[go: up one dir, main page]

JPS60184681A - Amorphous silicon carbide film for coating - Google Patents

Amorphous silicon carbide film for coating

Info

Publication number
JPS60184681A
JPS60184681A JP59040961A JP4096184A JPS60184681A JP S60184681 A JPS60184681 A JP S60184681A JP 59040961 A JP59040961 A JP 59040961A JP 4096184 A JP4096184 A JP 4096184A JP S60184681 A JPS60184681 A JP S60184681A
Authority
JP
Japan
Prior art keywords
film
silicon carbide
amorphous silicon
hardness
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59040961A
Other languages
Japanese (ja)
Other versions
JPS6366902B2 (en
Inventor
Takuro Yamashita
山下 卓郎
Yoshihisa Fujii
藤井 良久
Hiroshi Taniguchi
浩 谷口
Masaru Yoshida
勝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59040961A priority Critical patent/JPS60184681A/en
Publication of JPS60184681A publication Critical patent/JPS60184681A/en
Publication of JPS6366902B2 publication Critical patent/JPS6366902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a titled amorphous silicon carbide film having high surface hardness and adhesiveness by changing the compsn. ratio of silicon and carbon of an amorphous silicon carbide film by a gas reactive deposition (CVD) method in the thickness direction thereof thereby changing the hardness in the thickness direction of the film. CONSTITUTION:The composition ratio of silicon and carbon in an amorphous silicon carbide film for coating can be changed by adjusting the flow rate ratio of gaseous raw materials in the stage of obtaining said film by using silane and hydrocarbon as gaseous raw materials in a CVD method using glow discharge. The hardness of the above-mentioned film is highest at the value near the specific compsn. ratio and the hardness decreases as the value deviates therefrom and therefore the film having low hardness at the boundary with a body to be protected while high hardness on the surface of the above-mentioned film, i.e., the above-mentioned film having high adhesiveness can be formed by controlling the flow rate of the gaseous raw materials. The application of said film for the body to be protected such as the diamond head of a scanner for an electrostatic capacity type memory disc, etc. is thus made possible.

Description

【発明の詳細な説明】 技術分野 本発明は非晶質炭化珪素膜に関し、特に表面保護用のコ
ーテイング膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an amorphous silicon carbide film, and more particularly to a coating film for surface protection.

従来技術 機械的rIjrIiにさらされるたとえば情報読取用の
ヘッド先端部や、汚染を嫌う半導体装置のチップ表面な
どは、外部環境から物理的および化学的に保護してやる
必要がある。このような目的のために、従来からしばし
ば被保護体の表面を各f1樹脂などの被膜でコーティン
グする方法が採られてきlこ 。
BACKGROUND OF THE INVENTION For example, the tip of an information reading head, which is exposed to mechanical rIjrIi, and the chip surface of a semiconductor device, which is sensitive to contamination, must be physically and chemically protected from the external environment. For this purpose, a method of coating the surface of the object to be protected with a film of each f1 resin has been often adopted.

これらのコーテイング膜に用いられる!l!!l負の主
な特性としく、前述σ戸\ツドに関しては特に耐摩耗性
に優れたI!質のものであるとともに摩擦熱に対しても
安定であることがめられ、半導体装置に関しでは特に化
学的汚染に対して十分安定であるとともに電気絶縁的特
性も必要である。これらの特性に加えてさらに重要な問
題として、被保護体alfiとの密着性の問題がある。
Used in these coating films! l! ! The main negative characteristic is I!, which has particularly excellent wear resistance with respect to the above-mentioned σdoor\tsudo. In addition to being of high quality, it is also required to be stable against frictional heat. For semiconductor devices, in particular, it is necessary to be sufficiently stable against chemical contamination and to have electrically insulating properties. In addition to these characteristics, a more important problem is the problem of adhesion to the object to be protected alfi.

たとえばコーテイング膜のfi!度が高い場合、被保護
体との界面において高応力が生じて、この硬くて脆い(
硬いものは一般に脆性が高い)被膜に割れがqじたり剥
ff1lることか多かった。
For example, coating film fi! If the temperature is high, high stress will occur at the interface with the protected object, causing this hard and brittle (
(Hard materials are generally more brittle) The coating often cracked or peeled off.

したがって、上記の秒々の特許を兼む備λかつに容性の
侵れたコーディング膜を形成するごとはノ1−んに置部
てあり、たとえ可能であるとしでも、(れは少雑なプE
1(ニスと高度な成膜技術を必要とし、実用に供し得る
ことは困難であった。
Therefore, forming a coating film with both the above-mentioned patent characteristics and high capacitance is a priority, and even if it were possible, it would be a little complicated. Napu E
1 (requires varnish and advanced film-forming technology, making it difficult to put it to practical use.

発明の目的 不発111Jの目的は、コーディング膜どしてめられる
上述の諸性性を並ね備えかつ密着性の何れた非晶質炭化
珪素iを提供することである。
OBJECTS OF THE INVENTION The purpose of FUJIFILM 111J is to provide an amorphous silicon carbide i that has all of the above-mentioned properties required for a coating film and has good adhesion.

発明の概要 CV D法によって形成される本発明G−,,L’Q非
晶賀炭化珪免膜の特徴は、前記膜の厚さ方向において珪
素と炭素の組成比が変化さtられ−(おり、それkよっ
て前記膜の厚さ方向においで技化する硬度を右し1いる
こと1−ある。
Summary of the Invention The characteristics of the G-, L'Q amorphous silicon carbide film of the present invention formed by the CVD method are that the composition ratio of silicon and carbon is varied in the thickness direction of the film. This determines the hardness of the film in the thickness direction.

発明の実施例 まず1本邦Iv」にJる][品質炭化珪素膜の形成のた
め(ご用いられたCVD法の一実施例であるグロー放電
分解法についてv2明づる。この@膜装置の楊或は)と
該分野の技術右辺に周知のものである。
Embodiments of the Invention First, we will explain the glow discharge decomposition method, which is an example of the CVD method used, for the formation of quality silicon carbide films. or) is well known to those skilled in the art.

卯料戸vスとしく、シランガス(たとえば3+H+。Uryoto vs Shiki, silane gas (for example 3+H+).

Si 2 LLなど)と炭化水糸ガス(たとえばCH4
、(:、y Ha 、 C−11a 、 C4tl+ 
oなど)が用いられ、場(1によZ(ト1□が希釈ガス
として用いられた。これらの)ガスを混合して反応至へ
供給し、300m丁orr稈麿のガス圧に保持した状態
で50W程度のバ1ノーの高周波を印加してグロー放電
を発生させることにより、原料ガスを分解反応させて1
「晶′fiυL化13素股を作成した。この非晶質炭化
珪素腔のSiとCの組成比を任意に変化させるためには
、簡易で一般的によく採用される原料ガスの原子比を調
節づる方法が用いられた。
Si 2 LL, etc.) and hydrocarbon fiber gas (e.g. CH4
, (:,yHa,C-11a,C4tl+
The gases were mixed and supplied to the reaction mixture, and the gas pressure was maintained at 300 m orr. By applying a high frequency wave of approximately 50W to generate a glow discharge, the raw material gas is decomposed and reacted.
``We created 13 crystalline elements.In order to arbitrarily change the composition ratio of Si and C in this amorphous silicon carbide cavity, we can adjust the atomic ratio of the raw material gas, which is a simple and commonly used method. The following method was used.

このようにして形成された非晶質炭化珪素をa−st 
Xc、−、: Hで表わづ。ここでaは非晶質(アモル
ファス)を表わし、× (0≦×≦1)はSlとCの組
成比を決定4る変lI′tあり、1−口J吸蔵されてい
る水素を表わしている。第1図は、を地41m 50℃
において形成されたこのような非晶質炭化珪素喚の変数
× (横軸)に対する硬度変化(縦軸)を示したもので
あり、x’−0,5fj近で最高の酸1良の膜が得られ
、それからずれるに従って硬度が減少するのがわかる。
The amorphous silicon carbide thus formed is a-st
Xc, -,: Represented by H. Here, a represents amorphous, × (0≦×≦1) is a variable lI't that determines the composition ratio of Sl and C, and 1-J represents hydrogen occluded. There is. Figure 1 shows the ground at 41m and 50℃.
The graph shows the change in hardness (vertical axis) against the variable x (horizontal axis) for such amorphous silicon carbide formed in It can be seen that the hardness decreases as the distance from this value increases.

なお通常は約士数%の原子比の水素が含有されでいるが
、この含有邑の多少の変動は上記の硬度に対しCあまり
影響を及ぼさないようである。
Although hydrogen is usually contained in an atomic ratio of about a few percent, slight variations in the hydrogen content do not seem to have much of an effect on the above-mentioned hardness.

そこで、コーテイング膜形成の初期には×=0゜5以外
の値になるように原料ガス流量比を制御し、その後にx
値を0.5に近づ(ブることによって、(のコーテイン
グ膜の表面は(ヌープ硬度において1500・〜300
ON/μm2程度の)^い硬度を有しながら、被保護体
との界面におい°(はそれに比べて低い硬度を有する保
1!膜を形成することが可能となる。またこのIiI度
比は、連続的変化またはステップ状の変化のいずれにお
いても実施することができる。このようにして形成され
た保護膜では、界面付近の低硬度の領域が被保護体と表
面近くの硬質コーティング層との間の@衝打的な役ν1
りを果たし、界面に発生する応力を緩和してkt”i’
J、 Ii!の割れや剥離を防止する働きをするので、
前述の密着性が大きく改善されることとなる。
Therefore, in the initial stage of coating film formation, the raw material gas flow rate ratio is controlled to a value other than x = 0°5, and then
By approaching the value to 0.5, the surface of the coating film of (1500 to 300 on the Knoop hardness)
It is possible to form a film that has a high hardness (on the order of ON/μm2) but has a lower hardness at the interface with the protected object.Also, this IiI degree ratio is , can be carried out in either a continuous change or a step-like change.In the protective film formed in this way, a region of low hardness near the interface is formed between the object to be protected and the hard coating layer near the surface. Between @ Shocking role ν1
kt"i' by relaxing the stress generated at the interface
J, Ii! It works to prevent cracking and peeling of
The above-mentioned adhesion is greatly improved.

なお第1図かられかるように、x−0,5からどちらに
ずれても低硬度の膜となるが、そのS1過剰側とC過剰
側とのいずれを利用するかは被保護体の性質やコーディ
ングの目的に合わせて選択づることができる。
As can be seen from Figure 1, the film will have low hardness no matter which direction it deviates from x-0. You can choose according to your coding purpose.

第2図は、本発明によるコーテイング膜を静電MINI
型のメモリディスク(たとえばビデオディスク)の走査
子であるダイヤモンドヘッドに応用した例を示している
。図において、たとえばダイヤモンドからなる針基材1
は先端部で断面積が小さくなる柱状に加工されており、
その基材の一側面にANやinなどからなる信号読出し
のための電極2が形成されている。電極2を保護するた
めに、その電極2が形成された基材1の側面に本発明に
よる非晶質炭化珪素l!3が約5000Aの厚さに形成
される。このような走査子は電極2が顔を出している面
でメモリディスク上を摺動Jるので、その電極保護膜は
高い耐摩耗性がめられ、かつ割れや剥離の生じないもの
でなければならない。
FIG. 2 shows the electrostatic MINI coating film according to the present invention.
An example of application to the Diamond Head type memory disk (eg, video disk) scanner is shown. In the figure, a needle base material 1 made of diamond, for example.
is machined into a columnar shape with a smaller cross-sectional area at the tip.
An electrode 2 for signal reading made of AN, IN, etc. is formed on one side of the base material. In order to protect the electrode 2, amorphous silicon carbide according to the present invention is coated on the side surface of the base material 1 on which the electrode 2 is formed! 3 is formed to a thickness of about 5000A. Since such a scanner slides on the memory disk on the surface where the electrode 2 is exposed, the electrode protective film must have high wear resistance and be free from cracking and peeling. .

既述のように、本発明によるコーナインタ罎はこれらの
条件を兼ね備えたものであり、とのよ−)なヘッドのた
めの仮れたコーテイング膜であることが確かめられた。
As mentioned above, it has been confirmed that the corner interlayer according to the present invention satisfies these conditions and is a temporary coating film for such heads.

同様に、本発明によるコーテイング膜は磁気i−ブなど
と相対的な11!擦運動を4る磁気ヘッドのコーティン
グ月としても優れたものである。
Similarly, the coating film according to the present invention is 11! It is also excellent as a coating for magnetic heads that perform rubbing motion.

第3図は半導体装置に本発明によるコーテイング膜を施
した一例を示す概略図である。
FIG. 3 is a schematic diagram showing an example of a semiconductor device coated with a coating film according to the present invention.

図において、基板1−上の半導体装@2′は本発明によ
る保護膜3−によって覆われている。前述のように、半
導体装置の保護膜として備えな(ブればならない特性は
化学的安定性のみならず高い電気絶縁的性質が必要であ
る。化学的安定性については、炭化珪素は本来非常に安
定なものである。
In the figure, a semiconductor device @2' on a substrate 1- is covered with a protective film 3- according to the invention. As mentioned above, the properties that must be possessed as a protective film for semiconductor devices include not only chemical stability but also high electrical insulating properties. It is stable.

しかし通常の炭化珪素は電気的には半導体的性質を有し
ているが、4(発明によって形成されるよ)な非晶質の
戻化珪木膜は通常高い抵抗値を示し、たとえば101”
 Oamのような絶縁的高抵抗を示Jbのが1qられて
いる。したが〕で本発明によるコーティング]Qは、第
3図のように半導体fiwの保鏡膜としCち擾れた特性
を有するbのである。
However, although ordinary silicon carbide has electrically semiconducting properties, the amorphous regenerated silicon film (formed by the invention) usually exhibits a high resistance value, for example 101"
Jb, which exhibits high insulating resistance like Oam, is shown in 1q. However, the coating according to the present invention] Q is a mirror film of the semiconductor fiw as shown in FIG.

発明の効果 以上のように、本発明によれば、高い表面硬度と優れた
化学的安定性と高い電気的絶fi姓を有しかつ慢れた密
着性をち4る」−ティング用非晶質炭化珪素股を捉供】
ることができる。
Effects of the Invention As described above, according to the present invention, an amorphous material for coating has high surface hardness, excellent chemical stability, high electrical resistance, and excellent adhesion. Capture the quality silicon carbide crotch]
can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

w41図は、本発明による非晶質1)1化珪):1膜に
おける、珪素と炭素の組成比に関する硬1褒変化を示J
゛図ぐある。 餉12図は、静電容量型のメモリディスクの走査子ぐあ
るダイヤモンドヘッドに、本発明によるコーう゛イシク
税を形成した例せ示4図ぐある。 第3図(:1.、本発明によるコーテイング膜を半導体
肢ホに応用した例を示す図である。 図においr、1は基体、2はN極、3は保は膜、1′は
基板、2−は半導体装置、3−は保護膜を示す。 特許出願人 シャープ株式会社 第1図 ノ(イ、B 第2図 第3図
Figure w41 shows the change in hardness with respect to the composition ratio of silicon and carbon in the amorphous 1) silicon monocide: 1 film according to the present invention.
There is a diagram. Figures 12 and 12 are four diagrams illustrating a diamond head with a scanning element of a capacitance type memory disk, in which a wiring board according to the present invention is formed. Figure 3 (:1.) is a diagram showing an example in which the coating film according to the present invention is applied to a semiconductor limb. , 2- indicates a semiconductor device, and 3- indicates a protective film. Patent applicant: Sharp Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] (1)CVD(ガス反応析出)沫によって被保護体表面
上に形成される非晶質間化珪素膜であって、 前記膜の厚さ方向において前記膜の珪素と炭素の組成比
が変化させられており、それによって前記膜の厚さ方向
において変化する硬度を有していることを特徴とするコ
ーティング用非晶質炭化珪素膜。
(1) An amorphous interstitial silicon film formed on the surface of a protected object by CVD (gas reaction deposition) droplets, the composition ratio of silicon and carbon of the film changing in the thickness direction of the film. 1. An amorphous silicon carbide film for coating, characterized in that the film has a hardness that varies in the thickness direction of the film.
(2) 前記CVD法がグロー放電を用いたプラズマC
VD法であることを特徴とする特許請求の範囲第1項記
載のコーティング用非晶質炭化珪素膜。
(2) The CVD method uses plasma C using glow discharge.
The amorphous silicon carbide film for coating according to claim 1, which is produced by a VD method.
(3) 前記硬度は市記膜の表面側で高くて、前記被保
護体との界面側で低いことを特徴とする特許請求の範囲
第1項または第2項記載のコーティング用非晶質炭化珪
素膜。
(3) The amorphous carbonized coating according to claim 1 or 2, wherein the hardness is high on the surface side of the film and low on the interface side with the object to be protected. silicon film.
(4) 前記組成比は、前記CVD法における原着)5
ス(゛ある珪素元素を含むガスと炭素元素を含むガスと
の8!石比を変えることによって変化させられているこ
とを特徴とする特許請求の範囲第′1項ないし第3項の
いずれかの項に記載されたコーティング用非晶質炭化珪
素膜。
(4) The above composition ratio is the original deposition rate in the above CVD method)5
(any one of claims '1 to 3) characterized in that the gas is changed by changing the ratio of a certain silicon element-containing gas to a carbon element-containing gas. Amorphous silicon carbide film for coating described in the section.
(5) 前記珪素元糸を含むガスはシランガスであり、
前記炭素元素を含むガスが炭化氷水ガスであることを特
徴とする特許請求の範囲第4項記載のΦ」−テ、Cング
用非晶質炭化珪素膜。
(5) The gas containing silicon thread is silane gas,
5. The amorphous silicon carbide film for Φ''-te and carbon according to claim 4, wherein the gas containing the carbon element is a carbonized ice water gas.
(6) 前記被保護体が、静電容量型メモリディスク用
の走査子のタイヤモンドヘッドであることを特徴とする
特許請求の範囲第1項ないし第5項のいずれかの項に記
載されたコーティング用非晶質炭化珪素膜。
(6) The object to be protected is a tire head of a scanner for a capacitive memory disk, as described in any one of claims 1 to 5. Amorphous silicon carbide film for coating.
(7) 前記被保護体が磁気ヘッドであることを特徴と
する特許請求の範囲第1項ないし第5項のいずれかの項
に記載されたコーティング用非晶質炭化Ii素膜。
(7) The amorphous Ii carbide film for coating as set forth in any one of claims 1 to 5, wherein the object to be protected is a magnetic head.
(8) 前記被保護体が半導体装置であることを特徴と
する特許請求の範囲第1項ないし第5項記載のコーティ
ング用非晶質炭化珪素膜。
(8) The amorphous silicon carbide film for coating according to any one of claims 1 to 5, wherein the object to be protected is a semiconductor device.
JP59040961A 1984-03-02 1984-03-02 Amorphous silicon carbide film for coating Granted JPS60184681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040961A JPS60184681A (en) 1984-03-02 1984-03-02 Amorphous silicon carbide film for coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040961A JPS60184681A (en) 1984-03-02 1984-03-02 Amorphous silicon carbide film for coating

Publications (2)

Publication Number Publication Date
JPS60184681A true JPS60184681A (en) 1985-09-20
JPS6366902B2 JPS6366902B2 (en) 1988-12-22

Family

ID=12595076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040961A Granted JPS60184681A (en) 1984-03-02 1984-03-02 Amorphous silicon carbide film for coating

Country Status (1)

Country Link
JP (1) JPS60184681A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235564A (en) * 1985-04-11 1986-10-20 Toshiba Corp Member whose surface is treated with nonsingle crystal silicon film and its surface treatment
JPH01246118A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Composite carbon coating film having high heat-resistance and production thereof
JPH07102377A (en) * 1994-07-30 1995-04-18 Semiconductor Energy Lab Co Ltd Carbon coating film or coating film essentially comprising carbon
WO1996016202A1 (en) * 1994-11-21 1996-05-30 Friedrich Grohe Ag Packing element, in particular for shutting-off and regulating means, and process for producing the same
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6249020B1 (en) 1997-07-29 2001-06-19 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
US6731531B1 (en) 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6835638B1 (en) 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process
US7109548B2 (en) 1997-07-29 2006-09-19 Micron Technology, Inc. Operating a memory device
US7196929B1 (en) * 1997-07-29 2007-03-27 Micron Technology Inc Method for operating a memory device having an amorphous silicon carbide gate insulator
JP2009525397A (en) * 2006-01-30 2009-07-09 ユーロピアン エアロノティック ディフェンス アンド スペース カンパニー イーエーディーエス フランス Thin film multilayer structure, component including the structure, and method for depositing the structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118082A (en) * 1980-07-30 1982-07-22 Avco Corp Surface treatment for carbon
JPS60145377A (en) * 1984-01-09 1985-07-31 Sharp Corp Amorphous silicon carbide film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118082A (en) * 1980-07-30 1982-07-22 Avco Corp Surface treatment for carbon
JPS60145377A (en) * 1984-01-09 1985-07-31 Sharp Corp Amorphous silicon carbide film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235564A (en) * 1985-04-11 1986-10-20 Toshiba Corp Member whose surface is treated with nonsingle crystal silicon film and its surface treatment
US6583481B2 (en) 1988-03-07 2003-06-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US7144629B2 (en) 1988-03-07 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6265070B1 (en) 1988-03-07 2001-07-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
JPH01246118A (en) * 1988-03-26 1989-10-02 Semiconductor Energy Lab Co Ltd Composite carbon coating film having high heat-resistance and production thereof
JPH07102377A (en) * 1994-07-30 1995-04-18 Semiconductor Energy Lab Co Ltd Carbon coating film or coating film essentially comprising carbon
WO1996016202A1 (en) * 1994-11-21 1996-05-30 Friedrich Grohe Ag Packing element, in particular for shutting-off and regulating means, and process for producing the same
US6307775B1 (en) 1997-07-29 2001-10-23 Micron Technology, Inc. Deaprom and transistor with gallium nitride or gallium aluminum nitride gate
US6731531B1 (en) 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6794255B1 (en) 1997-07-29 2004-09-21 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6835638B1 (en) 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process
US7005344B2 (en) 1997-07-29 2006-02-28 Micron Technology, Inc. Method of forming a device with a gallium nitride or gallium aluminum nitride gate
US7109548B2 (en) 1997-07-29 2006-09-19 Micron Technology, Inc. Operating a memory device
US6249020B1 (en) 1997-07-29 2001-06-19 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
US7196929B1 (en) * 1997-07-29 2007-03-27 Micron Technology Inc Method for operating a memory device having an amorphous silicon carbide gate insulator
JP2009525397A (en) * 2006-01-30 2009-07-09 ユーロピアン エアロノティック ディフェンス アンド スペース カンパニー イーエーディーエス フランス Thin film multilayer structure, component including the structure, and method for depositing the structure

Also Published As

Publication number Publication date
JPS6366902B2 (en) 1988-12-22

Similar Documents

Publication Publication Date Title
JPS60184681A (en) Amorphous silicon carbide film for coating
US5190824A (en) Electrostatic-erasing abrasion-proof coating
US4328646A (en) Method for preparing an abrasive coating
JP3136307B2 (en) Diamond mounting substrate for electronic applications
JPH03131003A (en) Diamond thin-film thermistor
US5512873A (en) Highly-oriented diamond film thermistor
JPH02239623A (en) Stabilizing layer and its manufacture
US5750434A (en) Surface polishing of silicon carbide electronic device substrate using CEO2
Esteve et al. Diamond and diamond-like carbon films
Sattel et al. Nucleation during deposition of hydrocarbon ions as a function of substrate temperature
JPS58141572A (en) semiconductor equipment
US6224952B1 (en) Electrostatic-erasing abrasion-proof coating and method for forming the same
JPH0262889B2 (en)
JPS62180073A (en) Amorphous carbon film and its production
JP3728470B2 (en) Method for forming single crystal diamond film and substrate for vapor phase synthesis of single crystal diamond film
JPS60145377A (en) Amorphous silicon carbide film
JPH02217471A (en) Manufacture of carbon-based film
US4355052A (en) Method of preparing an abrasive coated substrate
JPS60189226A (en) Coating film
JP2619428B2 (en) Hard conductive carbon film
JPH0778871B2 (en) Magnetic disk
JP2673766B2 (en) Method for manufacturing carbon-based material
JPS6317585A (en) Semiconductor light-emitting device
JP3197545B2 (en) Carbon coating
Sugiyama et al. Protective films prepared by the electron cyclotron resonance plasma chemical vapor deposition technique for phase‐change‐type optical disks