[go: up one dir, main page]

JPS60177311A - Optical fiber cable - Google Patents

Optical fiber cable

Info

Publication number
JPS60177311A
JPS60177311A JP59034598A JP3459884A JPS60177311A JP S60177311 A JPS60177311 A JP S60177311A JP 59034598 A JP59034598 A JP 59034598A JP 3459884 A JP3459884 A JP 3459884A JP S60177311 A JPS60177311 A JP S60177311A
Authority
JP
Japan
Prior art keywords
optical fiber
unit
tensile strength
cable
around
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59034598A
Other languages
Japanese (ja)
Inventor
Eiji Iri
井利 英二
Takashi Kaneko
隆 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Nippon Cables Ltd
Original Assignee
Dainichi Nippon Cables Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Nippon Cables Ltd filed Critical Dainichi Nippon Cables Ltd
Priority to JP59034598A priority Critical patent/JPS60177311A/en
Publication of JPS60177311A publication Critical patent/JPS60177311A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4413Helical structure

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To reduce the strain of an optical fiber when tensile force and flexural force operate on a cable by stranding plural units around a tensile strength body which has a sufficiently large external diameter at specific intervals while inverting the stranding direction periodically. CONSTITUTION:A unit 2 is constituted by stranding, for example, six optical fiber cores 8 around a reinforcing material 7 in one direction and also covering the outside with a buffer layer 9. Each optical fiber core 8 is formed by coating an optical fiber 10 with a silicone resin coating 101 and a plastic coating 11. This unit 2 is stranded around the tensile strength body 1 which has the much larger diameter than the unit 2 clockwise, counterclockwise, clockwise... alternately at specific intervals. Consequently, even when tensile strength and flexural force operate on the cable, the strain of the optical fiber 10 is reduced to hold stable transmission characteristics.

Description

【発明の詳細な説明】 本発明は、光通信用の光フアイバケーブルに関する。[Detailed description of the invention] The present invention relates to an optical fiber cable for optical communication.

一般に光ファイバは銅線等に比較して内部応力(歪)に
対して敏感で、例えば一定値以上の引張力や曲げ力が作
用した状態では所定期間後に破断に至り、破断しない場
合にもその伝送特性が著しく劣化する。また光ファイバ
に表面傷がある場合には僅かの外力による内部応力(歪
)にて早期に破断する。
Generally, optical fibers are more sensitive to internal stress (strain) than copper wires. For example, if a tensile force or bending force exceeding a certain value is applied, the fiber will break after a certain period of time, and even if it does not break, it will break. Transmission characteristics deteriorate significantly. Furthermore, if the optical fiber has surface scratches, it will break early due to internal stress (strain) caused by a slight external force.

従来、小さな外径(例えば1 mm)の補強材の外面に
、細い(例えば0 、9mm直径)光フアイバ心線を撚
り合わせると共に、適切な長さ間隔で周期的に撚り方向
を逆転させる反転撚りの構造が実開昭51−12075
5号として提案され、光フアイバケーブルに引張力や曲
げが作用した場合にも、光フアイバ自体には内部応力(
歪)が発生しにくいように、対策が施されている。
Conventionally, thin (for example, 0.9 mm diameter) optical fiber core wires are twisted on the outer surface of a reinforcing material with a small outer diameter (for example, 1 mm), and the twisting direction is periodically reversed at appropriate length intervals. The structure is based on 1975-12075.
No. 5 was proposed as No. 5, and even when tensile force or bending is applied to the optical fiber cable, internal stress (
Measures have been taken to prevent distortion from occurring.

しかし、上述のように小さな外径の補強材の外面に極め
て細い光ファイバを反転撚り加工するには、撚り線装置
の一部をひんばんに交互に反転させる必要があって、そ
の加工は至難であるという問題、及びそれに伴って加工
時に光フアイバ自体に傷を付ける確率が高まるという問
題、さらに、無理に小さな曲率半径に反転状に曲げられ
て、光ファイバに大きな内部応力(歪)が残留してしま
って、伝送特性か逆に悪化したり、光フアイバケーブル
布設後、短期間で光ファイバの一部が破断する確率が高
いという問題がある。さらに小さな外径である補強材の
外面に沿って反転撚りをしても、光フアイバ心線との摩
擦抵抗は大であって光フアイバ心線全体の伸縮みの余裕
代が少ないという問題もある。
However, in order to inversely twist extremely thin optical fibers onto the outer surface of a reinforcing material with a small outer diameter as described above, it is necessary to repeatedly invert parts of the twisting device, which is extremely difficult. The problem is that the optical fiber itself is more likely to be damaged during processing, and the optical fiber is forced to be bent in an inverted shape to a small radius of curvature, resulting in large internal stress (strain) remaining in the optical fiber. This poses a problem in that the transmission characteristics may deteriorate or there is a high probability that a part of the optical fiber will break within a short period of time after the optical fiber cable is installed. Furthermore, even if reverse twisting is performed along the outer surface of the reinforcing material, which has a small outer diameter, the frictional resistance with the optical fiber core is large, and there is a problem that there is little margin for expansion and contraction of the entire optical fiber core. .

本発明は従来のこのような問題点を解決し、光フアイバ
ケーブルに引張力や曲げ力が作用したときの光フアイバ
自体に歪が発生しにくく、これに伴って當に安定した伝
送特性を保ち、耐久性に優れ、かつ加工時に光ファイバ
に表面傷を付けることなく容易に加工出来、かつ端末処
理時に光ファイバに歪を生ずることなく容易に取出して
、かつ信頼性の高い端末処理が簡単に出来るようにする
ことを目的とする。そこで本発明の特徴とする処は、補
強材の周りに複数本の光フアイバ心線を一方向に撚り合
わせると共にその外部に緩衝層を被覆してなるユニノ)
−と、該ユニットの外径よりも十分に大きい外径の抗張
力体とを有し、該抗張力体の周りに、複数本の上記ユニ
ットを、所定間隔で周期的に撚り方向を反転して撚り合
わしてなる点にある。
The present invention solves these conventional problems and makes it difficult for distortion to occur in the optical fiber itself when tensile force or bending force is applied to the optical fiber cable, thereby maintaining stable transmission characteristics. , has excellent durability, can be easily processed without damaging the surface of the optical fiber during processing, can be easily taken out without causing distortion to the optical fiber during terminal processing, and can easily perform highly reliable terminal processing. The purpose is to make it possible. Therefore, the feature of the present invention is that a plurality of optical fiber cores are twisted in one direction around a reinforcing material, and a buffer layer is coated on the outside.
- and a tensile strength member having an outer diameter sufficiently larger than the outer diameter of the unit, and a plurality of the units are twisted around the tensile strength member by periodically reversing the twisting direction at predetermined intervals. It lies in the point where it comes together.

以下、図示の実施例に基づき本発明を詳説する。Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第1図は本発明に係る光フアイバケーブルを横断面にて
具体的に例示したものであり、中心に十分に大きい外径
を有する抗張力体1が配設され、その周りに4本のユニ
ット2・・・と7本の介在紐3・・・が円周等ピツチに
配設されたものが、2本の幅狭のテープでバインドされ
ており、さらにその外側から不織布やエンボステープ等
の押え巻き層12、プラスチックラミネート金属テープ
の縦沿層19、及びシース4等で被覆してなる。この抗
張力体lとしては、中心に鋼撚線5・・・を有し、それ
をポリエチレン等のプラスチック層6で被覆状に一体化
したものが例えば用いられる。介在紐3はポリエチレン
等のプラスチック紐が用いられ、いわゆるダミーユニッ
トである。なお、ダミーユニットば必らずしも設けなく
ともよい。
FIG. 1 shows a concrete example of the optical fiber cable according to the present invention in cross section, in which a tensile strength member 1 having a sufficiently large outer diameter is arranged at the center, and four units 2 are arranged around it. . . . and seven intervening strings 3 . . . are arranged at equal pitches around the circumference, and are bound with two narrow tapes, and from the outside, a presser such as non-woven fabric or embossed tape is attached. It is covered with a winding layer 12, a longitudinal layer 19 of plastic laminated metal tape, a sheath 4, etc. As this tensile strength member 1, for example, one having a steel stranded wire 5 in the center, which is integrally covered with a plastic layer 6 such as polyethylene, is used. The intervening string 3 is a so-called dummy unit, which is made of a plastic string such as polyethylene. Note that the dummy unit does not necessarily have to be provided.

しかして、ユニット2は、第2図と第3図に示す如(補
強材7の周りに例えば6本の光フアイバ心線8・・・を
一方向(図では左撚り)に撚り合わせると共にその外部
にポリプロピレンヤーン等の緩衝層9を被覆して構成さ
れる。補強材7は鋼撚線や単線等が用いられ、また光フ
アイバ心線8としては、光ファイバ10にシリコン樹脂
波101とプラスチック被11を施したもので、グレー
デソドインデソクス形、ステソプインデソクス形、その
他種々のものを自由に選定可能である。
As shown in FIGS. 2 and 3, the unit 2 is constructed by twisting, for example, six optical fiber cores 8 around the reinforcing material 7 in one direction (left-handed twist in the figure) and It is constructed by covering the outside with a buffer layer 9 such as polypropylene yarn.The reinforcing material 7 is made of twisted steel wire or a single wire, and the optical fiber core 8 is made of an optical fiber 10 coated with a silicone resin wave 101 and plastic. It is possible to freely select graded index type, stethoscope index type, and various other types.

次に、第4図は、第1図で既述した光フアイバケーブル
の撚り状態を説明するために1本のユニット2及び抗張
力体1を代表的に取り出して描いた図であって、同図で
明らがな如く、抗張力体1の周りにユニット2を1然り
ビソヂにでからみつけられ、かつ所定間隔Pで周期的に
撚り方向を反転して撚り合わしてなる。従って、反転ピ
ンチ。は、この間隔Pの2倍であって、Q=2Pなる関
係が成立する。即ち、一定の間隔P毎に、右回り一左回
りm=右回り一左回り−・・・・と交互に反転されるの
である。
Next, FIG. 4 is a diagram depicting one unit 2 and tensile strength member 1 as a representative example for explaining the twisted state of the optical fiber cable already described in FIG. As is not obvious, the unit 2 is visibly entwined around the tensile strength member 1, and twisted together with the twisting direction periodically reversed at predetermined intervals P. Hence, the inversion pinch. is twice this interval P, and the relationship Q=2P holds true. That is, the rotation is alternately reversed at fixed intervals P, such as clockwise rotation, counterclockwise rotation m=clockwise rotation, counterclockwise rotation, and so on.

なお、第5図はこのような光フアイバケーブルの製造方
法の一例を示したもので、サプライボビン13・・・か
らユニソl−2・・・を送り出し、が・っ別のザブライ
ボビン14から抗張力体lを送り出して、目板15及び
ダイス16を通過させる。17はトーションキャッチャ
で、線の進行方向の送りを妨げないが、捩れを抑止する
ことのできるキャタピラ式や三点ロール等が用いられる
。このトーション+ + ソ’J−ヤ17を第5図中の
矢印A、Bのように交互に4振り回転させれば、反転撚
りを行なうことができる。
FIG. 5 shows an example of a method for manufacturing such an optical fiber cable, in which Unisol l-2 is fed out from the supply bobbin 13, and tensile strength material is fed out from another Zaburi bobbin 14. 1 is sent out and passed through the batten 15 and the die 16. Reference numeral 17 denotes a torsion catcher, which is of the caterpillar type or three-point roll type, which does not hinder the feeding of the wire in the advancing direction but can prevent twisting. Reverse twisting can be performed by rotating the torsion + + so'j-ya 17 alternately four times as indicated by arrows A and B in FIG.

19、19は互に反対方向に回転するバインダ又はテー
ピングであってトーションキャッチャ17にて反転l然
りされると直ちに押え巻きして固定するのである。そし
て巻取ボビン18に巻取られる。
Reference numerals 19 and 19 are binders or tapes that rotate in opposite directions, and when the torsion catcher 17 turns the binder around, it immediately presses and wraps it to fix it. Then, it is wound onto the winding bobbin 18.

第5図の製造方法では、ケーブルに捩りを与える必要上
、抗張力体lとしては、捩り易いが抗張力が大きいもの
を使用するのが好ましく、例えば、FRP紐を集合した
上に、ポリエチレン被覆したものを用いることもできる
In the manufacturing method shown in Fig. 5, since it is necessary to give twist to the cable, it is preferable to use a material that is easy to twist but has a large tensile strength as the tensile strength member l, such as a collection of FRP strings covered with polyethylene. You can also use

なお、本ケーブルの製造方法としては、第5図に示した
ものに限られるものではなく種々の方法を採用し得る。
Note that the method for manufacturing this cable is not limited to the one shown in FIG. 5, and various methods may be employed.

例えば、固定目板と、周期的に反転する回転目板を配設
した反転撚り装置を用いるも好ましい。
For example, it is preferable to use a reversal twisting device in which a fixed batten and a rotating batten that is periodically reversed are provided.

しかして、第6図は第5図の製造方法によって製造した
24芯の光フアイバケーブルであって、光フアイバ心線
8としては、コア径/ファイバ径−50/125 μm
のグレーデソドインデソクス形で、ユニット2の外径は
41TllTl、抗張力体1の外径は10mm、ユニッ
トの捩れピンチは80cm、ユニット2が抗張力体1に
からみつく撚りピッチには40cm、反転ピッチQは1
20ccである場合について、光フアイバケーブル全体
に外部から加えられる張力(kg)と、光ファイバ10
・・・の歪み量(%)との関係を図示したもので、直線
Eはユニット2・・・を周期的に1然り方向を反転して
撚り合わした本発明の実施前を示し、これに対し、直線
Gはユニットを(反転することなり)40clTlの撚
りピンチで一方向に抗張力体の周りに1然り合わした場
合(ユニット2、抗張力体1は実施例と同様のものを用
いた)の比較例を示す。この第6図より、本発明のよう
に反転撚りすることにより著しく光フアイバ自体の歪み
量が低減出来ることがわかる。
Therefore, FIG. 6 shows a 24-core optical fiber cable manufactured by the manufacturing method shown in FIG.
The unit 2 has an outer diameter of 41 TllTl, the outer diameter of the tensile strength member 1 is 10 mm, the torsional pinch of the unit is 80 cm, the twisting pitch at which the unit 2 is entangled with the tensile strength member 1 is 40 cm, and the reversal pitch Q. is 1
For the case of 20cc, the tension (kg) applied externally to the entire optical fiber cable and the optical fiber 10
... shows the relationship with the amount of strain (%), and the straight line E shows the state before implementation of the present invention in which units 2 ... are twisted together with the direction reversed periodically. On the other hand, the straight line G shows the case where the units (inverted) are tied around the tensile strength member in one direction with a twisting pinch of 40 clTl (Unit 2 and tensile strength member 1 are the same as in the example) ) is shown below. From FIG. 6, it can be seen that by reverse twisting as in the present invention, the amount of distortion of the optical fiber itself can be significantly reduced.

本発明に係る光ファイハゲープルとしては以下の条件が
採用し得る。即ち、ケーブル外径が15mm〜80mm
の場合、撚りピッチには10cm〜300cm、反転ピ
ッチQは20cm〜1000cmに設定するのが望まし
く、反転ピッチQは特に30cm〜60Crrlが好適
である。
The following conditions can be adopted as the optical fiber gear pull according to the present invention. That is, the cable outer diameter is 15 mm to 80 mm.
In this case, it is desirable to set the twisting pitch to 10 cm to 300 cm and the reversal pitch Q to 20 cm to 1000 cm, and particularly preferably to set the reversal pitch Q to 30 cm to 60 Crrl.

第5図に示した製造方法の場合は、ユニット2の捩りピ
ッチは50cm以上が好ましい。これ未満の小さな捩り
ピッチをユニット2に与えると、光ファイバIOに大き
な残留応力が発生し、性能低下につながる。
In the case of the manufacturing method shown in FIG. 5, the twisting pitch of the unit 2 is preferably 50 cm or more. If a small twist pitch smaller than this is given to the unit 2, a large residual stress will be generated in the optical fiber IO, leading to a decrease in performance.

本発明は以上述べたように、補強材7の周りに複数本の
光フアイバ心線8・・・を一方向に撚り合わしたから、
細径の補強材7と細径の心線8との1然り合わせた状態
で無理な歪が発生せず、安定した伝送特性を保ち、心線
8を反転撚りしないため、加工時の表面傷の発生の虞も
なく、またl然り合わせ加工も容易である。そして、抗
張力体1は光ファイバ10自体よりも十分に大きい外径
であって、その抗張力体1の周りに複数本のユニット2
・・・を所定間隔Pで周期的に撚り方向を反転して撚り
合わせたから、製造が容易であると共に、引張力や曲げ
力がケーブルに作用した場合、光ファイバ10自体の歪
みが著しく減少し、耐久性が大幅に向上し、ケーブル布
設後の破断事故を防止出来、常に安定した伝送特性を保
ち、特に歪に起因する光損失増加が少ないという利点を
有する。またユニット2を反転させるため光ファイバI
O自体が抗張力体1に強く押しつりられることがなく、
圧縮応力(歪)が残留せず、安定した良好な伝送特性が
得られる。さらに、ユニット2が緩衝層9を有すると共
に、十分に大きい外径の抗張力体1に撚り合わされてか
つ反転1然りであるから、ケーブルの伸縮時のユニット
2と抗張力体1との摩擦抵抗も小さく、伸び縮みの余裕
代も大きい。この余裕代が大きいからケーブルの端末処
理をする場合、光ファイバ10に歪を加えずに、容易に
取り出すことが出来て、信頼性の高い端末処理を簡単に
行い得るという著大な効果をも有する。
As described above, in the present invention, since a plurality of optical fiber core wires 8 are twisted together in one direction around the reinforcing material 7,
When the thin reinforcing material 7 and the thin core wire 8 are combined together, no unreasonable distortion occurs, stable transmission characteristics are maintained, and the core wire 8 is not twisted in the opposite direction, so the surface during processing is There is no risk of scratches, and alignment is easy. The tensile strength member 1 has an outer diameter sufficiently larger than the optical fiber 10 itself, and a plurality of units 2 are arranged around the tensile strength member 1.
... are twisted by periodically reversing the twisting direction at predetermined intervals P, manufacturing is easy, and when tensile force or bending force is applied to the cable, distortion of the optical fiber 10 itself is significantly reduced. This has the advantage that durability is greatly improved, cable breakage accidents can be prevented after cable installation, stable transmission characteristics are maintained at all times, and in particular, optical loss increases due to distortion are small. Also, in order to invert unit 2, optical fiber I
O itself is not strongly pressed against the tensile strength member 1,
No compressive stress (strain) remains, and stable and good transmission characteristics can be obtained. Furthermore, since the unit 2 has the buffer layer 9, is twisted around the tensile strength member 1 having a sufficiently large outer diameter, and is in a reverse position, the frictional resistance between the unit 2 and the tensile strength member 1 when the cable is expanded or contracted is also reduced. It is small and has a lot of room for expansion and contraction. Because this margin is large, when terminating the cable, it can be easily taken out without adding distortion to the optical fiber 10, and it has the great effect of easily performing highly reliable terminating. have

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す横断面図、第2図はユ
ニットの一例を示す拡大横断面図、第3図は同ユニット
の斜視図、第4図は本発明に係る光フアイバケーブルの
一実施例におりる1然り状態を説明するために1本のユ
ニットのみを代表的に取り出して示す正面図、第5図は
製造方法の一例を示す簡略図、第6図は本発明の特性を
示す図である。 ■・・・抗張力体、2・・・ユニット、7・・・補強材
、8・・・光フアイバ心線、9・・・緩衝層、K・・・
1然りピッチ、P・・・所定間隔、Q・・・反転ピッチ
。 特許出願人 大日日本電線株式会社 第1図 第2図 第3図 フ
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view showing an example of a unit, FIG. 3 is a perspective view of the same unit, and FIG. 4 is an optical fiber according to the present invention. A front view representatively showing only one unit in order to explain the single state in one embodiment of the cable, FIG. 5 is a simplified diagram showing an example of the manufacturing method, and FIG. FIG. 3 is a diagram showing the characteristics of the invention. ■...Tensile strength body, 2...Unit, 7...Reinforcement material, 8...Optical fiber core wire, 9...Buffer layer, K...
1 pitch, P...predetermined interval, Q...inverted pitch. Patent applicant: Dainichi Nippon Electric Cable Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ■、補強材の周りに複数本の光フアイバ心線を一方向に
撚り合わ−lると共にその外部に緩衝層を被覆してなる
ユニットと、該ユニットの外径よりも十分に大きい外径
の抗張力体とを有し、該抗張力体の周りに、複数本の上
記ユニットを、所定間隔で周期的に撚り方向を反転して
撚り合わしてなることを特徴とする光フアイバケーブル
■A unit consisting of a plurality of optical fibers twisted together in one direction around a reinforcing material and a buffer layer coated on the outside, and a unit with an outer diameter sufficiently larger than the outer diameter of the unit. 1. An optical fiber cable comprising a tensile strength member, and a plurality of the units described above are twisted together at predetermined intervals with the twist direction periodically reversed.
JP59034598A 1984-02-24 1984-02-24 Optical fiber cable Pending JPS60177311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034598A JPS60177311A (en) 1984-02-24 1984-02-24 Optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034598A JPS60177311A (en) 1984-02-24 1984-02-24 Optical fiber cable

Publications (1)

Publication Number Publication Date
JPS60177311A true JPS60177311A (en) 1985-09-11

Family

ID=12418777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034598A Pending JPS60177311A (en) 1984-02-24 1984-02-24 Optical fiber cable

Country Status (1)

Country Link
JP (1) JPS60177311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345531A (en) * 1993-02-26 1994-09-06 Fiberstars, Inc. Optical fiber lighting apparatus and method
JPH0819430A (en) * 1994-07-06 1996-01-23 Kyoshin Sangyo Kk Leg mounting structure of furniture
JPH0875965A (en) * 1994-09-07 1996-03-22 Fujikura Ltd Optical cable for subscriber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345531A (en) * 1993-02-26 1994-09-06 Fiberstars, Inc. Optical fiber lighting apparatus and method
JPH0819430A (en) * 1994-07-06 1996-01-23 Kyoshin Sangyo Kk Leg mounting structure of furniture
JPH0875965A (en) * 1994-09-07 1996-03-22 Fujikura Ltd Optical cable for subscriber

Similar Documents

Publication Publication Date Title
JP6618744B2 (en) Optical fiber cable, optical fiber cable manufacturing method and manufacturing apparatus
JPH09166733A (en) Optical fiber cable
JPS60177311A (en) Optical fiber cable
JPS60177312A (en) Manufacture of optical fiber cable
JPS6173913A (en) Optical fiber cable and its manufacturing method
CN218768784U (en) Tensile and damaged copper stranded wire
JPS6186717A (en) Optical cable and its manufacture
JPH0526648Y2 (en)
JPS6273216A (en) Optical fiber cable and manufacturing method
JP2019219497A (en) Optical fiber cable
JP2000241685A (en) Optical cable
JPH0455803A (en) Optical fiber cable
JP2001067948A (en) Flexible optical fiber cable
JPH0667071A (en) Ribbon unit type optical fiber and optical-fiber cable
JP3354325B2 (en) Multi-core optical fiber cable
JP3134695B2 (en) SZ twisted spacer type optical fiber cable
JP3571834B2 (en) Fiber optic cable
JPH0322728Y2 (en)
JPH0569408B2 (en)
JPS58102908A (en) Optical cable
JP3584619B2 (en) Optical cable and method for manufacturing the same
JPH112749A (en) Numerous fiber optical cable
JPH03112015A (en) multicore power cable
JP2004144960A (en) Optical fiber cable
JP2003118934A (en) Method for winding optical-fiber cable around winding drum and optical-fiber cable wound around winding drum thereby