[go: up one dir, main page]

JP3571834B2 - Fiber optic cable - Google Patents

Fiber optic cable Download PDF

Info

Publication number
JP3571834B2
JP3571834B2 JP34171495A JP34171495A JP3571834B2 JP 3571834 B2 JP3571834 B2 JP 3571834B2 JP 34171495 A JP34171495 A JP 34171495A JP 34171495 A JP34171495 A JP 34171495A JP 3571834 B2 JP3571834 B2 JP 3571834B2
Authority
JP
Japan
Prior art keywords
rod
groove
shaped
shaped member
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34171495A
Other languages
Japanese (ja)
Other versions
JPH09178990A (en
Inventor
大輔 岩倉
明博 大竹
秀行 岩田
優 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Nippon Telegraph and Telephone Corp
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Nippon Telegraph and Telephone Corp filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP34171495A priority Critical patent/JP3571834B2/en
Publication of JPH09178990A publication Critical patent/JPH09178990A/en
Application granted granted Critical
Publication of JP3571834B2 publication Critical patent/JP3571834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、テープ状光ファイバ心線を収納した棒状ユニットを、中心棒状部材の外周にSZ撚りしてなる光ファイバケーブルに関するものである。
【0002】
【従来の技術】
この種の光ファイバケーブルとしては従来、テープ状光ファイバ心線を収納した凹型部材を、中心棒状部材の外周に、テープ状光ファイバ心線のテープ面が常に中心棒状部材の外周面を向くように、SZ撚りしたものが提案されている(特開平4−182611号公報)。
このタイプの光ファイバケーブルは、ケーブル布設後に所望のテープ状光ファイバ心線を分岐する必要が生じた場合などに、ケーブルの中間からそのテープ状光ファイバ心線を含む凹型部材を取り出して容易に分岐作業が行えるという利点がある。
【0003】
【発明が解決しようとする課題】
ところで、テープ状光ファイバ心線は、複数本の光ファイバを同一平面に平行に並べ、共通被覆を施してテープ状にしたものである。このためテープ面を湾曲させる方向の曲げに対しては各光ファイバが一様に曲がり、伝送ロス増がほとんど発生しないが、テープ面内でテープ側縁を湾曲させる方向の曲げ(エッジワイズ曲げ)が加わると、曲げの内側になる方の光ファイバには圧縮方向の歪が生じ、曲げの外側になる方の光ファイバには引張方向の歪が生じることになり、大きな伝送ロス増が発生する。
【0004】
上述した従来の光ファイバケーブルは、テープ状光ファイバ心線を収納した凹型部材が、中心棒状部材の外周に、テープ状光ファイバ心線のテープ面が常に中心棒状部材の外周面を向くように、SZ撚りされているため、各テープ状光ファイバ心線は棒状部材の撚り方向の反転部で主としてテープ側縁を湾曲させる方向の曲げを受ける。その結果、テープ状光ファイバ心線に無理な曲げ応力が加わり、光ファイバの伝送ロス増が大きくなるだけでなく、長期信頼性の点でも問題があった。
【0005】
本発明の目的は、以上のような問題点に鑑み、テープ状光ファイバ心線を収納した棒状ユニットを、中心棒状部材の外周にSZ撚りするタイプの光ファイバケーブルにおける、テープ状光ファイバ心線の無理な曲げ歪みと、それに伴う光ファイバの伝送ロス増、長期信頼性の問題を解決するケーブル構造を提供することにある。
【0006】
【課題を解決するための手段】
この目的を達成する本発明の光ファイバケーブルは、
長手方向に1条の又は中心軸線に関して対称な2条の溝を有する溝付き丸棒状部材の前記溝内に、1枚以上のテープ状光ファイバ心線を、テープ面を溝底面に向けた状態で積層収納し、外周に押さえ巻きを施してなる棒状ユニットと、テンションメンバーを有する中心棒状部材とを備え、
前記棒状ユニットは中心棒状部材の外周に、撚り方向の反転部間中央部(撚り方向の1つの反転部から次の反転部までの間の中央部)では溝付き丸棒状部材の溝の深さ方向がほぼ中心棒状部材の径方向を向くように、撚り方向の反転部では、溝付き丸棒状部材を溝の深さ方向を中心棒状部材の径方向に向けたままSZ撚りしたと仮定したときに撚り方向の反転部で曲がりの内側に位置する方の溝側壁がその反対側の溝側壁と中心棒状部材の外周面との間に位置するように、SZ撚りされており、
SZ撚りされた棒状ユニットの外周に押さえ巻きが施され、その外周にシースが施されている、
ことを特徴とする。
【0007】
このような構成にすると、テープ状光ファイバ心線は、棒状ユニットの撚り方向の反転部でも反転部間中央部でも、主としてテープ面を湾曲させる方向の曲げを受けるようになるので、テープ状光ファイバ心線に無理な曲げ応力が加わらなくなり、光ファイバの伝送ロス増を抑制できると共に、長期信頼性も向上する。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して詳細に説明する。
【0009】
〔実施形態1〕
図1ないし図3は本発明の第1の実施形態を示す。この光ファイバケーブルは基本的には、図1に示すように、中心棒状部材11の外周に、テープ状光ファイバ心線13を含む棒状ユニット15をSZ撚りし、その外周に押さえ巻き17を施し、その外周にシース19を施した構造である。
【0010】
中心棒状部材11は中心に鋼撚線などからなるテンションメンバー21を有しており、そのまわりにプラスチックを断面円形に押出被覆した構造である。
棒状ユニット15は、長手方向に1条の溝23を有する溝付き丸棒状部材25を有し、その溝23内に、複数枚のテープ状光ファイバ心線13を、テープ面を溝底面に向けた状態で積層収納し、外周に押さえ巻き27を施した構造である。
【0011】
溝付き丸棒状部材25はプラスチックの押出成形体からなるもので、この例では溝幅の中央を通る面に関して対称な位置に抗張力線29が埋め込まれている。このように抗張力線29を埋め込むと、溝付き丸棒状部材25は抗張力線29を含む面内では曲げ難いが、同面に垂直な面内では曲げやすくなる。その結果、溝付き丸棒状部材25の曲げやすい方向と、テープ状光ファイバ心線13の曲げやすい方向とが一致するので、棒状ユニット15をSZ撚りするときに、テープ状光ファイバ心線13の向きと溝付き丸棒状部材25の溝23の向きをほぼ同じに保つことが可能となる。
【0012】
棒状ユニット15のSZ撚りは図2および図3のような形態となっている。図2は、中心棒状部材11と、その外周にSZ撚りされた多数本の棒状ユニット15のうちの1本を示す側面図である。図3(a)〜(k)はそれぞれ図2のa−a線〜k−k線における断面図である。棒状ユニット15は図2に示すように中心棒状部材11の外周に撚り方向が周期的に反転するように撚られている(SZ撚りされている)。符号31は棒状ユニット15の撚り方向の反転部、33は棒状ユニット15の撚り方向の反転部間中央部(撚り方向の1つの反転部31から次の反転部31までの間の中央部)、Pは撚り方向の反転ピッチ(1つの反転部31から次の反転部31までの中心軸線距離)である。
【0013】
図3では(a)から(k)までの1反転ピッチだけが示されているが、これに続く次の1反転ピッチでは逆に(k)から(a)までの状態となり、以下これが繰り返されることになる。テープ状光ファイバ心線13の向きを示すため、テープ状光ファイバ心線13の片側に○印を、反対側に×印をつけてある
SZ撚りの反転角(1つの反転部31から次の反転部31までの周方向における回転角)は180°より大きく、360°より小さいことが望ましく、この例では300°としてある(図2参照)。
【0014】
図3から明らかなように棒状ユニット15は、撚り方向の反転部間中央部(f)では、溝付き丸棒状部材25の溝23の深さ方向が中心棒状部材11の径方向を向くように、撚り方向の反転部(a)(k)では、溝付き丸棒状部材25を溝23の深さ方向を中心棒状部材11の径方向に向けたままSZ撚りしたと仮定したときに撚り方向の反転部で曲がりの内側(図2でいえばSが内側でTが外側)に位置する方の溝側壁35が、その反対側の溝側壁37と中心棒状部材11の外周面との間に位置するように、SZ撚りされている。
【0015】
棒状ユニット15を上記のようにSZ撚りすると、テープ状光ファイバ心線13はテープ面を溝底面に向けた状態で溝23に収納されているため、SZ撚りの反転部では、図3(a)(k)に示すようにテープ状光ファイバ心線13のテープ面がほぼ中心棒状部材11の径方向に向く状態となる。ただし図3(a)と(k)ではテープ状光ファイバ心線13の向きが反対である。すなわち図3(a)ではテープ状光ファイバ心線13の○印側の側縁が中心棒状部材11側に位置しているが、(k)ではテープ状光ファイバ心線13の×印側の側縁が中心棒状部材11側に位置している。この状態になれば、撚り方向の反転部でテープ状光ファイバ心線13にテープ面を湾曲する方向の曲げが加わることになる。
【0016】
したがって、テープ状光ファイバ心線13は、反転部31でも、反転部間中央部33でも、主としてテープ面を湾曲させる方向に曲げられることになり、この状態がテープ状光ファイバ心線13の、テープ側縁を湾曲させる方向の曲げが最も少ない状態である。
【0017】
また上記のようにSZ撚りすると、テープ状光ファイバ心線13に加わる捻じりも少なくなる。図3(a)〜(k)から明らかなように中心棒状部材11に対する棒状ユニット15の周方向の位置が変化しても、テープ状光ファイバ心線13のテープ面はほぼ同じ方向を向いている。これはテープ状光ファイバ心線13に加わる捻じりが少ないことを意味する。
【0018】
図1の(A)は棒状ユニット15の撚り方向の反転部間中央部における断面(図3のfに相当)を示し、(B)は一方の反転部における断面(図3のaに相当)を、(C)は他方の反転部における断面(図3のkに相当)を示している。
【0019】
この実施形態の光ファイバケーブルを試作し、シース19を施した後の伝送ロスを測定した。棒状ユニット15内のテープ状光ファイバ心線13の積層枚数は5枚、測定波長は1.55μmである。その結果、伝送ロスは平均0.21dB/km、最小0.20dB/km、最大0.22dB/kmであった。伝送ロスの目標値は平均0.25dB/km以下であるので、このケーブルは十分な性能を有することが確認された。
【0020】
〔実施形態2〕
図4は本発明の第2の実施形態を示す。この光ファイバケーブルは、中心棒状部材11の外周面に溝39を形成し、その溝39内に単心光ファイバ心線41を収納し、その外周に押さえ巻き43を施したものである。それ以外の構成は実施形態1と同じである。図4は棒状ユニット15の撚り方向の反転部間中央部における断面を示している。このような構成にすると実施形態1より光ファイバの収納本数を多くすることができる。
【0021】
〔実施形態3〕
図5は本発明の第3の実施形態を示す。この光ファイバケーブルは、中心棒状部材11の外周面に溝45を形成し、その溝45内にテープ状光ファイバ心線47を複数枚積層した状態で収納し、その外周に押さえ巻き43を施したものである。それ以外の構成は実施形態1と同じである。図5は棒状ユニット15の撚り方向の反転部間中央部における断面を示している。このような構成にすると実施形態2よりさらに光ファイバの収納本数を多くすることができる。
【0022】
〔実施形態4〕
図6は本発明の第4の実施形態を示す。この光ファイバケーブルは棒状ユニット15の構造が実施形態1と異なっている。すなわち、この棒状ユニット15は、長手方向に中心軸線に関して対称な2条の溝23を有する溝付き丸棒状部材25を使用しており、その溝23内に複数枚のテープ状光ファイバ心線13を、テープ面を溝底面に向けた状態で積層収納し、その外周に押さえ巻き27を施した構造である。また溝付き丸棒状部材25には、溝幅の中央を通る面に関して対称な位置に抗張力線29が埋め込まれている。
【0023】
棒状ユニット15以外の構成は実施形態1と同じである。図6(A)〜(C)は図1(A)〜(C)に対応している。このような構成にすると、実施形態1よりケーブル外径が若干大きくなるが、光ファイバの収納本数を大幅にアップできるという利点がある。
この実施形態の場合も、実施形態2または3のような中心棒状部材を使用すれば、光ファイバの収納本数をさらに多くすることができる。
【0024】
〔実施形態5〕
図7〜図9は本発明の第5の実施形態を示す。この光ファイバケーブルは、中心棒状部材11として外周にらせん方向が周期的に反転するSZらせん溝49を形成したものを使用している。棒状ユニット15はこのSZらせん溝49に沿ってSZ撚りされている。それ以外の構成は実施形態1と同じである。図7(A)〜(C)は図1(A)〜(C)に対応し、図8は図2に対応し、図9(a)〜(k)は図3(a)〜(k)に対応している。ただし図8は中心棒状部材11の外周面の1条のSZらせん溝49と、その中に撚り込まれた棒状ユニット15を示す展開図である。
このような構成にすると、棒状ユニット15のSZ撚り状態を確実に保持することができるので、SZ撚りを容易に行うことができる。
【0025】
またこのような構成の光ファイバケーブルの場合は、SZらせん溝49を、その中で棒状ユニット15が自由に向きを変えられる大きさにしておくことが望ましい。このようにすれば、ケーブルが屈曲や捻じりを受けたときに、棒状ユニット15がテープ状光ファイバ心線13と共に歪みが少なくなる方向に向きを変えられるため、テープ状光ファイバ心線に生じる内部応力が分散されやすくなり、伝送ロス増を抑制できる。
【0026】
なお中心棒状部材11のSZらせん溝49の断面形状は、図7〜図9の実施形態では台形溝としたが、図10のような溝底面が湾曲した溝としてもよいし、図11のような矩形溝としてもよい。
またこの実施形態では棒状ユニット15の溝付き丸棒状部材25として、1溝の溝付き丸棒状部材を使用したが、実施形態4のような2溝の溝付き丸棒状部材を使用することもできる。
【0027】
〔実施形態6〕
図12は本発明の第6の実施形態を示す。この光ファイバケーブルは、中心棒状部材11の外周面に溝39を形成し、その溝39内に単心光ファイバ心線41を収納し、その外周に押さえ巻き43を施し、さらにその外周にSZらせん溝49を形成するための溝付きスペーサ51を設けたものである。棒状ユニット15は溝付きスペーサ51のSZらせん溝49に沿ってSZ撚りされている。それ以外の構成は実施形態5と同様である。
【0028】
〔実施形態7〕
図13は本発明の第7の実施形態を示す。この光ファイバケーブルは、中心棒状部材11の外周面に溝45を形成し、その溝45内にテープ状光ファイバ心線47を複数枚積層した状態で収納し、その外周に押さえ巻き41を施し、さらにその外周にSZらせん溝49を形成するための溝付きスペーサ51を設けたものである。棒状ユニット15は溝付きスペーサ51のSZらせん溝49に沿ってSZ撚りされている。それ以外の構成は実施形態5と同様である。
【0029】
【発明の効果】
以上説明したように本発明によれば、テープ状光ファイバ心線を収納した棒状ユニットを、中心棒状部材の外周にSZ撚りするタイプの光ファイバケーブルににおいて、テープ状光ファイバ心線に加わる、捻じりと、テープ面内でテープ側縁を湾曲させる方向の曲げとを小さくできるため、テープ状光ファイバ心線の伝送ロスを十分小さく抑えることができる。このため本発明は、このタイプの光ファイバケーブルの実用化に大きく貢献するものである。
【図面の簡単な説明】
【図1】本発明の光ファイバケーブルの第1の実施形態を示す、(A)は撚り方向の反転部間中央部における断面図、(B)(C)は撚り方向の反転部における断面図。
【図2】図1のケーブルにおける棒状ユニットのSZ撚りの状態を示す側面図。
【図3】(a)〜(k)はそれぞれ図2のa−a線〜k−k線における断面図。
【図4】本発明の光ファイバケーブルの第2の実施形態を示す、撚り方向の反転部間中央部における断面図。
【図5】本発明の光ファイバケーブルの第3の実施形態を示す、撚り方向の反転部間中央部における断面図。
【図6】本発明の光ファイバケーブルの第4の実施形態を示す、(A)は撚り方向の反転部間中央部における断面図、(B)(C)は撚り方向の反転部における断面図。
【図7】本発明の光ファイバケーブルの第5の実施形態を示す、(A)は撚り方向の反転部間中央部における断面図、(B)(C)は撚り方向の反転部における断面図。
【図8】図7のケーブルにおける中心棒状部材の外周面の展開図。
【図9】(a)〜(k)はそれぞれ図8のa−a線〜k−k線における断面図。
【図10】図7のケーブルにおける中心棒状部材のSZらせん溝の形の他の例を示す断面図。
【図11】同じくさらに他の例を示す断面図。
【図12】本発明の光ファイバケーブルの第6の実施形態を示す、撚り方向の反転部間中央部における断面図。
【図13】本発明の光ファイバケーブルの第7の実施形態を示す、撚り方向の反転部間中央部における断面図。
【符号の説明】
11:中心棒状部材
13:テープ状光ファイバ心線
15:棒状ユニット
17:押さえ巻き
19:シース
21:テンションメンバー
23:溝
25:溝付き丸棒状部材
27:押さえ巻き
29:抗張力線
31:撚り方向の反転部
33:撚り方向の反転部間中央部
49:SZらせん溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber cable formed by twisting a rod-shaped unit accommodating a tape-shaped optical fiber core around an outer periphery of a central rod-shaped member.
[0002]
[Prior art]
Conventionally, as this type of optical fiber cable, a concave member accommodating a tape-shaped optical fiber core wire is provided on the outer periphery of the center rod-shaped member so that the tape surface of the tape-shaped optical fiber core wire always faces the outer peripheral surface of the center rod-shaped member. In addition, an SZ twisted cable has been proposed (JP-A-4-182611).
This type of optical fiber cable can be easily removed by taking out the concave member including the tape-shaped optical fiber core from the middle of the cable when it is necessary to branch the desired tape-shaped optical fiber core after the cable is laid. There is an advantage that a branching operation can be performed.
[0003]
[Problems to be solved by the invention]
By the way, a tape-shaped optical fiber core is formed by arranging a plurality of optical fibers in parallel on the same plane and applying a common coating to form a tape. For this reason, the optical fibers bend uniformly in the direction of bending the tape surface, and almost no increase in transmission loss occurs. However, bending in the direction of bending the tape side edge in the tape surface (edgewise bending). Is applied, a strain in the compression direction is generated in the optical fiber on the inner side of the bend, and a strain in the tensile direction is generated on the optical fiber on the outer side of the bend, resulting in a large increase in transmission loss. .
[0004]
In the above-described conventional optical fiber cable, the concave member accommodating the tape-shaped optical fiber core is disposed on the outer periphery of the center rod-shaped member so that the tape surface of the tape-shaped optical fiber core always faces the outer peripheral surface of the center rod-shaped member. , SZ twisted, each tape-shaped optical fiber core is mainly bent in a direction in which the tape side edge is bent at a reversal part of the twisting direction of the rod-shaped member. As a result, an unreasonable bending stress is applied to the tape-shaped optical fiber core, which not only increases the transmission loss of the optical fiber, but also has a problem in long-term reliability.
[0005]
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optical fiber cable of a type in which a rod-shaped unit containing a tape-shaped optical fiber core is SZ twisted around the outer periphery of a central rod-shaped member. It is an object of the present invention to provide a cable structure that solves the problem of excessive bending strain, the accompanying increase in optical fiber transmission loss, and the problem of long-term reliability.
[0006]
[Means for Solving the Problems]
The optical fiber cable of the present invention that achieves this object is:
A state in which one or more tape-shaped optical fibers are oriented in the grooves of the grooved round bar-shaped member having one groove or two grooves symmetrical with respect to the center axis in the longitudinal direction, with the tape surface facing the groove bottom surface. A bar-shaped unit that is stacked and stored in the outer periphery and is provided with a holding roll on the outer periphery, and a center rod-shaped member having a tension member,
The depth of the groove of the round bar-shaped member with a groove in the center of the bar-shaped member between the reversal portions in the twisting direction (the center between one reversal portion in the twisting direction and the next reversal portion) When it is assumed that the round bar-shaped member with a groove is SZ-twisted while the depth direction of the groove is directed in the radial direction of the center rod-shaped member at the reversal part of the twisting direction so that the direction is substantially in the radial direction of the center rod-shaped member SZ twisted so that the groove side wall located inside the bend at the reversal part of the twist direction is located between the groove side wall on the opposite side and the outer peripheral surface of the center rod-shaped member,
A holding roll is applied to the outer periphery of the SZ twisted rod-shaped unit, and a sheath is applied to the outer periphery thereof.
It is characterized by the following.
[0007]
With such a configuration, the tape-shaped optical fiber core is mainly subjected to bending in a direction in which the tape surface is curved at both the reversal portion in the twist direction of the rod-shaped unit and the center portion between the reversal portions. Unreasonable bending stress is not applied to the fiber core, and the increase in the transmission loss of the optical fiber can be suppressed, and the long-term reliability is improved.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0009]
[Embodiment 1]
1 to 3 show a first embodiment of the present invention. In this optical fiber cable, as shown in FIG. 1, basically, a rod-shaped unit 15 including a tape-shaped optical fiber core 13 is SZ-twisted on the outer periphery of a center rod-shaped member 11, and a presser winding 17 is formed on the outer periphery. And a sheath 19 on the outer periphery thereof.
[0010]
The central rod-shaped member 11 has a tension member 21 made of a steel stranded wire or the like at the center, and has a structure in which plastic is extrusion-coated in a circular cross section around the tension member 21.
The rod-shaped unit 15 has a grooved round rod-shaped member 25 having one groove 23 in the longitudinal direction. In the groove 23, a plurality of tape-shaped optical fiber cores 13 are oriented with the tape surface facing the groove bottom. This is a structure in which the sheets are stacked and stored in a state where they are held, and a holding roll 27 is provided on the outer periphery.
[0011]
The grooved round bar-shaped member 25 is made of an extruded plastic body, and in this example, a tensile strength line 29 is embedded at a position symmetrical with respect to a plane passing through the center of the groove width. When the tensile strength line 29 is embedded in this way, the grooved round bar-shaped member 25 is difficult to bend in a plane including the tensile strength line 29, but is easily bent in a plane perpendicular to the same plane. As a result, the bendable direction of the grooved round bar-shaped member 25 and the bendable direction of the tape-shaped optical fiber core 13 coincide with each other. The direction and the direction of the groove 23 of the grooved round bar member 25 can be kept substantially the same.
[0012]
The SZ twist of the rod-shaped unit 15 has a form as shown in FIGS. FIG. 2 is a side view showing the central rod-shaped member 11 and one of a large number of rod-shaped units 15 SZ-twisted on the outer periphery thereof. 3 (a) to 3 (k) are cross-sectional views taken along the line aa to kk in FIG. 2, respectively. As shown in FIG. 2, the rod unit 15 is twisted (SZ twisted) around the center rod member 11 so that the twist direction is periodically reversed. Reference numeral 31 denotes a reversal portion of the rod-shaped unit 15 in the twisting direction, 33 denotes a center portion between the reversal portions in the twisting direction of the rod-shaped unit 15 (a central portion between one reversal portion 31 in the twisting direction and the next reversal portion 31), P is the reversal pitch in the twisting direction (the center axis distance from one reversal part 31 to the next reversal part 31).
[0013]
In FIG. 3, only one inversion pitch from (a) to (k) is shown, but in the next one inversion pitch, the state is reversed from (k) to (a), and this is repeated thereafter. Will be. In order to indicate the direction of the tape-shaped optical fiber core 13, a circle mark is provided on one side of the tape-shaped optical fiber core 13, and a reversal angle of the SZ twist is marked with a cross mark on the opposite side (from one reversal part 31 to The rotation angle in the circumferential direction up to the reversing portion 31) is preferably larger than 180 ° and smaller than 360 °, and is set to 300 ° in this example (see FIG. 2).
[0014]
As is clear from FIG. 3, the rod unit 15 is arranged such that the depth direction of the groove 23 of the grooved round bar member 25 faces the radial direction of the center rod member 11 at the center portion (f) between the inversion portions in the twisting direction. In the inversion portions (a) and (k) of the twisting direction, when it is assumed that the round bar-shaped member 25 with a groove is SZ-twisted while the depth direction of the groove 23 is directed to the radial direction of the center rod-shaped member 11, the twisting direction is changed. The groove side wall 35 located on the inside of the bend at the reversing portion (in FIG. 2, S is inside and T is outside) is located between the groove side wall 37 on the opposite side and the outer peripheral surface of the central rod-shaped member 11. SZ twist.
[0015]
When the rod-shaped unit 15 is SZ-twisted as described above, the tape-shaped optical fiber core 13 is accommodated in the groove 23 with the tape surface facing the groove bottom. (K) As shown in (k), the tape surface of the tape-shaped optical fiber core 13 is oriented substantially in the radial direction of the central rod-shaped member 11. However, in FIGS. 3A and 3K, the directions of the optical fibers 13 are opposite. That is, in FIG. 3A, the side edge of the tape-shaped optical fiber core 13 on the side of the mark O is located on the side of the center rod-shaped member 11, but in FIG. The side edge is located on the side of the center rod-shaped member 11. In this state, the tape-shaped optical fiber core 13 is subjected to bending in the direction of bending the tape surface at the reversal part in the twisting direction.
[0016]
Therefore, the tape-shaped optical fiber core 13 is bent in the direction in which the tape surface is curved mainly at the inverted portion 31 and the center portion 33 between the inverted portions, and this state is the same as that of the tape-shaped optical fiber core 13. This is a state where bending in the direction of bending the tape side edge is the least.
[0017]
When the SZ twist is performed as described above, the twist applied to the tape-shaped optical fiber core 13 is reduced. As is clear from FIGS. 3A to 3K, even when the circumferential position of the rod unit 15 with respect to the center rod member 11 changes, the tape surface of the tape-shaped optical fiber core 13 faces in substantially the same direction. I have. This means that the torsion applied to the tape-shaped optical fiber core 13 is small.
[0018]
FIG. 1A shows a cross section (corresponding to f in FIG. 3) of the rod-shaped unit 15 at the center between the reversing portions in the twisting direction, and FIG. 1B shows a cross section at one reversing portion (corresponding to a in FIG. 3). (C) shows a cross section (corresponding to k in FIG. 3) at the other inversion portion.
[0019]
The optical fiber cable of this embodiment was prototyped, and the transmission loss after applying the sheath 19 was measured. The number of laminated tape-shaped optical fiber cores 13 in the rod-shaped unit 15 is 5, and the measurement wavelength is 1.55 μm. As a result, the average transmission loss was 0.21 dB / km, the minimum was 0.20 dB / km, and the maximum was 0.22 dB / km. Since the target value of the transmission loss is 0.25 dB / km or less on average, it was confirmed that this cable had sufficient performance.
[0020]
[Embodiment 2]
FIG. 4 shows a second embodiment of the present invention. In this optical fiber cable, a groove 39 is formed on the outer peripheral surface of the central rod-shaped member 11, a single-core optical fiber core wire 41 is accommodated in the groove 39, and a holding roll 43 is provided on the outer periphery. Other configurations are the same as those of the first embodiment. FIG. 4 shows a cross section of the rod-shaped unit 15 at the center between the reversing portions in the twisting direction. With such a configuration, the number of optical fibers to be stored can be increased as compared with the first embodiment.
[0021]
[Embodiment 3]
FIG. 5 shows a third embodiment of the present invention. In this optical fiber cable, a groove 45 is formed on the outer peripheral surface of the central rod-shaped member 11, a plurality of tape-shaped optical fiber core wires 47 are stored in a stacked state in the groove 45, and a holding roll 43 is provided on the outer periphery thereof. It was done. Other configurations are the same as those of the first embodiment. FIG. 5 shows a cross section of the rod-shaped unit 15 at the center between the reversing portions in the twisting direction. With such a configuration, the number of optical fibers that can be stored can be further increased as compared with the second embodiment.
[0022]
[Embodiment 4]
FIG. 6 shows a fourth embodiment of the present invention. This optical fiber cable differs from the first embodiment in the structure of the rod-shaped unit 15. That is, the rod-shaped unit 15 uses a grooved round rod-shaped member 25 having two grooves 23 symmetrical with respect to the central axis in the longitudinal direction, and a plurality of tape-shaped optical fiber cores 13 are provided in the groove 23. Are stacked and stored with the tape surface facing the groove bottom surface, and a presser winding 27 is applied to the outer periphery thereof. A tensile strength line 29 is embedded in the grooved round bar member 25 at a position symmetrical with respect to a plane passing through the center of the groove width.
[0023]
The configuration other than the rod-shaped unit 15 is the same as that of the first embodiment. 6 (A) to 6 (C) correspond to FIGS. 1 (A) to 1 (C). With such a configuration, the cable outer diameter is slightly larger than in the first embodiment, but there is an advantage that the number of optical fibers to be stored can be significantly increased.
Also in the case of this embodiment, if the center rod-shaped member as in the second or third embodiment is used, the number of optical fibers that can be stored can be further increased.
[0024]
[Embodiment 5]
7 to 9 show a fifth embodiment of the present invention. This optical fiber cable uses, as the central rod-shaped member 11, an SZ spiral groove 49 whose spiral direction is periodically inverted on the outer periphery. The rod-shaped unit 15 is SZ twisted along the SZ spiral groove 49. Other configurations are the same as those of the first embodiment. 7 (A) to 7 (C) correspond to FIGS. 1 (A) to 1 (C), FIG. 8 corresponds to FIG. 2, and FIGS. 9 (a) to 9 (k) are FIGS. 3 (a) to 3 (k). ). However, FIG. 8 is a developed view showing one SZ spiral groove 49 on the outer peripheral surface of the central rod-shaped member 11 and the rod-shaped unit 15 twisted therein.
With such a configuration, the SZ twisting state of the rod-shaped unit 15 can be reliably maintained, so that the SZ twisting can be easily performed.
[0025]
In the case of an optical fiber cable having such a configuration, it is desirable that the SZ spiral groove 49 has a size in which the direction of the rod-like unit 15 can be freely changed. In this way, when the cable is bent or twisted, the rod-shaped unit 15 can be turned together with the tape-shaped optical fiber core 13 in a direction in which the distortion is reduced, so that the tape-shaped optical fiber core is generated. The internal stress is easily dispersed, and an increase in transmission loss can be suppressed.
[0026]
The cross-sectional shape of the SZ spiral groove 49 of the central rod-shaped member 11 is a trapezoidal groove in the embodiment of FIGS. 7 to 9, but may be a groove whose bottom is curved as shown in FIG. It may be a simple rectangular groove.
In this embodiment, a round bar-shaped member having one groove is used as the round bar-shaped member 25 having a groove of the bar-shaped unit 15. However, a round bar-shaped member having two grooves as in the fourth embodiment can be used. .
[0027]
[Embodiment 6]
FIG. 12 shows a sixth embodiment of the present invention. In this optical fiber cable, a groove 39 is formed on the outer peripheral surface of the center rod-shaped member 11, a single-core optical fiber core wire 41 is accommodated in the groove 39, a holding roll 43 is provided on the outer periphery, and SZ is further provided on the outer periphery. A grooved spacer 51 for forming a spiral groove 49 is provided. The rod-shaped unit 15 is SZ twisted along the SZ spiral groove 49 of the grooved spacer 51. Other configurations are the same as in the fifth embodiment.
[0028]
[Embodiment 7]
FIG. 13 shows a seventh embodiment of the present invention. In this optical fiber cable, a groove 45 is formed on the outer peripheral surface of the center rod-shaped member 11, a plurality of tape-shaped optical fiber cores 47 are stored in the groove 45 in a stacked state, and a holding roll 41 is formed on the outer periphery. And a grooved spacer 51 for forming an SZ spiral groove 49 on the outer periphery thereof. The rod-shaped unit 15 is SZ twisted along the SZ spiral groove 49 of the grooved spacer 51. Other configurations are the same as in the fifth embodiment.
[0029]
【The invention's effect】
As described above, according to the present invention, a rod-shaped unit accommodating a tape-shaped optical fiber core is added to a tape-shaped optical fiber core in an optical fiber cable of a type in which SZ is twisted around the outer periphery of a central rod-shaped member. Since the twist and the bending in the direction of bending the tape side edge in the tape surface can be reduced, the transmission loss of the tape-shaped optical fiber core can be suppressed sufficiently. Therefore, the present invention greatly contributes to the practical use of this type of optical fiber cable.
[Brief description of the drawings]
1A and 1B show a first embodiment of an optical fiber cable according to the present invention, in which FIG. 1A is a cross-sectional view at a center portion between the inversion portions in the twisting direction, and FIGS. 1B and 1C are cross-sectional views in an inversion portion in the twisting direction. .
FIG. 2 is a side view showing the SZ twisted state of the rod unit in the cable of FIG. 1;
FIGS. 3A to 3K are cross-sectional views taken along lines aa to kk in FIG. 2, respectively.
FIG. 4 is a cross-sectional view showing a second embodiment of the optical fiber cable of the present invention, which is taken at a central portion between the inversion portions in the twisting direction.
FIG. 5 is a sectional view showing a third embodiment of the optical fiber cable according to the present invention, which is taken at a central portion between the inversion portions in the twisting direction.
FIG. 6 shows a fourth embodiment of the optical fiber cable of the present invention, wherein (A) is a cross-sectional view at the center between the inversion parts in the twisting direction, and (B) and (C) are cross-sectional views at the inversion part in the twisting direction. .
FIGS. 7A and 7B show a fifth embodiment of the optical fiber cable of the present invention, in which FIG. 7A is a cross-sectional view at the center between the inversion portions in the twisting direction, and FIGS. .
FIG. 8 is a developed view of an outer peripheral surface of a center rod-shaped member in the cable of FIG. 7;
FIGS. 9A to 9K are cross-sectional views taken along lines aa to kk in FIG. 8, respectively.
FIG. 10 is a sectional view showing another example of the shape of the SZ spiral groove of the center rod-shaped member in the cable of FIG. 7;
FIG. 11 is a sectional view showing still another example.
FIG. 12 is a cross-sectional view showing a sixth embodiment of the optical fiber cable according to the present invention, which is taken at a central portion between the inversion portions in the twisting direction.
FIG. 13 is a sectional view showing a seventh embodiment of the optical fiber cable according to the present invention, which is taken at a central portion between the inversion portions in the twisting direction.
[Explanation of symbols]
11: central rod-shaped member 13: tape-shaped optical fiber core wire 15: rod-shaped unit 17: holding roll 19: sheath 21: tension member 23: groove 25: grooved round bar-shaped member 27: holding roll 29: tensile strength wire 31: twisting direction Reversal part 33: center part between reversal parts in twist direction 49: SZ spiral groove

Claims (4)

長手方向に1条の又は中心軸線に関して対称な2条の溝を有する溝付き丸棒状部材の前記溝内に、1枚以上のテープ状光ファイバ心線を、テープ面を溝底面に向けた状態で積層収納し、外周に押さえ巻きを施してなる棒状ユニットと、テンションメンバーを有する中心棒状部材とを備え、
前記棒状ユニットは中心棒状部材の外周に、撚り方向の反転部間中央部(撚り方向の1つの反転部から次の反転部までの間の中央部)では溝付き丸棒状部材の溝の深さ方向がほぼ中心棒状部材の径方向を向くように、撚り方向の反転部では、溝付き丸棒状部材を溝の深さ方向を中心棒状部材の径方向に向けたままSZ撚りしたと仮定したときに撚り方向の反転部で曲がりの内側に位置する方の溝側壁がその反対側の溝側壁と中心棒状部材の外周面との間に位置するように、SZ撚りされており、
SZ撚りされた棒状ユニットの外周に押さえ巻きが施され、その外周にシースが施されている、
ことを特徴とする光ファイバケーブル。
A state in which one or more tape-shaped optical fibers are oriented in the groove of a round bar-shaped member having a groove having one groove or two grooves symmetrical with respect to the central axis in the longitudinal direction, with the tape surface facing the groove bottom surface. A bar-shaped unit that is stacked and housed in the outer periphery and is provided with a presser winding on the outer periphery, and a center rod-shaped member having a tension member,
The rod-shaped unit is provided on the outer periphery of the central rod-shaped member, and at the center between the reversing portions in the twisting direction (the center between the one reversing portion in the twisting direction and the next reversing portion), the depth of the groove of the grooved round bar-shaped member. When it is assumed that SZ twist is performed at the reversal part of the twisting direction such that the direction is substantially in the radial direction of the central rod-shaped member, with the grooved round rod-shaped member oriented with the depth direction of the groove in the radial direction of the central rod-shaped member. SZ twisted so that the groove side wall located inside the bend at the reversal part of the twist direction is located between the opposite groove side wall and the outer peripheral surface of the center rod-shaped member,
A press winding is applied to the outer periphery of the SZ twisted rod-shaped unit, and a sheath is applied to the outer periphery thereof.
An optical fiber cable, characterized in that:
溝付き丸棒状部材は、溝幅の中央を通る面に関して対称な位置に抗張力線を有していることを特徴とする請求項1記載の光ファイバケーブル。2. The optical fiber cable according to claim 1, wherein the grooved round bar-shaped member has a tensile strength line at a position symmetric with respect to a plane passing through the center of the groove width. 中心棒状部材は外周にらせん方向が周期的に反転するSZらせん溝を有しており、棒状ユニットはこのSZらせん溝に沿ってSZ撚りされていることを特徴とする請求項1または2記載の光ファイバケーブル。The center rod-shaped member has an SZ spiral groove on the outer periphery of which the spiral direction is periodically inverted, and the rod-shaped unit is twisted SZ along the SZ spiral groove. Fiber optic cable. 棒状ユニットがSZらせん溝内で自由に回転できる状態にあることを特徴とする請求項3記載の光ファイバケーブル。The optical fiber cable according to claim 3, wherein the rod-shaped unit is in a state where it can rotate freely in the SZ spiral groove.
JP34171495A 1995-12-27 1995-12-27 Fiber optic cable Expired - Lifetime JP3571834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34171495A JP3571834B2 (en) 1995-12-27 1995-12-27 Fiber optic cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34171495A JP3571834B2 (en) 1995-12-27 1995-12-27 Fiber optic cable

Publications (2)

Publication Number Publication Date
JPH09178990A JPH09178990A (en) 1997-07-11
JP3571834B2 true JP3571834B2 (en) 2004-09-29

Family

ID=18348216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34171495A Expired - Lifetime JP3571834B2 (en) 1995-12-27 1995-12-27 Fiber optic cable

Country Status (1)

Country Link
JP (1) JP3571834B2 (en)

Also Published As

Publication number Publication date
JPH09178990A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
JPH07333475A (en) Optical fiber cable housing multifiber ribbon
EP0691556B1 (en) Optical fiber cable
JP3571834B2 (en) Fiber optic cable
JP3326295B2 (en) Fiber optic cable
JP3247537B2 (en) Optical cable
JP3354324B2 (en) Fiber optic cable
JPH08211262A (en) Multiple optical fiber cable
JP3238034B2 (en) Fiber optic cable
JP3134695B2 (en) SZ twisted spacer type optical fiber cable
JP3354325B2 (en) Multi-core optical fiber cable
JP3535932B2 (en) Fiber optic cable
JP3337877B2 (en) Manufacturing method of optical fiber cable
JP2835298B2 (en) Fiber optic cable
JPH1138284A (en) Fiber optic cable
JP2000241685A (en) Optical cable
JP3535953B2 (en) Multi-core optical fiber cable
JP3373980B2 (en) Fiber optic cable
JP3378687B2 (en) Self-supporting optical fiber cable
JP2989444B2 (en) Fiber optic cable
JP3468694B2 (en) SZ slot type optical fiber cable
JP3584619B2 (en) Optical cable and method for manufacturing the same
JPS60177312A (en) Manufacture of optical fiber cable
JPH08227031A (en) Optical fiber cable
JPH11202170A (en) Fiber optic cable
JP2003118934A (en) Method for winding optical-fiber cable around winding drum and optical-fiber cable wound around winding drum thereby

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term