[go: up one dir, main page]

JPS60170136A - Impregnated cathode - Google Patents

Impregnated cathode

Info

Publication number
JPS60170136A
JPS60170136A JP59025026A JP2502684A JPS60170136A JP S60170136 A JPS60170136 A JP S60170136A JP 59025026 A JP59025026 A JP 59025026A JP 2502684 A JP2502684 A JP 2502684A JP S60170136 A JPS60170136 A JP S60170136A
Authority
JP
Japan
Prior art keywords
cathode
impregnated
impregnated cathode
operating temperature
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59025026A
Other languages
Japanese (ja)
Inventor
Tadanori Taguchi
田口 貞憲
Yoshihiko Yamamoto
山本 恵彦
Toshiyuki Aida
会田 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59025026A priority Critical patent/JPS60170136A/en
Publication of JPS60170136A publication Critical patent/JPS60170136A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ブラウン管、撮像管等の電子管に用いる含浸
層陰極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an impregnated layer cathode used in electron tubes such as cathode ray tubes and image pickup tubes.

〔発明の背景〕[Background of the invention]

含浸層陰極は高電流密度陰極で、電子管の高性能化を計
るための陰極と有望視されている。
The impregnated layer cathode is a high current density cathode, and is seen as a promising cathode for improving the performance of electron tubes.

含浸層陰極は多孔質基体にBa化合物からなる電子放出
物質を含浸した構造を採っている。含浸層陰極は高い電
子放出能を有する反面、動作温度が高いという欠点を有
する。その動作温度は、現在一般的に使用されている塗
布形酸化物陰極に比べて400℃以上も高い。動作温度
が高いために管球に実装する場合、電極を高融点金属材
料に変更しなければならない上に、陰極からBa。
The impregnated layer cathode has a structure in which a porous substrate is impregnated with an electron-emitting substance made of a Ba compound. Although the impregnated layer cathode has high electron emission ability, it has the disadvantage of high operating temperature. Its operating temperature is more than 400° C. higher than that of the currently commonly used coated oxide cathode. When mounting in a tube due to the high operating temperature, the electrode must be changed to a high-melting point metal material, and the cathode must be replaced with Ba.

BaOが多量に蒸発し、電極に付着し、グリッド・エミ
ッションの原因となり管球特性に悪影響を与える。また
、含浸層陰極を長時間加熱に耐えるヒータの設計が非常
に困難である。含浸層陰極の研究・開発に当って、動作
温度を低くすることが最重要課題である。動作温度を低
くする方法として、陰極表面に仕事関数の高いOs、I
r、Ruなどの金属を被覆することによって電子放出能
を高めて動作温度を下げる方法が一般的である。この方
法によれば、含浸層陰極の動作温度は約100℃下げる
ことが可能である。しかし、塗布形酸化物陰極に比べて
、まだ300℃以上も高く、実用化への障害になってい
る。
A large amount of BaO evaporates and adheres to the electrodes, causing grid emissions and adversely affecting the bulb characteristics. Furthermore, it is very difficult to design a heater that can withstand heating the impregnated layer cathode for a long time. In the research and development of impregnated layer cathodes, lowering the operating temperature is the most important issue. As a method of lowering the operating temperature, the surface of the cathode is coated with high work function Os, I.
A common method is to increase the electron emission ability and lower the operating temperature by coating with a metal such as r or Ru. According to this method, the operating temperature of the impregnated layer cathode can be lowered by about 100°C. However, compared to coated oxide cathodes, the temperature is still 300°C or more, which is an obstacle to practical application.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、含浸形陰極の動作温度を下げ、実用化
に耐え得るような含浸形陰極を提供することにある。
An object of the present invention is to provide an impregnated cathode which can be put into practical use by lowering the operating temperature of the impregnated cathode.

〔溌明の概要〕[Summary of Shinmei]

上記目的を達成するために、本発明による含浸形陰極は
、陰極表面にS。を被覆と同時あるいは後に非常に薄い
(B a、sC= O)複合化合物層を形成した含浸形
陰極である。
In order to achieve the above object, the impregnated cathode according to the present invention has S on the surface of the cathode. This is an impregnated cathode with a very thin (Ba, sC=O) composite compound layer formed at the same time or after coating.

含浸形陰極は、多孔質耐熱基体内に電子放出物質を含浸
した構造を採っている。多孔質耐熱基体としてWが一般
的であるが、Mo、Reその他に高融点金属が単体2合
金あるいは2種以上の混合状態で用いられている。電子
放出物質としては一般にBa3 AQ 206化合物を
基体として、Cab、 SrO。
The impregnated cathode has a structure in which a porous heat-resistant substrate is impregnated with an electron-emitting substance. W is generally used as the porous heat-resistant substrate, but Mo, Re, and other high-melting point metals are used in the form of two single alloys or a mixture of two or more types. Electron-emitting materials generally include Ba3 AQ 206 compounds as a base, Cab, and SrO.

MgO,ZrO2、Y203などの酸化物が添加され用
いられる。電子放出物質は多孔質基体の細孔部に加熱溶
融含浸される。含浸はH2雰囲気中、真空中など非酸化
性雰囲気中で加熱溶融することによって実施され、含浸
形陰極が作られる。含浸形陰極lはカップ状の障壁層2
.スリーブ3及び加熱用ヒータ4と組み合され、管球に
実装される(第1図)。しかし、この状態では、あまり
にも動作温度が高いので、一般には動作温度を下げる、
すなわち電子放出特性を向上させるために、陰極表面に
仕事関数の高いOs、I r、Ru、Reあるいはこれ
らを含む合金膜を約5000人被覆して用いる。
Oxides such as MgO, ZrO2, and Y203 are added and used. The electron emitting material is heated and melted and impregnated into the pores of the porous substrate. The impregnation is carried out by heating and melting in a non-oxidizing atmosphere such as an H2 atmosphere or a vacuum, thereby producing an impregnated cathode. The impregnated cathode 1 has a cup-shaped barrier layer 2
.. It is combined with a sleeve 3 and a heating heater 4 and mounted in a tube (FIG. 1). However, in this state, the operating temperature is too high, so it is generally recommended to lower the operating temperature.
That is, in order to improve the electron emission characteristics, the surface of the cathode is coated with a film of Os, Ir, Ru, Re, or an alloy containing these having a high work function.

このような金属を被覆することによって動作温度は約1
00℃低下し、約1000℃で使用できる。また、仕事
関数の高い、すなわち上述した金属を多孔質基体に混合
しても同様な効果を持つ。上述の動作温度を下げた含浸
形陰極を用いて、実用化試験が盛んに実施されている現
状である。
By coating such metals, the operating temperature can be reduced to approximately 1
00°C and can be used at about 1000°C. Furthermore, a similar effect can be obtained by mixing a metal with a high work function, that is, the above-mentioned metal, into the porous substrate. Currently, practical tests are being actively conducted using the impregnated cathode with a lower operating temperature.

含浸形陰極の動作温度を低下させるために、上記以外に
各種金属を被覆して電子放出特性を測定した。その中で
、Scについて詳しく実験しているうちに、陰極表面に
Scを非常に薄く被覆した場合に電子放出特性を大巾に
向上できることが分った。以下、本発明の含浸形陰極に
ついて詳しく述べる。Scを被覆して電子放出特性が向
上するためには多少の制約が存在した。含浸形陰極の多
孔質基体としては、W粉あるいはWを主成分とした合金
粉・混合粉から作製することが必要である。
In order to lower the operating temperature of the impregnated cathode, various metals other than those described above were coated and the electron emission characteristics were measured. While conducting detailed experiments on Sc, it was discovered that electron emission characteristics can be greatly improved when the surface of the cathode is coated with Sc very thinly. The impregnated cathode of the present invention will be described in detail below. There are some restrictions on improving electron emission characteristics by coating with Sc. The porous substrate of the impregnated cathode must be made from W powder or an alloy powder or mixed powder containing W as a main component.

また、多孔質基体の細孔部に含浸される電子放出物質は
、従来からの含浸形陰極に用いられているもので良い。
Further, the electron-emitting material impregnated into the pores of the porous substrate may be one that has been used in conventional impregnated cathodes.

すなわち、naoとAQ 203. Cab。That is, nao and AQ 203. Cab.

SrO,MgO,ZrO2、Y203から選ばれた一種
以上の酸化物との化合物あるいは混合物で良い。最も一
般的な組成は、4BaO−A Q 203 ・CaO及
び5Ba0・2A12203 ・3CaOである。電子
放出物質の含浸は、F■7雰囲気中、真空中など非酸化
性雰囲気で加熱溶融して行う。含浸後は、余分な電子放
出物質を除去し・て含浸形陰極が製造される。本発明の
含浸形陰極は更に、陰極表面に(Ba、Sc、O)複合
化合物層を形成して得られる。(Ba、5c=0)II
Jt合化合物層の形成は、陰極表面に真空中でScを蒸
着し、次に860℃以上に含浸形陰極を加熱することに
よって、電子放出に適した(Ba。
It may be a compound or a mixture with one or more oxides selected from SrO, MgO, ZrO2, and Y203. The most common compositions are 4BaO-AQ203.CaO and 5Ba0.2A12203.3CaO. Impregnation with the electron-emitting substance is carried out by heating and melting in a non-oxidizing atmosphere such as an F7 atmosphere or a vacuum. After impregnation, excess electron-emitting material is removed to produce an impregnated cathode. The impregnated cathode of the present invention is obtained by further forming a (Ba, Sc, O) composite compound layer on the surface of the cathode. (Ba, 5c=0)II
The Jt compound layer is formed by depositing Sc on the surface of the cathode in vacuum, and then heating the impregnated cathode to 860° C. or higher, which is suitable for electron emission (Ba).

Sc、0)複合化合物層が形成される。また(Ba、S
c、O)複合化合物層は含浸形陰極を800℃以上に加
熱して置き、Scを蒸着することによっても形成される
。SCは蒸気圧が高いために抵抗加熱によって蒸着が可
能である。電子線蒸着法などでも良い。蒸着速度は遅い
法が良く、20人/n+j、n以下が望ましい。(Ba
、Sc、O)複合化合物層の厚さは5〜100大程度で
非常に大きな効果があった。したがって、Sc被覆厚は
100Å以下とすべきである。(Ba、Sc、O)複合
化合物層の組成比は決定されていないが、オージェ分析
では、第2図に示すオージェ・スペクトルが得られ、こ
の組成比から大きくずれると電子放出特性も同時に劣化
した。
Sc, 0) A composite compound layer is formed. Also (Ba, S
c, O) The composite compound layer can also be formed by heating the impregnated cathode to 800° C. or higher and depositing Sc. Since SC has a high vapor pressure, it can be deposited by resistance heating. An electron beam evaporation method or the like may also be used. The deposition rate is preferably slow, preferably 20 persons/n+j, n or less. (Ba
, Sc, O) The thickness of the composite compound layer was about 5 to 100 mm, which had a very large effect. Therefore, the Sc coating thickness should be 100 Å or less. Although the composition ratio of the (Ba, Sc, O) composite compound layer has not been determined, the Auger spectrum shown in Figure 2 was obtained by Auger analysis, and when the composition ratio deviated significantly from this composition ratio, the electron emission characteristics also deteriorated. .

第3図は、Sc蒸着膜厚をパラメータとした時の電子放
出特性8〜13を見た図で、Sc蒸着膜厚が100人を
越えるとOs被覆含浸形陰極特性7を下回る傾向を示し
た。同図に従来の含浸形陰極特性6及び○S被覆含含浸
形極7の電子放出特性も記載した。含浸形陰極表面に(
13a、Sc。
Figure 3 shows the electron emission characteristics 8 to 13 when the Sc deposited film thickness is used as a parameter, and when the Sc deposited film thickness exceeds 100, it tends to be lower than the Os coated impregnated cathode property 7. . The same figure also shows the characteristics of the conventional impregnated cathode 6 and the electron emission characteristics of the ○S-coated impregnated electrode 7. On the surface of the impregnated cathode (
13a, Sc.

O)複合化合物層を形成した本発明の含浸形陰極は、被
覆なし含浸形陰極に比べて約200℃、Os被被覆含浸
形極に比べて約100℃低い温度で動作が可能となった
。(B a 、 S c−、、O)複合化合物の形成機
構は明確でないがScは非常に活性であることから、蒸
発源から蒸発したScは雰囲気中のOと結びつき、また
陰極表面のBaやBaOと結合し、電子放出に適した(
Ba、Sc。
O) The impregnated cathode of the present invention with a composite compound layer formed thereon was able to operate at a temperature about 200°C lower than that of an uncoated impregnated cathode and about 100°C lower than that of an Os-coated impregnated cathode. (B a , S c-,, O) The formation mechanism of the composite compound is not clear, but since Sc is very active, Sc evaporated from the evaporation source combines with O in the atmosphere, and Ba and O on the surface of the cathode combine. Combines with BaO and is suitable for electron emission (
Ba, Sc.

○)複合化合物層が形成されるものと考えられる。○) It is considered that a composite compound layer is formed.

この(Ba、Sc、0)複合化合物層が高い電子放出特
性を示すためには、下地陰極表面の基体がWあるいはW
を主成分である必要がある。Wと(Ba、Sc、O)複
合化合物の相互作用によって高い電子放出能を示すもの
と考える。従来の含浸形陰極よりも約200°COs被
覆含浸形陰極よりも約100℃も動作温度を低下でき、
陰極からの余分なりa、BaOなどの蒸発が減り、加熱
用ヒータが長寿命化になるなど有利であった。
In order for this (Ba, Sc, 0) composite compound layer to exhibit high electron emission characteristics, the substrate on the surface of the underlying cathode must be W or W.
must be the main component. It is thought that high electron emitting ability is exhibited due to the interaction between W and the (Ba, Sc, O) complex compound. The operating temperature can be lowered by approximately 200°C compared to a conventional impregnated cathode, and approximately 100°C lower than a COs-coated impregnated cathode.
This was advantageous in that the evaporation of excess a, BaO, etc. from the cathode was reduced, and the life of the heater was extended.

本発明によれば、以上説明したように、Wを基体とする
陰極表面に(Ba、Sc、O)複合化合物層を形成する
ことによって動作温度を大巾に低く出来る。動作温度を
100〜200℃低くしたことにより、Ba、BaOの
蒸発速度を約1〜22桁程度低くできることに対応(B
a、BaOの蒸発エネルギーは〜3.2 eV)する。
According to the present invention, as explained above, by forming a (Ba, Sc, O) composite compound layer on the surface of the cathode having W as the base, the operating temperature can be significantly lowered. By lowering the operating temperature by 100 to 200 degrees Celsius, the evaporation rate of Ba and BaO can be lowered by about 1 to 22 orders of magnitude (B
a, the evaporation energy of BaO is ~3.2 eV).

本発明による含浸形陰極は、従来型の含浸形陰極、Os
被被覆含浸形極よりも優れた特性を有する含浸形陰極と
言える。
The impregnated cathode according to the invention is a conventional impregnated cathode, Os
It can be said that this is an impregnated cathode that has better properties than a coated impregnated cathode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

粒径5μmのW粉を用いて作製した空孔率23%の多孔
質W基体に水素雰囲気中で4BaO・AQ203・Ca
Oの組成比からなる電子放出物質を溶融含浸した従来型
の含浸形陰極を予め用意した。
4BaO・AQ203・Ca was applied to a porous W substrate with a porosity of 23% using W powder with a particle size of 5 μm in a hydrogen atmosphere.
A conventional impregnated cathode was prepared in advance by melting and impregnating an electron emitting material having a composition ratio of O.

この含浸形陰極は到達真空度< 5 X 10 =To
rrの真空容器中に配置した。真空容器内にはSCの蒸
発源と電子放出特性を測定出来るように陽極も同時に配
置した。Scの蒸着はWボートを用いた抵抗加熱で実施
した。その時の蒸着速度は5,10゜20.50人/w
inと変えた。また、電子放出特性の測定は陽極−陰極
からなる2極管型式で実施し、パルス電圧を印加し、そ
の時放出される電流を測定することによった。その評価
は電圧と放出電流の関係から零電界における飽和電流密
度と陰極温度との関係をめて行った。
This impregnated cathode has an ultimate vacuum level < 5 x 10 = To
rr vacuum vessel. In the vacuum chamber, an anode was also placed at the same time so that the SC evaporation source and electron emission characteristics could be measured. Sc vapor deposition was performed by resistance heating using a W boat. The deposition rate at that time was 5.10゜20.50 people/w
I changed it to in. Further, the electron emission characteristics were measured using a diode type tube consisting of an anode and a cathode, and by applying a pulse voltage and measuring the current emitted at that time. The evaluation was performed by examining the relationship between the saturation current density and cathode temperature at zero electric field from the relationship between voltage and emission current.

なお、真空容器内に陰極を配置する時は、第1図に示す
ように、Taカップの障壁層2.Taスリーブ3加熱用
Wヒータ4を組み合せたものを使用した。
Note that when placing the cathode in a vacuum container, as shown in FIG. 1, the barrier layer 2. A combination of a Ta sleeve 3 and a W heater 4 for heating was used.

Se蒸着時は陰極温度を室温と800℃にした。During Se deposition, the cathode temperature was set to room temperature and 800°C.

室温で蒸着したものは、蒸着後800℃X5m1nの熱
処理した。また、Sc蒸着膜は、電子放出特性を検討し
ながら決めた。大体の場合、最大300人であった。蒸
着速度の速い場合には、形成した(Ba、Sc、O)複
合化合物層の組成は、高い電子放出能を示した組成から
ずれていた。蒸着速度は20人/min以下が良かった
。Sc蒸着時は陰極温度による特性の差は見当らなかっ
た。
Those deposited at room temperature were heat-treated at 800° C. x 5 ml after deposition. Further, the Sc deposited film was determined while considering the electron emission characteristics. In most cases there were up to 300 people. When the deposition rate was high, the composition of the formed (Ba, Sc, O) composite compound layer deviated from the composition that showed high electron emission ability. The deposition rate was preferably 20 people/min or less. No difference in characteristics due to cathode temperature was observed during Sc deposition.

第3図は、Sc蒸着速度5人/min陰極温度800℃
とした時のSc蒸着膜厚の電子放出特性に及ぼす影響を
見たものである。100Å以下でOs被被覆含浸形極特
性を上回った。動作温度に換算すると従来の含浸形陰極
6よりも約200℃、Os被被覆含浸形極7よりも約1
00℃低くできる。Sc膜厚が20人の時に真空容器か
ら取り出し、陰極表面のオージェ分析した時のオージェ
・スペクトルを第2図に示す。他の場合にもほぼ同じス
ペクトルを示し、陰極表面に(Ba、Sc。
Figure 3 shows the Sc deposition rate of 5 persons/min and the cathode temperature of 800°C.
The effect of the thickness of the Sc deposited film on the electron emission characteristics was observed when the following conditions were met. At 100 Å or less, the properties exceeded those of the Os-coated impregnated type. In terms of operating temperature, it is approximately 200°C lower than the conventional impregnated cathode 6, and approximately 1°C lower than the Os-coated impregnated electrode 7.
Can be lowered by 00℃. Fig. 2 shows the Auger spectrum obtained when the cathode surface was subjected to Auger analysis after being taken out from the vacuum container when the Sc film thickness was 20 mm. Almost the same spectra were shown in other cases, with (Ba, Sc) on the cathode surface.

0)複合化合物層が形成したことが分る。0) It can be seen that a composite compound layer was formed.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、WあるいはWを主成分とする陰
極表面を有する含浸形陰極表面に、Scを被覆し、(B
a、Sc、O)複合化合物層を形成させることによって
、動作温度を従来型の含浸形陰極よりも約200℃、O
s被被覆含浸形極よりも約100℃低く出来、また、動
作温度を低く出来た結果、陰極からのBa、BaOの蒸
発速度を1〜2桁小さく出来るなど優れた特性を有する
含浸形陰極が得られた。
As described above, according to the present invention, an impregnated cathode surface having a cathode surface mainly composed of W or W is coated with Sc, and (B
a, Sc, O) By forming a composite compound layer, the operating temperature can be lowered by about 200°C and O
sThe impregnated cathode has excellent properties such as being able to operate at a temperature approximately 100°C lower than the coated impregnated electrode, and as a result of lowering the operating temperature, the evaporation rate of Ba and BaO from the cathode can be reduced by one to two orders of magnitude. Obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は含浸形陰極と障壁層、スリーブ、Wヒータを組
み合せた組立図、第2図は本発明の含浸形陰極表面の(
Ba、Sc、O)複合化合物層のオージェ・スペクトル
を示す図、第3図は従来型の含浸形陰極と本発明による
含浸形陰極を比較した図である。 ■・・・含浸形陰極、2・・・障壁層、3・・・スリー
ブ、4・・・ヒータ、6・・・従来の含浸形陰極の特性
、7・・・O8被覆含浸形陰極の特性、8,9,10,
11゜を1目
Figure 1 is an assembly diagram of the impregnated cathode, barrier layer, sleeve, and W heater. Figure 2 shows the surface of the impregnated cathode of the present invention.
FIG. 3 is a diagram showing an Auger spectrum of a Ba, Sc, O) composite compound layer, and is a diagram comparing a conventional impregnated cathode with an impregnated cathode according to the present invention. ■...Impregnated cathode, 2...Barrier layer, 3...Sleeve, 4...Heater, 6...Characteristics of conventional impregnated cathode, 7...Characteristics of O8 coated impregnated cathode ,8,9,10,
11° as 1st

Claims (1)

【特許請求の範囲】 ■、WもしくはWを主成分とする多孔質基体と該多孔質
基体の細孔部に含浸された電子放出物質とからなる含浸
形陰極表面に(Ba、Sc、O)複合化合物層を有する
ことを特徴とする含浸層陰極。 2、上記(Ba、Sc、O)複合化合物層の厚さは、5
〜100人としたことを特徴とする特許゛請求の範囲第
1項記載の含浸層陰極。
[Claims] (2) On the surface of an impregnated cathode consisting of a porous substrate mainly composed of W or W and an electron-emitting substance impregnated into the pores of the porous substrate (Ba, Sc, O). An impregnated layer cathode characterized by having a composite compound layer. 2. The thickness of the above (Ba, Sc, O) composite compound layer is 5
The impregnated layer cathode according to claim 1, characterized in that the number of the impregnated layer cathodes is 100 to 100 people.
JP59025026A 1984-02-15 1984-02-15 Impregnated cathode Pending JPS60170136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59025026A JPS60170136A (en) 1984-02-15 1984-02-15 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59025026A JPS60170136A (en) 1984-02-15 1984-02-15 Impregnated cathode

Publications (1)

Publication Number Publication Date
JPS60170136A true JPS60170136A (en) 1985-09-03

Family

ID=12154398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59025026A Pending JPS60170136A (en) 1984-02-15 1984-02-15 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPS60170136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232252A (en) * 1990-12-21 1992-08-20 Hughes Aircraft Co Sputtered scandium oxide coating for dispenser cathode and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232252A (en) * 1990-12-21 1992-08-20 Hughes Aircraft Co Sputtered scandium oxide coating for dispenser cathode and its manufacture

Similar Documents

Publication Publication Date Title
US4518890A (en) Impregnated cathode
KR900009071B1 (en) Impregnated Cathode
US2996795A (en) Thermionic cathodes and methods of making
JP6014669B2 (en) Target for barium-scandium oxide dispenser cathode
JP2746186B2 (en) Phosphor
JPS61183838A (en) Impregnated type cathode
US5041757A (en) Sputtered scandate coatings for dispenser cathodes and methods for making same
JPS6113526A (en) Impregnated cathode
JPH03173034A (en) Scan dart cathode and its manufacture
JPS60170136A (en) Impregnated cathode
US5065070A (en) Sputtered scandate coatings for dispenser cathodes
JPH0765693A (en) Oxide cathode
US5199059A (en) X-ray tube anode with oxide coating
JP2585232B2 (en) Impregnated cathode
KR100247820B1 (en) Cathode for electron tube
JPH0782800B2 (en) Electron tube cathode
US2792273A (en) Oxide coated nickel cathode and method of activation
JPS6398930A (en) Impregnated cathode
JPS5918539A (en) Impregnated cathode
JPS5979934A (en) Impregnated cathode
JPS60170137A (en) hot cathode
JPH02186524A (en) Cathode for electronic tube
JPS63221527A (en) Impregnated cathode
JPS5949131A (en) Electron tube cathode
JPH0384825A (en) hot cathode