[go: up one dir, main page]

JPS60170605A - Preparation of ultrafine particulate already crosslinked polymer latex - Google Patents

Preparation of ultrafine particulate already crosslinked polymer latex

Info

Publication number
JPS60170605A
JPS60170605A JP59027453A JP2745384A JPS60170605A JP S60170605 A JPS60170605 A JP S60170605A JP 59027453 A JP59027453 A JP 59027453A JP 2745384 A JP2745384 A JP 2745384A JP S60170605 A JPS60170605 A JP S60170605A
Authority
JP
Japan
Prior art keywords
polymer latex
polymerization
particles
monomers
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59027453A
Other languages
Japanese (ja)
Other versions
JPH0370725B2 (en
Inventor
Shinsuke Yamazaki
山崎 信助
Hiroshi Suzuki
洋 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59027453A priority Critical patent/JPS60170605A/en
Publication of JPS60170605A publication Critical patent/JPS60170605A/en
Publication of JPH0370725B2 publication Critical patent/JPH0370725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

PURPOSE:To obtain an ultrafine particulate polymer having three-dimensional network structure in the particles, stable even in a high concentration, and suitable to a vehicle or binder for coating materials, by polymerizing a monomer containing ethylenically unsaturated bond in the presence of a polymerization initiator and an emulsifying agent. CONSTITUTION:A monomer selected from lower alkyl esters of (meth)acrylic acid or a mixture thereof with another polymerizable monomer copolymerizable with the above-mentioned monomer is polymerized in an aqueous medium. In the process, a polymerization initiator prepared by adding a very small amount of a transition metal ion, e.g. Cu<2+> in 2.5X10<-6>-2.5X10<-4>mol/l concentration, as an accelerator to a redox polymerization catalyst consisting of a persulfate and a reducing sulfoxy compound is used to carry out polymerization under stirring in the presence of a mixed system of a bleached shellac resin in combination with an anionic surfactant as an emulsifying agent to give the aimed polymer latex having uniform 0.01-0.05mum particle diameter and transparency and improved dispersion stability.

Description

【発明の詳細な説明】 本発明は、エチレン性二重結合を有する単量体およびそ
れと共重合し得る官能性単量体を含む各種単量体とを水
媒体中で乳化重合もしくは乳化共重合することによって
粒子膜が0.05μm以下の超微粒子で、かつ粒子内に
3次元網目構造を有する高濃度で安定な高性能なポリマ
ーラテックスを製造する方法に関する。
Detailed Description of the Invention The present invention involves emulsion polymerization or emulsion copolymerization of a monomer having an ethylenic double bond and various monomers including a functional monomer copolymerizable with the monomer in an aqueous medium. The present invention relates to a method for producing a high-concentration, stable, and high-performance polymer latex having ultrafine particles with a particle film of 0.05 μm or less and having a three-dimensional network structure within the particles.

本発明によって製造される超微粒子の既架橋ポリマーラ
テックスは、外観は通常のポリマーラテックスと異なり
、反射光に対し青白色で、透過光に対しては黄赤色に見
える透明性のやや粘稠を帯びたもので、それ自体で高性
能な塗料用ビヒクルとして、また浸透性の良いノ・イン
グーとして用いられる。また、2−ヒドロキシエチルア
クリレート、7”リル醒、アクリル酸アミドなどの官能
性単量体を共重合させた反応性タイプの超微粒子低架橋
ポリマーラテックスは、ヘキサキスメトキシメチロール
メラミンなどの架橋剤の添加によって粒子間架橋が可能
で、焼付は硬化によって一層性能を向上させることがで
きる。近年、大気汚染、゛作業環嬶などの公害問題の認
識の高まりとともに、有機溶剤型の塗料から水系塗料、
・・イソリッド塗料、粉体塗料などへの転換が大きな課
題となっているが、中でも水系塗料が経済性と安全性か
ら有望視されている。
The ultrafine particle pre-crosslinked polymer latex produced by the present invention differs in appearance from ordinary polymer latex in that it has a transparent, slightly viscous appearance that appears bluish-white to reflected light and yellow-red to transmitted light. It can be used as a high-performance paint vehicle and as a penetrating agent in its own right. In addition, reactive type ultrafine particle low-crosslinked polymer latex copolymerized with functional monomers such as 2-hydroxyethyl acrylate, 7" lyric acid, and acrylic acid amide can be used with crosslinking agents such as hexakismethoxymethylolmelamine. By adding cross-linking between particles, it is possible to further improve the performance by curing the baking process.In recent years, with the increasing recognition of pollution problems such as air pollution and work environment, there has been a shift from organic solvent-based paints to water-based paints.
...The transition to isolid paints, powder paints, etc. is a major issue, but water-based paints are particularly promising due to their economic efficiency and safety.

水系塗料には、水溶液型と水分散型があるが、水分散型
のポリマーラテックスが本命とされていて一番期待され
ている。しかし工業用分野では既存のポリマーラテック
スでは性能が不十分であるという点が普及上の阻害点と
なっており、今後有機溶剤型塗料および接着剤の代替に
は、より高性能のポリマーラテックスの開発が不可欠で
あるつポリマーラテックスの高性能化として期待される
新しい技術方法の1つは、ポリマーラテックスの超微粒
子化である。ポリマーラテックスの場合、本質的に粒子
の充てん融着によって皮膜が形成されるので有機溶剤型
の塗膜と同程度の性能を保持させるためには、ポリマー
ラテックスの粒子径を可及的に微小化することが望まし
く、超微粒子化によって融着j辻、皮膜の平滑性、光沢
性、金属面など微細な凹凸面に対する密着性、浸透性な
どを改善することができる。また、有機溶剤型塗料の場
合には焼付架橋など塗膜の性能向上にはポリマーと架橋
剤(硬化剤)が均一に混合されているのに対し、ポリマ
ーラテックス系の場合は粒子の充てん、融着によって皮
膜が形成されるためにポリマーと硬化剤の混合が均一に
ならない。したがってポリマーラテックス系に固有な皮
膜の不均一性をできるだけ少くするためにはラテックス
粒子を超微粒子化することが非常に重要である。
There are two types of water-based paints: aqueous-solution and water-dispersible, but water-dispersible polymer latex is considered to be the most promising and has the most expectations. However, in the industrial field, the insufficient performance of existing polymer latex is an obstacle to its widespread use, and the development of higher-performance polymer latex as a substitute for organic solvent-based paints and adhesives is expected in the future. One of the new technological methods expected to improve the performance of polymer latex, which is indispensable, is to make polymer latex into ultrafine particles. In the case of polymer latex, the film is essentially formed by filling and fusing particles, so in order to maintain the same performance as organic solvent-based coatings, the particle size of polymer latex must be made as small as possible. It is desirable to make the particles ultrafine, and it is possible to improve the fusion bond, the smoothness and gloss of the film, and the adhesion and permeability to finely uneven surfaces such as metal surfaces. In addition, in the case of organic solvent-based paints, the polymer and crosslinking agent (curing agent) are uniformly mixed to improve the performance of the coating film, such as baking crosslinking, whereas in the case of polymer latex-based paints, particles are filled and fused. Because a film is formed by adhesion, the polymer and curing agent are not mixed uniformly. Therefore, in order to minimize the non-uniformity of the film inherent in polymer latex systems, it is very important to make the latex particles into ultrafine particles.

ポリマーラテックス高性能化の第2の方法として、ポリ
マーラテックス粒子内部とポリマーラテックス粒子間の
3次元網目構造導入による性能の改善がある。最近の学
説によると、耐久性のある塗膜、たとえばウルシ膜や不
飽和ポリエステル樹脂、アルキッド樹脂膜などは、架橋
密度の低いポリマー中に架橋密度の高い部分のはめ込め
られた様な輪かく構造をもった不均一な網目構造を持っ
ていると考えられているので、上述の超微粒子化された
ポリマーラテックス粒子内を架橋によって3次元網目構
造とし、さらに粒子表面に反応性の官能基を付与させる
ことによって粒子間あるいは粒子と連続相との間に橋か
け結合があって3次元網目構造を形成させることが有効
であると考えられる。
A second method for improving the performance of polymer latex is to improve performance by introducing a three-dimensional network structure inside and between polymer latex particles. According to recent theories, durable coatings, such as lacquer films, unsaturated polyester resin films, and alkyd resin films, have a ring structure in which parts of high cross-linking density are embedded in polymers with low cross-linking density. Therefore, the ultrafine polymer latex particles described above are crosslinked to form a three-dimensional network structure, and reactive functional groups are added to the particle surface. Therefore, it is thought that it is effective to form a three-dimensional network structure by forming crosslinks between particles or between particles and a continuous phase.

従来、粒子間の架橋にはポリマーラテックス粒子表面に
反応性の官能基全付与したいわゆる反応性ポリマーラテ
ックスが公知であり、カルボキシル基、ヒドロキシル基
、アミン基、アミド基、グリシジル基などの官能基を有
する単量体を少量共重合したポリマーラテックスに、ヘ
キサメトキシメチルメラミンなどのアミノプラスト樹脂
などの架橋剤や、官能基相互の自己架橋などによって粒
子間の架橋を行なって皮膜の強度、耐水性などの改善が
行なわれてきた。しかし、ポリマーラテックスの粒子間
架橋だけでなくポリマーラテックス粒子内部にまで3次
元網目構造を導入できるならば、塗膜となった場合にウ
ルシ膜などのような輪かく構造をもった不均一な網目構
造となり、耐久性と熱安定性、衡撃強度の優れた皮膜が
得られる。
Conventionally, so-called reactive polymer latex, in which all reactive functional groups are added to the surface of polymer latex particles, has been known for crosslinking between particles. Polymer latex is made by copolymerizing a small amount of monomers with a small amount, and is crosslinked between particles using a crosslinking agent such as an aminoplast resin such as hexamethoxymethylmelamine, or self-crosslinking between functional groups to improve the strength and water resistance of the film. Improvements have been made. However, if it is possible to introduce a three-dimensional network structure not only between particles of polymer latex but also inside the particles of polymer latex, when it becomes a coating film, it will have a non-uniform network with a ring structure such as a lacquer film. This results in a film with excellent durability, thermal stability, and impact strength.

しかし、ポリマーラテックスの合成過程において全体を
ゲル化させることなく微小なポリマーラテックス粒子内
部にまで3次元網目構造を導入することは非常に困難で
あって、超微粒子の既架橋ポリマーラテックスは実用化
されていない。従来、既架橋ポリマーラテックスの製法
として公知の方法は、放射線照射による架橋や、ジビニ
ルベンゼン、フタル酸ジアリル、ジメタクリル酸エチレ
ングリコール、トリアクリル酸エステルなどの4官能性
以上の架橋性単量体を重合もしくは共重合する方法が知
られているが、これらの多官能性(架橋性)単量体を用
いた場合には、硫酸ドデシルナトリウムなどの界面活性
剤を乳化剤として著しく多量に使用しないと超微粒子の
ポリマーラテックスを生成し得ないだけでなく多量の界
面活性剤が存在するにもかかわらず、重合安定性が著し
く悪いという欠点を有する。こねは多官能性の車量体を
用いるためにペンダントビニル基が残存してポリマーラ
テックス粒子表面が反応性に富むため重合過程でアグロ
メリゼーションを生じ、系全体がゲル化したり、多量の
凝集塊を生じるためでポリマー濃度は固形分で8〜16
%くらいの低濃度で重合を止めなければならない欠点が
あって、実用上必要な30%以上の高凝度の既架橋ポリ
マーラテックスを生成させることは非常に困難であった
。また、重合速度も著しく遅く、乳化剤も多量に用いる
ため乳化剤の副作用が大きな問題となるなど工業的用途
への実用化には大きな問題があった。本発明者らは従来
の方5法はジビニルベンゼンなどの多官能性単量体を重
合もしくけ共重合する方法であるため、反応性に富むペ
ンダントビニル基がポリマーラテックス粒子の凝集を生
じることがら多官能性単量体を用いないでもポリマーラ
テックス粒子内に架橋構造を導入する方法はないものか
と鋭意研死を進めた結果、特定の界面活性剤が重合の過
程でポリマーラテックス粒子内に3次元網目構造を生じ
ることを発見した。
However, it is extremely difficult to introduce a three-dimensional network structure into the inside of microscopic polymer latex particles without gelling the entire polymer latex during the polymer latex synthesis process, and ultrafine particles of pre-crosslinked polymer latex have not been put into practical use. Not yet. Conventionally, known methods for producing crosslinked polymer latex include crosslinking by radiation irradiation, and crosslinking using tetrafunctional or higher functional crosslinking monomers such as divinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, and triacrylate. Polymerization or copolymerization methods are known, but when these multifunctional (crosslinking) monomers are used, they cannot be used without extremely large amounts of surfactants such as sodium dodecyl sulfate as emulsifiers. It not only cannot produce fine particle polymer latex, but also has the disadvantage of extremely poor polymerization stability despite the presence of a large amount of surfactant. Since kneading uses a polyfunctional polymer, pendant vinyl groups remain and the surface of the polymer latex particles is highly reactive, resulting in agglomerization during the polymerization process, causing the entire system to gel or forming a large amount of aggregates. The polymer concentration is 8 to 16 in terms of solid content.
It has the disadvantage that polymerization must be stopped at a concentration as low as 30% or more, and it has been extremely difficult to produce a crosslinked polymer latex with a high coagulation level of 30% or more, which is necessary for practical use. In addition, the polymerization rate is extremely slow, and since a large amount of emulsifier is used, side effects of the emulsifier are a serious problem, and there are major problems in practical application for industrial purposes. The present inventors believe that because the conventional method 5 involves polymerization or copolymerization of a polyfunctional monomer such as divinylbenzene, highly reactive pendant vinyl groups may cause aggregation of polymer latex particles. After conducting extensive research to find a way to introduce a crosslinked structure into polymer latex particles without using a polyfunctional monomer, we discovered that a specific surfactant can create a three-dimensional structure within polymer latex particles during the polymerization process. It was discovered that a network structure was formed.

本発明は、この知見に基すいており、ポリマー固形分濃
度が30〜50チという高濃度でも凝集することなく粒
子径が0.05μm以下の透明性のある超微粒子で、粒
子内が3次元網目構造となっている新規な高性能ポリマ
ーラテックスを実用的に製造する方法を提供する。
The present invention is based on this knowledge, and produces transparent ultrafine particles with a particle diameter of 0.05 μm or less without agglomeration even at a high polymer solid content concentration of 30 to 50 μm, and the inside of the particle is three-dimensional. A method for practically producing a novel high-performance polymer latex having a network structure is provided.

すなわち、本発明は、アクリル酸ないしメタクリル酸の
低級アルキルエステルの中から選ばハる単量体あるいは
これらの単量体と共重合可能な他の重合性の単量体との
混合物からなる単量体を水媒体中で乳化重合するに当り
、公知の過硫酸塩と般に乳化重合に用いられているアニ
オン系界面活性剤との混合系の存在下、かきまぜながら
重合を行なうことによって実質的に粒子径が0.01〜
oo5μmの透明性のある分散安定性の良い均一な粒子
径の超微粒子離架橋ポリマーラテックスを形成させるこ
とを特徴とするポリマーラテックスの製造方法である。
That is, the present invention provides a monomer selected from lower alkyl esters of acrylic acid or methacrylic acid, or a mixture of these monomers and other polymerizable monomers copolymerizable with them. When emulsion polymerizing the body in an aqueous medium, polymerization is carried out with stirring in the presence of a mixed system of a known persulfate and an anionic surfactant commonly used in emulsion polymerization. Particle size is 0.01~
This is a method for producing a polymer latex, which is characterized by forming an ultrafine particle decrosslinked polymer latex with transparency of 5 μm, good dispersion stability, and uniform particle diameter.

本発明において用いられる重合開始剤は、1.0×10
−3〜1.OXlo−2mol/IIの等モル濃度から
なる過硫酸カリウムとチオ硫酸ナトリウムなどの公知の
レドックス触媒が使用されるが、透明性のある超微粒子
ポリマーラテックスの生成のためには重合促進剤として
2.!5 X 10−7〜5.OX I Q−’mol
/、d、好ましくは2.5 x 10−g〜、2.5X
10’■O1l/lの2価の銅イオンなどの遷移金属イ
オンの添加が不可欠である。重合温度は重合開始剤を活
性化させる温度範囲で使用が可能であるが、50〜60
℃の範囲が効果的で、温度が80°C以上では生成ポリ
マーラテックスの安定性が悪くなる他、開始剤の失活が
おこるので重合温度をコントロールするために単量体は
少賛づつ連続的に滴下しながら重合を行なう必要がある
The polymerization initiator used in the present invention is 1.0×10
-3~1. Known redox catalysts such as potassium persulfate and sodium thiosulfate in equimolar concentrations of OXlo-2 mol/II are used, but in order to produce a transparent ultrafine polymer latex, 2. ! 5 X 10-7~5. OX I Q-'mol
/, d, preferably 2.5 x 10-g ~, 2.5X
It is essential to add transition metal ions such as divalent copper ions at 10'O1 l/l. The polymerization temperature can be used within a temperature range that activates the polymerization initiator;
℃ range is effective; if the temperature exceeds 80℃, the stability of the resulting polymer latex will deteriorate and the initiator will be deactivated, so in order to control the polymerization temperature, the monomer should be added continuously in small amounts. It is necessary to carry out the polymerization while adding the solution dropwise.

本発明で用いられる乳化剤は、漂白セラック樹脂とアニ
オン界面活性剤との混合系であり、アニオン界面活性剤
としては、通常乳化重合に用いられる公知のアニオン界
面活性剤例えば長鎖α−オレフィンスルホン酸ナトリウ
ム、ポリオキシエチレンアルキルアリルエーテル硫酸エ
ステル塩、アルキルジフェニルオキシドスルホン酸ジナ
トリウム、望ましくはジ(メタクジ・ル酸アルキルエス
テル)リン酸などがある。一方、漂白セラック樹脂とし
ては市販のものが用いられる。漂白セラック樹脂とアニ
オン界面活性剤の組成比は、重量比で1=3〜3:1の
割合にするのが好ましい。
The emulsifier used in the present invention is a mixed system of bleached shellac resin and an anionic surfactant, and examples of the anionic surfactant include known anionic surfactants commonly used in emulsion polymerization, such as long-chain α-olefin sulfonic acid. Examples include sodium, polyoxyethylene alkyl allyl ether sulfate, disodium alkyl diphenyl oxide sulfonate, and preferably di(methacdi-alkyl ester) phosphoric acid. On the other hand, a commercially available bleached shellac resin can be used. The composition ratio of bleached shellac resin and anionic surfactant is preferably 1=3 to 3:1 by weight.

本発明で用いる漂白セラック樹脂は、加温、例えば60
℃程度に加熱したアンモニア水にあらかじめ溶解して用
いるのが良く1.これにアニオン界面活性剤を加えるこ
とによって本発明で用いる乳化液を得ることができる。
The bleached shellac resin used in the present invention is prepared by heating, e.g.
It is best to use it by dissolving it in aqueous ammonia heated to about ℃ 1. By adding an anionic surfactant to this, the emulsion used in the present invention can be obtained.

址た、この混合乳化剤の濃度は水媒体に対し1〜15チ
、望ましくは2〜5重量%の範囲である。このような混
合系の乳化剤を用いた場合には、ポリマーラテックス粒
子は3次元網目構造を形成する。混合乳化剤中の漂白セ
ラック樹脂の量が多くなるほど架橋密度が増加して粒子
は相互に合着融合し難くなる。
The concentration of this mixed emulsifier is in the range of 1 to 15% by weight, preferably 2 to 5% by weight, based on the aqueous medium. When such a mixed emulsifier is used, the polymer latex particles form a three-dimensional network structure. As the amount of bleached shellac resin in the mixed emulsifier increases, the crosslinking density increases and particles become more difficult to coalesce and fuse with each other.

生成皮膜はベンゼンに不溶で、ベンゼン一対する膨潤度
とゲル含有率は乳化剤混合物中の漂白セラック樹脂の含
有率に依存し架橋度が自由にコノトロールされる。
The resulting film is insoluble in benzene, and the degree of swelling and gel content in benzene depend on the content of bleached shellac resin in the emulsifier mixture, and the degree of crosslinking can be freely controlled.

本発明で使用される単量体としては、重合性エチレン結
合を有するアクリル酸エチル、メタクリル酸メチル、ア
クリル酸−2−エチルヘキンノペメタクリル酸ブチルな
どのエステル類、アクリロニトリル、Wlビニル、スチ
レン、塩化ビニル、塩化ビニリデンなどがあり、上記単
重体と共重合−し得る官能性単量体として2−とドロキ
ンエチル(メタ)アクリレート、2−ヒドロキシプロピ
ル(メタ)アクリレート、ポリエチレングリコール(メ
タ)アクリレート、N−メチロールアクリルアミド、グ
リシジル(メタ)アクリレート、アクリル酸、無水マレ
イン酸、イタコン酸、アクリルアミド、ジメチルアミン
エチル(メタ)アクリレートなどが例示できる。
Monomers used in the present invention include esters having polymerizable ethylene bonds such as ethyl acrylate, methyl methacrylate, 2-ethylhexyl acrylate butyl methacrylate, acrylonitrile, Wl vinyl, and styrene. , vinyl chloride, vinylidene chloride, etc. Functional monomers that can be copolymerized with the above-mentioned monomers include 2- and doroquinethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, polyethylene glycol (meth)acrylate, Examples include N-methylolacrylamide, glycidyl (meth)acrylate, acrylic acid, maleic anhydride, itaconic acid, acrylamide, and dimethylamine ethyl (meth)acrylate.

本発明によって製造される超微粒子低架橋ポリマーラテ
ックスは、架橋度および架橋密度の低い場合は相互に融
着して連続皮膜を形成し初期モジュラス値の大きい弾力
性に富んだ強靭な皮膜を形成する。また、架橋度が高く
架橋密度も低くない場合は、ラテックス粒子は相互に融
着しないため粉体塗料に添加してブロッキング性及び塗
膜物性の向上に有用である。とくに超微粒子で既架橋ラ
テックスであるだけでなく、ラテックス粒子表面にカル
ボキシル基、水酸基、アミン基などの官能基を有する反
応性タイプのポリマーラテックスの場合は、重合性単量
体あるいは有機溶媒に再分散して、いわゆる溶剤量の少
ないハイソリッド系の塗料素材として有用である。その
他既存の粉体塗料、溶媒型塗料、ハイソリッド系塗料、
水系塗料に混合して当該塗料の性能を向上させるのに使
用できる。
When the ultrafine particle low crosslinked polymer latex produced by the present invention has a low crosslinking degree and crosslinking density, it fuses with each other to form a continuous film, forming a highly elastic and tough film with a large initial modulus value. . In addition, if the degree of crosslinking is high and the crosslinking density is not low, the latex particles will not fuse with each other, so it is useful to add them to powder coatings to improve blocking properties and physical properties of the coating film. In particular, in the case of reactive type polymer latexes that are not only ultrafine particles and crosslinked latexes, but also have functional groups such as carboxyl groups, hydroxyl groups, and amine groups on the surface of the latex particles, they cannot be reconstituted with polymerizable monomers or organic solvents. When dispersed, it is useful as a so-called high solid paint material that requires a small amount of solvent. Other existing powder coatings, solvent-based coatings, high solids coatings,
It can be used to improve the performance of water-based paints by mixing with them.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 ガス導入管、還流冷却器、pH測定用複合ガラス5gを
水媒体中に28係アンモニア水4 rnlを加えて60
℃で溶解したものと、アニオン系の共重合性乳化剤であ
るジ(メタクリル酸アルキレンエステル)リン酸にュー
フロンティアA−229E)H 1,0gを溶かす。重合は最初アクリル酸エチル−メタ
クリル酸メチル(組成比7:3)の混合モノマーを10
 m1分散させ、一定のがきまぜ状態に保ちなから硫酸
銅(系中濃度2.5 X 10 moil/l:を促進
剤とした過硫酸カリウム−チオ硫酸ナトリウムの等モル
量からなるレドックス開始剤(系中濃度3.0X10 
、mOA’/l) T、50〜60′c、pH4〜7で
重合を開始させた後、ついで残りの290m4のアクリ
ル酸エチル−メタクリル酸メチル混合モノマーを重合熱
による著しい昇温を防ぐため徐々に滴下しながら60℃
以下で重合を行なった。重合の経過とともに系の粘度が
上昇してきて単量体の分散や、かきまぜが困難となるが
、重合系の粘度が上昇し始める前に2〜4 mlの28
%アンモニア水を滴下して添加するか、あらかじめ重合
開始前に0.5[前後のリン酸ニアンモニウム全粘度上
昇を防ぐために添加しておく。重合i1″1:35分く
らいで完了し、透過光では黄赤色に見える透明性のよい
ポリマーラテックスが得られた。分光光度計s o o
 nmの光線透jM率(1mガラスセル使用)は40.
5%であり、′成子顕微鏡による粒子径は330Aであ
った。
Example 1 A gas inlet pipe, a reflux condenser, and 5 g of composite glass for pH measurement were placed in an aqueous medium with 4 rnl of 28% ammonia water added to 60 g.
℃ and dissolve 1.0 g of Ew Frontier A-229E) H in di(methacrylic acid alkylene ester) phosphoric acid, which is an anionic copolymerizable emulsifier. In the polymerization, 10% of the monomer mixture of ethyl acrylate and methyl methacrylate (composition ratio 7:3) was first added.
A redox initiator consisting of equimolar amounts of potassium persulfate and sodium thiosulfate with copper sulfate (concentration in the system: 2.5 x 10 moil/l) as an accelerator. (Concentration in the system 3.0X10
, mOA'/l) T, 50-60'c, pH 4-7, and then the remaining 290 m4 of the ethyl acrylate-methyl methacrylate mixed monomer was gradually added to prevent a significant temperature rise due to the heat of polymerization. 60℃ while dropping
Polymerization was carried out as follows. The viscosity of the system increases as the polymerization progresses, making it difficult to disperse and stir the monomers, but before the viscosity of the polymerization system begins to increase, 2 to 4 ml of 28
% ammonia water is added dropwise or in advance before the start of polymerization to prevent an increase in the total viscosity of about 0.5% ammonium phosphate. Polymerization i1″1: Completed in about 35 minutes, and a transparent polymer latex that appeared yellow-red in transmitted light was obtained.Spectrophotometer so o
The light transmission jM rate of nm (using a 1 m glass cell) is 40.
5%, and the particle size measured using a Seiko microscope was 330A.

得られた超微粒子ポリマーラテックスをガラス板上で自
然乾燥して得ら匙た皮膜の透明性は非常に良く、JIS
 K671’4積分球式光線透過率測定装置によってめ
た皮膜の曇価(ヘイズ値)は1.3であった。またJI
S Z8741による20°鏡面光沢度は95%以上で
あった。また、この自然乾燥生成皮膜はベンゼン、アセ
トンに不溶で形態を保持した状態で膨潤する。ベンゼン
中に浸漬前と48時間後の皮膜の面積比からめたベンゼ
ンに対f ルミ潤度は7.4であった。
The obtained ultrafine particle polymer latex was air-dried on a glass plate, and the resulting film had very good transparency and was rated according to JIS standards.
The haze value (haze value) of the film measured using a K671'4 integrating sphere light transmittance measuring device was 1.3. Also JI
The 20° specular gloss by S Z8741 was 95% or more. Furthermore, this air-dried film is insoluble in benzene and acetone and swells while retaining its shape. The f-lumi wetness with respect to benzene was calculated from the area ratio of the film before and 48 hours after immersion in benzene, and was 7.4.

実施例2 実施例1と同様の方法で、漂白セラック1匍脂(白ラッ
ク)の量を実施例1より少ない2g用いた場合は、光線
透過率63チに達する透明性の非常に良い超微粒子のポ
リマーラテックスが生成し、粒子径は308^であった
。ガラス板上で自然乾燥して得られた皮膜の透明性は非
常に良(JISK6714の方法による皮膜のヘイズ値
は13チで完全に透明であり、光沢も著しく良好であっ
た。皮膜はベンゼンに不溶であるが、膨潤し面積比から
めた膨潤の度合は73.5程度であった。
Example 2 When using the same method as in Example 1 and using 2 g of bleached shellac (white lac), which is less than in Example 1, ultrafine particles with very good transparency reaching a light transmittance of 63 cm were obtained. of polymer latex was produced, and the particle size was 308^. The transparency of the film obtained by air drying on a glass plate was very good (the haze value of the film by the JIS K6714 method was 13 inches, it was completely transparent, and the gloss was also extremely good. Although it was insoluble, it swelled, and the degree of swelling calculated from the area ratio was about 73.5.

Claims (1)

【特許請求の範囲】[Claims] (]、) アクリル酸寸たはメタクリル酸の低級アルキ
ルエステルの中から選ばれる単量体あるい゛ はこれら
の単量体と共重合可能な他の重合性の単量体との混合物
からなる単量体を水媒体中で乳化重合するに当り、過硫
酸塩と還元性のスルホキシ化合物からなるレドックス重
合触媒に、微量の避移金属イオンを促進剤として添加し
た重合開始剤を用い、かつ乳化剤として、漂白セラック
樹脂とアニオン界面活性剤とを組み合せた混合系の存在
下、かきまぜながら重合を行なうことによって実質的に
粒子径が0.01〜0.05μmの透明性のある分散安
定性の良い均一な粒子径の超微粒子低架橋ポリマーラテ
ックスを形成させることを特徴とする高性能ポリマーラ
テックスの製造方法っ
(),) Consists of a monomer selected from lower alkyl esters of acrylic acid or methacrylic acid, or a mixture of these monomers and other polymerizable monomers that can be copolymerized. In emulsion polymerization of monomers in an aqueous medium, a polymerization initiator consisting of a redox polymerization catalyst consisting of a persulfate and a reducing sulfoxy compound, a trace amount of displaced metal ions added as a promoter, and an emulsifier. By polymerizing while stirring in the presence of a mixed system of bleached shellac resin and anionic surfactant, a transparent and highly stable dispersion with a particle size of 0.01 to 0.05 μm is obtained. A method for producing high-performance polymer latex characterized by forming ultrafine low-crosslinked polymer latex with uniform particle size.
JP59027453A 1984-02-16 1984-02-16 Preparation of ultrafine particulate already crosslinked polymer latex Granted JPS60170605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027453A JPS60170605A (en) 1984-02-16 1984-02-16 Preparation of ultrafine particulate already crosslinked polymer latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027453A JPS60170605A (en) 1984-02-16 1984-02-16 Preparation of ultrafine particulate already crosslinked polymer latex

Publications (2)

Publication Number Publication Date
JPS60170605A true JPS60170605A (en) 1985-09-04
JPH0370725B2 JPH0370725B2 (en) 1991-11-08

Family

ID=12221536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027453A Granted JPS60170605A (en) 1984-02-16 1984-02-16 Preparation of ultrafine particulate already crosslinked polymer latex

Country Status (1)

Country Link
JP (1) JPS60170605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943612A (en) * 1986-12-06 1990-07-24 Lion Corporation Ultra-fine particulated polymer latex and composition containing the same
JP2007224308A (en) * 2000-11-28 2007-09-06 Mitsubishi Chemicals Corp Resin fine particle dispersion
JP4730641B2 (en) * 1999-12-28 2011-07-20 星光Pmc株式会社 Surface sizing agent
US10590300B2 (en) * 2013-12-19 2020-03-17 Toray Films Europe Composition for coating polymer films, coating process and composite materials obtained

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943612A (en) * 1986-12-06 1990-07-24 Lion Corporation Ultra-fine particulated polymer latex and composition containing the same
JP4730641B2 (en) * 1999-12-28 2011-07-20 星光Pmc株式会社 Surface sizing agent
JP2007224308A (en) * 2000-11-28 2007-09-06 Mitsubishi Chemicals Corp Resin fine particle dispersion
US10590300B2 (en) * 2013-12-19 2020-03-17 Toray Films Europe Composition for coating polymer films, coating process and composite materials obtained

Also Published As

Publication number Publication date
JPH0370725B2 (en) 1991-11-08

Similar Documents

Publication Publication Date Title
CN100591735C (en) Preparation method of organic/inorganic hybrid reactive semi-interpenetrating network structure emulsion
CA1113644A (en) Thermosetting resin, and its production and use
US3992486A (en) Process for altering appearance of polymer by incorporating therein crosslinked particulate polymers prepared by endopolymerization
JPS59537B2 (en) Hybrid, water-based enamel containing partially cross-linked latex
JPS61223015A (en) Resin complex particles, their production and composition for coating
CN112940172B (en) A kind of preparation method of water-based light-responsive self-healing leather finishing agent
CA2013318A1 (en) Very fine-sized aqueous polymeric microemulsions
CN105777967B (en) A kind of preparation method of morphology controllable double-sided polymerization object particle
JPS59152972A (en) Water-resistant coating composition
JPS60170605A (en) Preparation of ultrafine particulate already crosslinked polymer latex
PT1325088E (en) Aqueous dispersion of addition polymer particles
JPS62119271A (en) Basic composite resin particle, production thereof and resin composition for coating material
BR102013015790A2 (en) Homogeneous or structured synthesis procedure for obtaining an anticorrosive polymer resin, anticorrosive polymer resin and use thereof
JP3935074B2 (en) Crosslinked resin fine particles, crosslinked resin fine particle emulsion used for producing the crosslinked resin fine particles, and method for producing crosslinked resin fine particles
JPS60170604A (en) Preparation of ultrafine already crosslinked polymer latex
JP3637794B2 (en) Method for producing methyl methacrylate polymer beads
JPS62177007A (en) Production of high-concentration reactive microgel
Pavlyuchenko et al. Submicron sized hollow polymer particles: preparation and properties
JP3149487B2 (en) Method for producing methacrylic resin particles
CN115894802A (en) A method and application of interface-crosslinked core-shell polyvinyl chloride copolymer resin aqueous emulsion prepared by click chemical reaction
Schlarb et al. Hydroresin dispersions: tailoring morphology of latex particles and films
JPS6254806B2 (en)
JP3633327B2 (en) Method for producing methyl methacrylate polymer beads
JPS5856366B2 (en) Method for manufacturing microemulsion
KR101943473B1 (en) Preparing method of polymer particle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term