する継鉄部において磁束の不均一性が大き
く生ずる鉄心接合部で鉄心中心部よりも表層部へ行くに
従い、積層方向への実効断面積が増える様にステップラ
ップの段数を増やして鉄心接合部での渡り磁束密度を低
下させ、鉄損を減少させる。At core joints where large inhomogeneity of magnetic flux occurs in yoke parts with a D-shaped cross section, the number of step laps is increased from the center of the core to the surface layer so that the effective cross-sectional area in the lamination direction increases. Reduces the flux density at the core joint and reduces iron loss.
以下、本発明の一実施例を第1図〜第2図を参照しなが
ら説明を加える。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
第1図は変圧器鉄心の断面図で(a)が脚鉄、(b)が
継鉄である。第2図は第1図の脚鉄1と継鉄2との鉄心
接合部で図中(a)が第1図中Aブロック(b)がBブ
ロック(Q)がCブロックでの断面図で鉄心表層部へ行
くに従い、積層方向への実効断面積を増やす様にステッ
プラップの段数を1段、3段、5段と変えた構造となっ
ている。Figure 1 is a cross-sectional view of the transformer core, with (a) showing the leg iron and (b) showing the yoke. Figure 2 shows the core joint between leg iron 1 and yoke 2 in Figure 1, and (a) in the figure is a cross-sectional view of A block (b), B block (Q), and C block in Figure 1. The structure has a structure in which the number of step wraps is changed from 1 to 3 to 5 in order to increase the effective cross-sectional area in the lamination direction toward the surface layer of the core.
かかる構成法によれば鉄心の表層部ほど磁束密度が高く
なり、鉄損を増加させようとするものの、第2図(a)
〜(Q)に示す様に接合位置が積層方向へ階段状にずれ
るために接合部での渡り磁束密度が緩和され、この部分
での鉄損低減が図れると共に励磁電流、騒音といった諸
特性も大幅に向上することが可能となる。なお本発明の
実施に当っては実効断面積が増える様にステップラップ
の方法を変えても脚鉄1と継鉄2との接合部で切り欠き
部が増えない様に脚鉄1と継鉄2の総重なり代をほぼ一
定とすることが望ましい。According to this construction method, the magnetic flux density becomes higher in the surface layer of the iron core, which increases iron loss, but as shown in FIG.
~ As shown in (Q), the joining position is shifted in a stepwise manner in the stacking direction, so the crossover magnetic flux density at the joint is relaxed, reducing iron loss in this area and significantly reducing various characteristics such as excitation current and noise. It becomes possible to improve the In carrying out the present invention, the leg iron 1 and the yoke are arranged in such a way that the notch does not increase at the joint between the leg iron 1 and the yoke 2 even if the step wrap method is changed so that the effective cross-sectional area increases. It is desirable that the total overlapping margin of 2 is approximately constant.
第3図に示す他の実施例は第2図と同一部分を示したも
ので、磁束密度が不均一となる図中斜線で示す継鉄2の
鉄板を脚鉄1に用いる鉄板よりも配向性を変えずに鉄板
自身の損失を低減させる材料、たとえば薄板材、レーザ
処理材とした例を示している。この材料を用いることに
より実効断面積を増やした効果に加え、さらに損失を低
下させることが可能である。Another embodiment shown in FIG. 3 shows the same part as FIG. 2, and the iron plate of the yoke 2 shown by diagonal lines in the figure, where the magnetic flux density is non-uniform, is more oriented than the iron plate used for the leg iron 1. Examples are shown of materials that reduce the loss of the iron plate itself without changing its properties, such as thin plate materials and laser-treated materials. By using this material, in addition to the effect of increasing the effective cross-sectional area, it is possible to further reduce loss.
本発明によれば、D形継鉄で磁束密度が高くなる表層部
ほど実効断面積が増える様にステップラップの方法を変
えて鉄心接合部で磁束を緩和し。According to the present invention, the step-wrap method is changed so that the effective cross-sectional area increases as the magnetic flux density increases in the surface layer of the D-type yoke, and the magnetic flux is relaxed at the core joint.
鉄損、励磁電流、騒音等を低減できる効果がある。It has the effect of reducing iron loss, exciting current, noise, etc.
第1図は本発明の一実施例を示す脚鉄と継鉄の断面図、
第2図は本発明の脚鉄と継鉄との接合構造で積層方向へ
のステップラップの方法を示した断面図、第3図は本発
明の他の実施例で継鉄に低損失材を用いた場合の断面図
、第4図は従来の鉄心接合法を示す平面図、第5図は従
来の脚鉄と継鉄の断面図、第6図、第7図は従来の課題
を示す鉄心平面図と継鉄中漬層方向への磁束密度分布説
明図である。
1.2・・・脚鉄、3,4・・・継鉄。FIG. 1 is a sectional view of a leg iron and a yoke showing an embodiment of the present invention;
Fig. 2 is a cross-sectional view showing the step-lap method in the lamination direction in the joint structure of the leg iron and yoke of the present invention, and Fig. 3 is another embodiment of the present invention in which the yoke is made of low-loss material. Figure 4 is a plan view showing the conventional core joining method, Figure 5 is a cross-sectional view of the conventional leg iron and yoke, and Figures 6 and 7 are the iron core showing the problems with the conventional method. FIG. 2 is a plan view and an explanatory diagram of magnetic flux density distribution in the direction of the intermediate layer of the yoke. 1.2...leg iron, 3,4...yoke.
Claims (1)
同じ鉄板幅で鉄心窓外側に凸となる断面形状を有する継
鉄部とを組合わせて成る変圧器鉄心において、該鉄心の
表層部ほど鉄心接合部における積層方向の実効断面積が
増える様にステップラップの段数を変えたことを特徴と
する変圧器鉄心。1. In a transformer core formed by combining a leg iron having a substantially circular cross-sectional shape and a yoke having a cross-sectional shape convex to the outside of the core window and having approximately the same iron plate width as the leg iron, the iron core A transformer core characterized in that the number of step wraps is changed so that the effective cross-sectional area in the lamination direction at the core joint increases as the surface layer increases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255717A JPS63110711A (en) | 1986-10-29 | 1986-10-29 | Iron core of transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61255717A JPS63110711A (en) | 1986-10-29 | 1986-10-29 | Iron core of transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63110711A true JPS63110711A (en) | 1988-05-16 |
Family
ID=17282669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61255717A Pending JPS63110711A (en) | 1986-10-29 | 1986-10-29 | Iron core of transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63110711A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010161289A (en) * | 2009-01-09 | 2010-07-22 | Hitachi Industrial Equipment Systems Co Ltd | Transformer |
JP2012015210A (en) * | 2010-06-29 | 2012-01-19 | Japan Ae Power Systems Corp | Disassembled and transported transformer core |
JP2019160861A (en) * | 2018-03-08 | 2019-09-19 | 株式会社日立製作所 | Laminate iron core and stationary induction electric device |
-
1986
- 1986-10-29 JP JP61255717A patent/JPS63110711A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010161289A (en) * | 2009-01-09 | 2010-07-22 | Hitachi Industrial Equipment Systems Co Ltd | Transformer |
JP2012015210A (en) * | 2010-06-29 | 2012-01-19 | Japan Ae Power Systems Corp | Disassembled and transported transformer core |
JP2019160861A (en) * | 2018-03-08 | 2019-09-19 | 株式会社日立製作所 | Laminate iron core and stationary induction electric device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2486220A (en) | Magnetic core | |
JPH069176B2 (en) | Silicon steel-amorphous steel composite iron core for transformer | |
US5371486A (en) | Transformer core | |
US7471183B2 (en) | Transformer | |
US4201966A (en) | Magnetic core structure | |
US2407688A (en) | Magnetic core | |
JPS63110711A (en) | Iron core of transformer | |
US2594002A (en) | Three-phase core | |
US2594001A (en) | Three-phase core | |
JPH0456441B2 (en) | ||
JPH04192510A (en) | Iron core type reactor with gap | |
US4656452A (en) | Transformer telephone influence tractor core shunt | |
JPH03236204A (en) | Iron core for three-phase transformer | |
JPS5819138A (en) | Magnetic wedge for rotary electric machine | |
JPH0423297Y2 (en) | ||
JP3534011B2 (en) | choke coil | |
JP2757724B2 (en) | Three-phase tripod transformer core | |
JPH0145204B2 (en) | ||
JPS6113608A (en) | Transformer core | |
KR950015006B1 (en) | Transformer core | |
JP2775221B2 (en) | Transformer core | |
JPH11307348A (en) | Stationary inductor | |
JPS63291410A (en) | Transformer core | |
JPH06349643A (en) | Transformer iron core | |
JPS6153709A (en) | Transformer core |