[go: up one dir, main page]

JPS6016895B2 - Method for separating and recovering each layer of a coextruded multilayer laminate - Google Patents

Method for separating and recovering each layer of a coextruded multilayer laminate

Info

Publication number
JPS6016895B2
JPS6016895B2 JP54002225A JP222579A JPS6016895B2 JP S6016895 B2 JPS6016895 B2 JP S6016895B2 JP 54002225 A JP54002225 A JP 54002225A JP 222579 A JP222579 A JP 222579A JP S6016895 B2 JPS6016895 B2 JP S6016895B2
Authority
JP
Japan
Prior art keywords
resin
polyolefin resin
layer
adhesive
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54002225A
Other languages
Japanese (ja)
Other versions
JPS5595525A (en
Inventor
一弘 舛本
正治 三登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP54002225A priority Critical patent/JPS6016895B2/en
Publication of JPS5595525A publication Critical patent/JPS5595525A/en
Publication of JPS6016895B2 publication Critical patent/JPS6016895B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0237Mechanical separating techniques; devices therefor using density difference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明はポリオレフィン樹脂と極性樹脂とからなる共押
出多層積層物の各層を分離回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and recovering each layer of a coextruded multilayer laminate comprising a polyolefin resin and a polar resin.

近年ポリオレフィン樹脂と極性樹脂、例えばポリアミド
樹脂、エチレンービニルアルコール共重合体等を共押出
しすることにより製造された多層フィルムや多層積層中
空容器が食品包装その他の分野で使用されている。
In recent years, multilayer films and multilayer laminated hollow containers manufactured by coextruding polyolefin resins and polar resins such as polyamide resins and ethylene-vinyl alcohol copolymers have been used in food packaging and other fields.

かかる積層物においては実用時に層間剥離を生じないよ
うに例えばポリオレフィン樹脂として不飽和カルボン酸
をグラフトして接着性を付与した変性樹脂を用いて、共
押出時にポリオレフィン樹脂と極性樹脂との層間接着性
を強固になさしめている。一方、プラスチックの成形に
おいては製造時に生ずる不良品、ばり、トリミングロス
等のスクラップが必ず創生されるため、経済性の点から
かかるスクラップの回収、再生技術が必要とされる。積
層物のスクラップを回収、再使用する場合は、積層物を
いったん各層に分離後回収しなければならないが、積層
物の層間接着性を強固にする試みが逆に積層物のスクラ
ップの各層への機械的分離をますます困難にしている。
本発明者らはかかる状況において鋭意検討した結果、ポ
リオレフイン樹脂として特定の組成のものを用い、特定
の条件で処理することにより共押出多層積層物の各層を
容易にかつ高収率で分離回収する方法を見出したもので
ある。
In such a laminate, in order to prevent delamination during practical use, for example, a modified resin to which an unsaturated carboxylic acid is grafted as a polyolefin resin to give adhesiveness is used, and the interlayer adhesion between the polyolefin resin and the polar resin is improved during coextrusion. It strengthens the On the other hand, in the molding of plastics, scraps such as defective products, burrs, trimming losses, etc., are always generated during the manufacturing process, so techniques for collecting and recycling such scraps are required from an economic point of view. In order to collect and reuse scraps of laminates, the laminate must be separated into each layer and then collected. making mechanical separation increasingly difficult.
As a result of intensive studies under such circumstances, the present inventors found that by using a polyolefin resin with a specific composition and treating it under specific conditions, each layer of a coextruded multilayer laminate can be easily separated and recovered in a high yield. We have found a way.

すなわち、本発明は、接着性ポリオレフィン樹脂と樋性
樹脂との隣接積層構造を有するポリオレフィン樹脂と極
性樹脂との英押出多層積層物を各層に分離回収する方法
において、極性樹脂層に隣接する俵離ボリオレフィン樹
脂として次式{ィ}Y>X−15q○
……【イ}〔但し、Yは接着性ポリオレフィ
ン樹脂の結晶化温度(00)、Xはビガット軟化点〕を
満足する樹脂を用い、共押出積層物の積層界面付近の温
度が製造時の余熱により前記(×−15℃)以上の温度
にある状態で粉砕して細片化した後、各層の樹脂別に分
離し、回収することを特徴とするポリオレフィン樹脂と
極性樹脂とからなる共押出多層積層物を各層に分離回収
する方法である。
That is, the present invention provides a method for separating and collecting each layer of an extruded multilayer laminate of a polyolefin resin and a polar resin having an adjacent laminate structure of an adhesive polyolefin resin and a gutter resin, in which a bale separation adjacent to a polar resin layer is used. As a polyolefin resin, the following formula {i}Y>X-15q○
...[A] [However, Y is the crystallization temperature (00) of the adhesive polyolefin resin, X is the Vigat softening point], and the temperature near the lamination interface of the coextruded laminate is equal to the residual heat during manufacturing. A coextruded multi-layer laminate consisting of a polyolefin resin and a polar resin, characterized in that the resin is pulverized into small pieces at a temperature of (x-15°C) or higher, and then the resin of each layer is separated and recovered. This is a method of separating and collecting materials into each layer.

本発明で対象とする多層積層物は例えば、接着性ポリオ
レフィン樹脂/極性樹脂の2層構造、ポリオレフィン樹
脂/接着性ポリオレフィン樹脂/極性樹脂、接着性ポリ
オレフィン樹脂/極性樹脂/接着性ポリオレフィン樹脂
、樋性樹脂/接着性ポリオレフィン樹脂/極性樹脂の3
層構造、ポリオレフィン樹脂/接着性ポリオレフィン樹
脂/樋性樹脂/接着性ポリオレフィン樹脂の4層構造等
少なくとも接着性ポリオレフィン樹脂/極性樹脂の積層
構造を含むものである。
The multilayer laminates targeted by the present invention include, for example, a two-layer structure of adhesive polyolefin resin/polar resin, polyolefin resin/adhesive polyolefin resin/polar resin, adhesive polyolefin resin/polar resin/adhesive polyolefin resin, and gutter structure. Resin/adhesive polyolefin resin/polar resin 3
The layered structure includes at least a laminate structure of adhesive polyolefin resin/polar resin, such as a four-layer structure of polyolefin resin/adhesive polyolefin resin/gutter resin/adhesive polyolefin resin.

本発明の方法でいう樋性樹脂とは、押出し成形性を有し
、かつ結晶性を有する重合体で、例えばナイロン6、ナ
イロン66ナイロンIQ ナイロン11、ナイロン12
等のポリアミド、ポリエチレンテレフタレート、ポリプ
ロピレンテレフタレート、ポリブチレンテレフタレート
、ポリエチレンテレフタレートノイソフタレート等のポ
リエステル、エチレン舎量50モル%以下のエチレン・
ピニルアルコール共重合体、ポリカーボネート、ポリア
セタール等を挙げることができる。
The gutter resin referred to in the method of the present invention is a polymer having extrusion moldability and crystallinity, such as nylon 6, nylon 66, nylon IQ, nylon 11, nylon 12.
Polyamides such as polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyesters such as polyethylene terephthalate noisophthalate, ethylene with an ethylene content of 50 mol% or less
Examples include pinyl alcohol copolymers, polycarbonates, and polyacetals.

本発明におけるポリオレフィン樹脂とは、ヱチレン、プ
ロピレン、1ープテン、1−ペンテン等のQ−オレフイ
ンの単独重合体、もしくは前記したQーオレフィンの2
成分以上からなる英重合体、または上記Q−オレフィン
を主成分とし、それとQーオレフィン以外の他のビニル
系単量体、例えば、ブタジヱン、イソブレン等の共役ジ
ェン、酢酸ビニル、プロピオン酸ビニル等の脂肪酸ビニ
ル、アクリル酸、メタクリル酸等の不飽和カルボン酸お
よびその誘導体等とその共重合体等であり、本発明にお
ける接着性ポリオレフィン樹脂をも包含する概念である
The polyolefin resin in the present invention is a homopolymer of Q-olefin such as ethylene, propylene, 1-butene, 1-pentene, or 2 of the above-mentioned Q-olefins.
A polymer consisting of the above-mentioned Q-olefin as a main component, and other vinyl monomers other than Q-olefin, such as conjugated diene such as butadiene and isobrene, and fatty acids such as vinyl acetate and vinyl propionate. These include unsaturated carboxylic acids such as vinyl, acrylic acid, and methacrylic acid, derivatives thereof, and copolymers thereof, and the concept also includes adhesive polyolefin resins in the present invention.

本発明のポリオレフィン樹脂には、耐熱安定性、耐候安
定剤、帯電防止剤、スリップ剤、ブロッキング防止剤、
難燃剤、顔料、染料、充填剤、補強剤、軟化剤、ゴム状
重合体等を含んでいてもよい。本発明における接着性ポ
リオレフィン樹脂とは、磁性材料と熱接着性を有するポ
リオレフィン樹脂であって、例えばエチレン、プロピレ
ン、1ーブテン等のQーオレフインを主成分とし、これ
らと極性ピニル単量体との共重合体、あるいはこれらの
共重合体と未変性ポリオレフィンとの組成物、または未
変性ポリオレフィン樹脂に樋性ビニル単量体をグラフト
変性した変性ポリオレフィン、あるいはこのような変性
ポリオレフインと未変性ポリオレフィンとの組成物であ
る。
The polyolefin resin of the present invention has heat resistance stability, weather resistance stabilizer, antistatic agent, slip agent, antiblocking agent,
It may also contain flame retardants, pigments, dyes, fillers, reinforcing agents, softeners, rubbery polymers, and the like. The adhesive polyolefin resin in the present invention is a polyolefin resin that has thermal adhesion properties to a magnetic material, and is mainly composed of Q-olefins such as ethylene, propylene, and 1-butene, and is composed of Q-olefins such as ethylene, propylene, 1-butene, etc. A composition of a polymer or a copolymer thereof and an unmodified polyolefin, a modified polyolefin obtained by grafting a gutter vinyl monomer onto an unmodified polyolefin resin, or a composition of such a modified polyolefin and an unmodified polyolefin. It is a thing.

本発明における前記した極性ビニル単量体としては、例
えばェポキシ基を有するビニル単量体、例えばグリシジ
ルアクリレート、グリシジルメタクリレート等、不飽和
カルボン酸またはその誘導体、例えばアクリル酸、メタ
クリル酸、マレィン酸、フマル酸、ィタコン酸およびこ
れらの酸無水物、ェステル、アミド、ィミド、金属塩な
どを挙げることができる。
Examples of the above-mentioned polar vinyl monomers in the present invention include vinyl monomers having epoxy groups, such as glycidyl acrylate and glycidyl methacrylate, unsaturated carboxylic acids or derivatives thereof, such as acrylic acid, methacrylic acid, maleic acid, and fumaric acid. Examples include acids, itaconic acid, and their acid anhydrides, esters, amides, imides, metal salts, and the like.

また本発明の方法でいう未変性ポリオレフィンとは、例
えばエチレン、プロピレン、1−ブテン、1ーベンテン
、3ーメチルー1ープテン、1ーヘキセン、4ーメチル
ー1ーベンテン等のQ−オレフィンの単独重合体、もし
くは上記Qーオレフインの2種以上のブロックもしくは
ランダム共重合体、または上記Qーオレフィンとブタジ
ェン、ィソプレン等の共ジェンとの共重合体等で明確な
融点および結晶化温度を有する結晶性重合体をいう。
In addition, the unmodified polyolefin referred to in the method of the present invention is, for example, a homopolymer of Q-olefin such as ethylene, propylene, 1-butene, 1-bentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-bentene, or the above-mentioned Q-olefin. A crystalline polymer having a definite melting point and crystallization temperature, such as a block or random copolymer of two or more types of Q-olefins, or a copolymer of the above Q-olefin and a cogen such as butadiene or isoprene.

なお、本発明における接着性ポリオレフィン樹脂には組
成物全体に対し、接着性ポリオレフィン樹脂がマトリッ
クスを形成しうる範囲の例えば6の重量%までの、好ま
しくは5の重量%までのゴム状重合体、例えばエチレン
・プロピレンゴム、エチレン・プロピレン・ジエンゴム
、ポリイソプチレン、ポリプタジェン等が含まれていて
もよい。本発明の第1の特徴は接着性ポリオレフィン樹
脂として次式【ィーY>X−15午○
……{イ}〔但しYは接着性ポリオレフィ
ン樹脂の結晶化温度(00)、Xはビガット軟化点(0
0)〕を満足する樹脂を選択した点にある。
In addition, the adhesive polyolefin resin in the present invention includes a rubber-like polymer in a range in which the adhesive polyolefin resin can form a matrix, for example, up to 6% by weight, preferably up to 5% by weight, based on the entire composition. For example, ethylene propylene rubber, ethylene propylene diene rubber, polyisoptylene, polyptadiene, etc. may be included. The first feature of the present invention is that the adhesive polyolefin resin has the following formula:
...{i} [However, Y is the crystallization temperature (00) of the adhesive polyolefin resin, and X is the Vigat softening point (0
0)] was selected.

なお本発明におけるビガツト軟化点とは、ASTM−D
−1525に規定された方法で測定された温度をいう。
In addition, the Vigatto softening point in the present invention is defined as ASTM-D
-1525.

通常高密度ポリエチレンのビガット軟化点は120〜1
30午0であり、高圧法低密度ポリエチレンのそれは9
0〜100℃、ポリプロピレンは140〜155q0、
酢酸ビニル舎量14重量%のエチレン・酢酸ビニル共重
合体は65〜70q0である。本発明における結晶化温
度はDSC(示差走査型熱量計)により5℃/minの
速度で測定した結晶化による発熱ピークの位置の温度で
ある。ポリオレフィン樹脂が2種以上の樹脂の組成物か
らなる場合であって、結晶化による発熱ピークが2つ以
上出現する場合は、第1にマトリックスを形成する樹脂
の結晶化温度を、マトリックスを形成する樹脂が複数あ
る場合は、結晶化温度の高い方の樹脂の結晶化温度を組
成物の結晶化温度とする。通常高密度ポリエチレンの結
晶化温度は100〜115℃であり、ポリプロピレンで
は105〜120qoである。以上のことから、通常の
エチレン単独重合体やプロピレン単独重合体は、(ビガ
ット軟化点一15℃)の方が結晶化温度より高いかほぼ
同等であるため、本発明ではそれら重合体を各々単独で
接着性ポリオレフィン樹脂としては使用困難であること
は当業者の容易に理解しうるところであろう。
Normally, the Vigat softening point of high-density polyethylene is 120 to 1.
30:00, and that of high-pressure low-density polyethylene is 9
0-100℃, polypropylene 140-155q0,
An ethylene/vinyl acetate copolymer containing 14% by weight of vinyl acetate has an amount of 65 to 70q0. The crystallization temperature in the present invention is the temperature at the position of the exothermic peak due to crystallization measured by DSC (differential scanning calorimeter) at a rate of 5° C./min. In the case where the polyolefin resin is composed of a composition of two or more resins, and two or more exothermic peaks due to crystallization appear, first, the crystallization temperature of the resin forming the matrix is adjusted to When there are multiple resins, the crystallization temperature of the resin with a higher crystallization temperature is taken as the crystallization temperature of the composition. Usually, the crystallization temperature of high density polyethylene is 100 to 115°C, and that of polypropylene is 105 to 120 qo. From the above, the crystallization temperature of ordinary ethylene homopolymers and propylene homopolymers (Vigat softening point - 15°C) is higher than or almost the same as that of the crystallization temperature, so in the present invention, these polymers are used individually. Those skilled in the art will readily understand that this is difficult to use as an adhesive polyolefin resin.

言い換えると、本発明で使用しうる接着性ポリオレフィ
ン樹脂としては、例えば、‘a’高給晶化温度を有する
樹脂と低結晶化温度を有する樹脂の組成物、例えば、ポ
リプロピレンあるいは高密度ポリエチレン等の高給晶化
温度を有する樹脂と低密度ポリエチレン、エチレン、プ
ロピレン共重合体、エチレン・1ープテン共重合体、エ
チレン・酢酸ビニル共重合体、エチレン・アクリル酸ェ
ステル共重合体あるし、はエチレン・メタクリル酸共重
合体の部分金属塩等の低結晶化温度を有する樹脂との組
成物、【bー 結晶性ポリオレフィンとゴム状重合体と
の組成物、例えば、ポリエチレン、ポリプロピレン、ポ
リー1ーブテン等の結晶性ポリオレフィンとエチレン・
プロピレンゴム、ポリイソブチレンあるいはこれらの部
分架橋物等のゴム状重合体との組成物、‘c} 高結晶
化温度の連鎖部分と、低結晶化温度の連鎖部分を有する
ブロック共重合体、例えばプロピレン・エチレンブロッ
ク共重合体、プロピレン・エチレン/プロピレンブロツ
ク共重合体、エチレン・エチレンノプ。
In other words, the adhesive polyolefin resin that can be used in the present invention includes, for example, a composition of a resin having a high crystallization temperature and a resin having a low crystallization temperature, for example, a composition with a high crystallization temperature such as polypropylene or high density polyethylene. Low-density polyethylene, ethylene, propylene copolymer, ethylene/1-butene copolymer, ethylene/vinyl acetate copolymer, ethylene/acrylic acid ester copolymer, ethylene/methacrylic acid, etc. Compositions with resins having a low crystallization temperature such as partial metal salts of copolymers, [b- Compositions of crystalline polyolefins and rubbery polymers, such as crystalline polyethylene, polypropylene, poly-1-butene, etc.] Polyolefin and ethylene
Compositions with rubber-like polymers such as propylene rubber, polyisobutylene, or partially crosslinked products thereof, 'c} Block copolymers having a chain portion with a high crystallization temperature and a chain portion with a low crystallization temperature, such as propylene・Ethylene block copolymer, propylene/ethylene/propylene block copolymer, ethylene/ethylene nop.

ピレンブロツク共重合体等である。勿論、上記組成物又
は共重合体においては、すでに説明したようにポリオレ
フィン樹脂成分の少なくとも一部が磁性ビニル単量体を
含有する変性ポリオレフィンで構成されているものであ
る。本発明で使用しうる接着性ポリオレフィン組成物に
つき高密度ポリエチレンを例にとって更に詳しく説明す
れば変性高密度ポリエチレンを含む高密度ポリエチレン
の結晶化温度が100〜115qoであり、(ビガツト
軟化点一1yo)はそれより2〜7℃程度高くなる。
These include pyrene block copolymers. Of course, in the above composition or copolymer, at least a part of the polyolefin resin component is composed of a modified polyolefin containing a magnetic vinyl monomer, as described above. To explain in more detail the adhesive polyolefin composition that can be used in the present invention, taking high-density polyethylene as an example, the crystallization temperature of high-density polyethylene including modified high-density polyethylene is 100 to 115 qo (Vigat softening point - 1 yo). is about 2 to 7°C higher than that.

それに対し変性高密度ポリエチレンを含む高密度ポリエ
チレン:エチレン・プロピレンゴム=80:20の組成
物の(ビガット軟化点一15qo)は90〜100℃で
あり、70:30の組成物では85〜95q0になり、
50:50では45〜55つ0になる。従って、結晶化
温度と(ビガット軟化点−15oo)との温度差を大き
くするには、低ビガット軟化点成分を多くすればよいの
であるが、積層物使用時の耐熱接着性が劣るようになる
ため、自らその配合量は製限される。本発明の方法を実
施するためには、接着性ポリオレフィン組成物の(ピガ
ット軟化点一15qo)が50℃以上でかつ該組成物の
結晶化温度以下、好ましくは結晶化温度より10qo以
下低い温度になるよう組成比を選択することが好ましい
。変性高密度ポリエチレンを含む高密度ポリエチレンと
エチレン・プロピレンゴムとからなる組成比の場合、組
成物全体に対し、変性高密度ポリエチレンを含む高密度
ポリエチレンが95ないし4の重量%、好ましくは90
なし、し5の重量%、とくに80ないし6の重量%、エ
チレン・プロピレンゴムが5ないし60重量%、好まし
くは10なし、し5の重量%、とくに20ないし4の重
量%の範囲になるよう選択することが好ましい。上記し
たポリオレフイン樹脂層と極性樹脂層とからなる多層積
層構造物は、通常ポリオレフィン樹脂と極性樹脂とをを
それぞれ別個の押出機で溶融し、先端で流路の合流する
一合のダイにより所定の形状に層状に押出される。
On the other hand, a composition containing modified high-density polyethylene with a ratio of high-density polyethylene: ethylene/propylene rubber = 80:20 (Vigat softening point -15 qo) is 90 to 100°C, and a composition with a ratio of 70:30 has a softening point of 85 to 95 q0. Become,
At 50:50, it becomes 45-55 times zero. Therefore, in order to increase the temperature difference between the crystallization temperature and (Vigat softening point -15oo), it is sufficient to increase the low Vigat softening point component, but this results in poor heat-resistant adhesion when using a laminate. Therefore, its amount is limited. In order to carry out the method of the present invention, the adhesive polyolefin composition (Pigat softening point -15 qo) is heated to a temperature of 50° C. or more and below the crystallization temperature of the composition, preferably 10 qo or less below the crystallization temperature. It is preferable to select the composition ratio so that In the case of a composition ratio consisting of high-density polyethylene containing modified high-density polyethylene and ethylene propylene rubber, the high-density polyethylene containing modified high-density polyethylene is 95 to 4% by weight, preferably 90% by weight, based on the entire composition.
5 to 5% by weight, especially 80 to 6% by weight, and 5 to 60% by weight of ethylene propylene rubber, preferably 10 to 5% by weight, especially 20 to 4% by weight. It is preferable to select. The above-mentioned multilayer laminate structure consisting of a polyolefin resin layer and a polar resin layer is usually produced by melting the polyolefin resin and the polar resin in separate extruders, and then melting the polyolefin resin and polar resin in a predetermined manner by using a single die with flow channels merging at the tip. Extruded in layers to shape.

溶融時の樹脂温度は、通常樹脂の(結晶融解温度十10
℃)ないし300oo、好ましくは(結晶融解温度+2
0℃)ないし270℃であり、両樹脂層の温度の多くの
場合等しくなされる。本発明は、このような積層構造物
の製造時に生ずる不合格品、ばり、トリミングロス等の
スクラップの処理にとくに有用な方法を提供するもので
あり、本発明の特徴は前記の方法で共押出しした後で今
だ製造時の余熱により接着性ポリオレフィン樹脂層と極
性樹脂層の界面付近が接着性ポリオレフィン樹脂のビガ
ット軟化点一15℃以上の温度にある状態で好ましくは
スクラップよりも低温の雰囲気下で積層物を粉砕するこ
とによりポリオレフィン樹脂層と極性樹脂層とを容易に
剥離し得た点にある。
The resin temperature at the time of melting is usually the resin's (crystal melting temperature 110
℃) to 300oo, preferably (crystal melting temperature +2
0° C.) to 270° C., and the temperatures of both resin layers are often made equal. The present invention provides a particularly useful method for disposing of scraps such as rejects, burrs, and trimming losses generated during the production of such laminated structures. After that, the area near the interface between the adhesive polyolefin resin layer and the polar resin layer is still at a temperature of 15°C or more below the Vigat softening point of the adhesive polyolefin resin due to residual heat during manufacturing, preferably in an atmosphere lower than that of the scrap. The point is that the polyolefin resin layer and the polar resin layer can be easily separated by crushing the laminate.

すなわち本発明者らが共押出いこより得られた接着性ポ
リオレフィン樹脂層と極性樹脂層とからなる多層積層物
の界面の温度と層間接着性との関係を検討した結果、両
層間の層間接着性は接着性ポリオレフィン樹脂のビガッ
ト軟化点一15q0の温度を境に顕著に変化し、かかる
温度以上では著しく弱く、かかる温度より低い温度にな
るにつれて急激に増加する傾向があり、このことから積
層物を接着界面付近の温度が接着性ポリオレフィン樹脂
の(ビガット軟化点−15oo)以上、好ましくはビガ
ット軟化点一1oo○以上の温度、特に好ましくはビガ
ット欧化点以上の温度で粉砕すれば接着性ポリオレフィ
ン樹脂層と極性樹脂層とが容易に剥離しうろことを見出
したものである。粉砕時の接着性ポリオレフィン樹脂層
と極性樹脂層の界面付近の温度はまた、いずれの樹脂の
結晶化温度以下でなければならない。界面付近の温度が
いずれか一方もしくは両方の樹脂の結晶化温度より上に
ある場合、いずれか一方もしくは両方の樹脂が溶融して
いる場合には、溶融している樹脂層が他の樹脂に粘着し
た状態で粉砕され、両届の分離が困難になる。もっとも
、本発明の方法においては、積層物が共押出で製造され
る時の余熱を利用するものであり、粉砕処理は積層物の
樹脂糧よりも低温度の雰囲気下で行えば、粉砕中に積層
物の温度は容易に結晶化温度以下になりうる。本発明の
方法では、共押出によって得た多層積層物を粉砕する。
積層物の粉砕は例えば、衝撃、奥断、摩擦、あるいはこ
れらの組合せ等の力により被粉砕物を粉砕する例えばハ
ンマーミル、カッターミル、パルベライザー、ダブルロ
ールクラツシヤー、ローラーミル等の粉砕装置で行えこ
とができる。接着性ポリオレフィン層と極性樹脂層の界
面付近の温度が上記した温度範囲にある時粉砕すること
により、ポリオレフィン層と極性樹脂層とは剥離しなが
ら細片化され、生成された細片は、ポリオレフィンの細
片と極性樹脂の細片が混合されたものになる。
That is, as a result of the present inventors' investigation of the relationship between the interfacial temperature and interlayer adhesion of a multilayer laminate consisting of an adhesive polyolefin resin layer and a polar resin layer obtained by coextrusion, the interlayer adhesion between both layers was determined. changes significantly at a temperature of 15q0 below the Vigat softening point of the adhesive polyolefin resin, is extremely weak above this temperature, and tends to increase rapidly as the temperature drops below this temperature. The adhesive polyolefin resin layer can be formed by grinding at a temperature near the adhesive interface of the adhesive polyolefin resin (Vigat softening point -15oo) or higher, preferably at a temperature higher than the Vigat softening point -1oo○, particularly preferably at a temperature higher than the Vigat Europeanization point. It was discovered that scales can be easily peeled off from the polar resin layer. The temperature near the interface between the adhesive polyolefin resin layer and the polar resin layer during pulverization must also be below the crystallization temperature of either resin. If the temperature near the interface is above the crystallization temperature of either or both resins, or if either or both resins are molten, the molten resin layer will stick to the other resin. It is crushed in a state in which it is crushed, making it difficult to separate the two notifications. However, in the method of the present invention, residual heat is used when the laminate is manufactured by coextrusion, and if the pulverization process is performed in an atmosphere with a temperature lower than that of the resin material of the laminate, there will be no residual heat during the pulverization. The temperature of the laminate can easily be below the crystallization temperature. In the method of the invention, the multilayer laminate obtained by coextrusion is ground.
The laminate can be crushed using a crushing device such as a hammer mill, cutter mill, pulverizer, double roll crusher, or roller mill, which crushes the object by using forces such as impact, cutting, friction, or a combination of these. can be done. By pulverizing when the temperature near the interface between the adhesive polyolefin layer and the polar resin layer is within the above temperature range, the polyolefin layer and the polar resin layer are separated into pieces, and the generated pieces are made of polyolefin. The result is a mixture of strips of resin and strips of polar resin.

これらの細片の混合物からそれぞれの樹脂の細片を分離
する方法としては、例えば極性樹脂とポリオレフィン樹
脂の比重差を利用した比重分離法、電気的特性を利用し
た静電分離法、各層の厚さの違いと利用した風力分離法
等を挙げることができる。
Methods for separating each resin piece from a mixture of these pieces include, for example, a specific gravity separation method that uses the difference in specific gravity between a polar resin and a polyolefin resin, an electrostatic separation method that uses electrical properties, and a method that uses the thickness of each layer. Examples include the differences in power and the wind separation method used.

分離回収した極性樹脂およびポリオレフィン樹脂はそれ
ぞれ再造粒してそのままあるいは未使用の樹脂を混合し
て再利用することができる。
The separated and recovered polar resin and polyolefin resin can be re-granulated and reused as they are or by mixing unused resin.

本発明の方法によれば、後述の実施例に示すように積層
物の分離回収率が優れ、かつまた通常の熱可塑性樹脂の
スクラップ処理装置と分離装置とを組合わせた装置のみ
しか要しないため、経済的である。次に実施例を挙げて
本発明につき更に具体的に説明するが、本発明はその要
旨を越えない限りこれらの実施例に何ら限定されるもの
ではない。
According to the method of the present invention, the separation and recovery rate of the laminate is excellent as shown in the examples below, and only a device that combines a normal thermoplastic resin scrap processing device and a separation device is required. , economical. EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples unless the gist thereof is exceeded.

実施例 1高密度ポリエチレン(メルトィンデックス(
190oo)0.03)を23000で溶融し、3層積
層シート用ダィに供給した。
Example 1 High density polyethylene (melt index)
190oo)0.03) was melted at 23000 and fed to a die for a three-layer laminated sheet.

一方、高密度ポリエチレン(メルトインデックス14)
に無水マレィン酸2重量%を付加したもの(以下変性P
Eと略す)10重量部、高密度ポリエチレン(メルトィ
ンデックス0.3 以下HDPEと略す)6の雲量部、
およびエチレン・プロピレンゴム(エチレン含量80モ
ル。0、メルトインデツクス1.2、以下EPRと略す
)30重量部とからなる接着性ポリエチレン組成物(組
成物の結晶化温度106午0、ピガット軟化点105q
0)を別の押出機で230qoに溶融し、前記ダィに供
給した。
On the other hand, high-density polyethylene (melt index 14)
to which 2% by weight of maleic anhydride was added (hereinafter referred to as modified P)
E) 10 parts by weight, high density polyethylene (melt index 0.3 hereinafter abbreviated as HDPE) 6 parts by weight,
and 30 parts by weight of ethylene propylene rubber (ethylene content: 80 mol.0, melt index: 1.2, hereinafter abbreviated as EPR) 105q
0) was melted to 230 qo in another extruder and fed to the die.

更にナイロン(東レ製、アミランCMIOII)を第3
の押出機で溶融し、同じく前記ダィに供艶舎した。ダイ
は別個の押出機に対応するマニホールドを複数個有し、
マニホールドを出た後リップの手前で樹脂同志が打合う
ようになっている。ダィの中は15比収、リップは5〜
6肋に調整されている。この結果、HDPE層5柳、接
着性ポリエチレン組成物層0.1肌、ナイロン層0.2
肌の3層彼層シートを得たこの複層シートのナイロン層
とポリエチレン層との剥離強度の温度依存性を測定した
結果を第1表に示す。前記したと同様の方法でダィから
共押出しした直後の複層シートを一定の長さに切り取っ
て、紙製容器中に放置し、接着性ポリエチレン層付近に
差し込んだ樹脂温度計による指示温度Tが所定の値とな
った時、複層シートを約2k9回転刃式粉砕機(朗来鉄
工社製)に投入し、平均粒径4肌程度の細片に粉砕した
。次に上記方法で得られた粉砕品を目視によりナイロン
のみの細片a、HDPEと接着性ポリエチレン組成物と
からなる細片b、ナイロン/接着性ポリエチレン/HD
PEの積層物の細片cに手別けした後それぞれの重量を
測定し、式〔【a’十‘bー〕/〔‘a}+‘b’十‘
d〕×100:Pにより分離率(P)を求めた。以上の
方法により得られた積層シートの界面付近の温度(TO
O)と粉砕による分離率(P)の関係を第2表に示す。
実施例 2 接着性ポリエチレン組成物としてHDPE7の重量部、
EPR2の重量部、および変性PEI■重量部とからな
る組成物(組成物の結晶化温度106℃、ビガツト軟化
点11が○)を用いる以外は実施例1と同様に行った。
Furthermore, nylon (manufactured by Toray Industries, Amiran CMIO II) was added as a third layer.
It was melted in the same extruder and applied to the same die. The die has multiple manifolds corresponding to separate extruders;
After leaving the manifold, the resins collide in front of the lip. The inside of the die is 15% yield, the lip is 5~
It is adjusted to 6 ribs. As a result, HDPE layer 5 willow, adhesive polyethylene composition layer 0.1 skin, nylon layer 0.2
Table 1 shows the results of measuring the temperature dependence of the peel strength between the nylon layer and the polyethylene layer of this multilayer skin sheet. Immediately after coextruding from the die in the same manner as described above, the multilayer sheet is cut to a certain length, placed in a paper container, and the temperature T indicated by a resin thermometer inserted near the adhesive polyethylene layer is measured. When it reached a predetermined value, the multilayer sheet was put into a 2k9 rotary blade crusher (manufactured by Rorai Tekko Co., Ltd.) and crushed into small pieces with an average particle size of about 4 grains. Next, the pulverized products obtained by the above method were visually inspected to determine whether the pieces a were made of nylon only, the pieces b were made of HDPE and an adhesive polyethylene composition, and the pieces were made of nylon/adhesive polyethylene/HD.
After manually dividing the PE laminate into strips c, measure the weight of each piece and use the formula: [[a'ten'b-]/['a}+'b'ten'
d] × 100: The separation rate (P) was determined by P. The temperature near the interface of the laminated sheet obtained by the above method (TO
Table 2 shows the relationship between the separation rate (P) and the separation rate (P) by pulverization.
Example 2 Parts by weight of HDPE7 as adhesive polyethylene composition,
Example 1 was carried out in the same manner as in Example 1, except that a composition (crystallization temperature of the composition: 106° C., Vigat softening point: 11) consisting of parts by weight of EPR2 and 1 part by weight of modified PEI was used.

結果を第1表、第2表に示す。実施例 3接着性ポリエ
チレン組成物としてHDPE40重量部、EPR5の重
量部、および変性PEIの重量部とからなる組成物(組
成物の結晶化温度105℃、ビガツト軟化点65qo)
を用いる以外は実施例1と同様に行った。
The results are shown in Tables 1 and 2. Example 3 An adhesive polyethylene composition consisting of 40 parts by weight of HDPE, parts by weight of EPR5, and parts by weight of modified PEI (crystallization temperature of the composition: 105° C., Vigatto softening point: 65 qo)
The same procedure as in Example 1 was carried out except that .

結果を第1表、第2表に示す。第1表 第2表 比較例 1 後着性ポリエチレン組性物として、HDPE90重量部
および変性PEIO重量部とからなる組成物(組成物の
結晶化温度10℃、ビガット軟化点126℃)を用いる
以外は実施例1と同機に行った。
The results are shown in Tables 1 and 2. Table 1 Table 2 Comparative Example 1 Other than using a composition consisting of 90 parts by weight of HDPE and parts by weight of modified PEIO (crystallization temperature of the composition: 10°C, Vigat softening point: 126°C) as a post-adhesive polyethylene composition. The test was carried out on the same aircraft as in Example 1.

Claims (1)

【特許請求の範囲】 1 接着性ポリオレフイン樹脂と極性樹脂との隣接積層
構造を有するポリオレフイン樹脂と極性樹脂との共押出
多層積層物を各層に分離回収する方法におて、極性樹脂
層に隣接する接着性ポリオレフイン樹脂として次式(イ
) Y>X−15℃……(イ) 〔但しYは接着性ポリオレフイン樹脂の結晶化温度(
℃)、Xはビカツト軟化点(℃)〕を満足する樹脂を用
い、共押出積層物の積層界面付近の温度が製造時の余熱
により前記(X−15℃)以上にある状態で積層物を粉
砕して細片化した後、各層を樹脂別に分離し、回収する
ことを特徴とするポリオレフイン樹脂と極性樹脂とから
なる共押出多層積層物を各層に分離回収する方法。 2 共押出多層積層物がポリオレフイン樹脂/接着性ポ
リオレフイン樹脂/極性樹脂の3層からなる積層物であ
ることを特徴とする特許請求の範囲第1項記載の方法。 3 ポリオレフイン樹脂が高密度ポリエチレンであるこ
とを特徴とする特許請求の範囲第2項記載の方法。4
接着性ポリオレフイン樹脂が一部もしくは全部が不飽和
カルボン酸またはその誘導体でグラフト変性したポリエ
チレンとゴム状重合体とからなる組成物であることを特
徴とする特許請求の範囲第2項記載の方法。 5 粉砕を共押出積層物の積層界面付近の温度よりも低
い雰囲気温度で行うことを特徴とする特許請求の範囲第
1項記載の方法。
[Scope of Claims] 1. In a method of separating and recovering each layer of a coextruded multilayer laminate of a polyolefin resin and a polar resin having an adjacent laminate structure of an adhesive polyolefin resin and a polar resin, The adhesive polyolefin resin is expressed by the following formula (a) Y>X-15℃...(a) [However, Y is the crystallization temperature of the adhesive polyolefin resin (
Using a resin that satisfies the Vikatsu softening point (℃), A method for separating and recovering a coextruded multilayer laminate consisting of a polyolefin resin and a polar resin into each layer, which comprises pulverizing and cutting into pieces, and then separating and recovering each layer by resin. 2. The method according to claim 1, wherein the coextruded multilayer laminate is a laminate consisting of three layers: polyolefin resin/adhesive polyolefin resin/polar resin. 3. The method according to claim 2, wherein the polyolefin resin is high-density polyethylene. 4
3. The method according to claim 2, wherein the adhesive polyolefin resin is a composition comprising polyethylene partially or wholly graft-modified with an unsaturated carboxylic acid or a derivative thereof and a rubber-like polymer. 5. The method according to claim 1, wherein the pulverization is carried out at an ambient temperature lower than the temperature near the lamination interface of the coextruded laminate.
JP54002225A 1979-01-16 1979-01-16 Method for separating and recovering each layer of a coextruded multilayer laminate Expired JPS6016895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54002225A JPS6016895B2 (en) 1979-01-16 1979-01-16 Method for separating and recovering each layer of a coextruded multilayer laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54002225A JPS6016895B2 (en) 1979-01-16 1979-01-16 Method for separating and recovering each layer of a coextruded multilayer laminate

Publications (2)

Publication Number Publication Date
JPS5595525A JPS5595525A (en) 1980-07-19
JPS6016895B2 true JPS6016895B2 (en) 1985-04-30

Family

ID=11523405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54002225A Expired JPS6016895B2 (en) 1979-01-16 1979-01-16 Method for separating and recovering each layer of a coextruded multilayer laminate

Country Status (1)

Country Link
JP (1) JPS6016895B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1011277A3 (en) * 1997-07-11 1999-07-06 Solvay SEPARATION OF COMPONENTS METHOD OF MATERIAL multitouch.

Also Published As

Publication number Publication date
JPS5595525A (en) 1980-07-19

Similar Documents

Publication Publication Date Title
US4199109A (en) Method for recovering different plastic materials from laminated articles
JP2001513035A (en) Stretched and coextruded film
US20090208765A1 (en) Thermoplastic Olefin Polymer Blend and Adhesive Films made Therefrom
WO2007122942A1 (en) Shrink film
JP2528936B2 (en) Packaging film and sheet
JPH0761649B2 (en) Scrap recovery method for multi-layer plastic sheet or film
US5194109A (en) Method for recovering scraps of multi-layer plastic sheet or film
US8062745B2 (en) Thermoplastic olefin polymer blend and adhesive films made therefrom
JP3345896B2 (en) Laminated film
CA2484122A1 (en) Multilayered polymer based thin film structure for medical grade products
JPS6016895B2 (en) Method for separating and recovering each layer of a coextruded multilayer laminate
PL174131B1 (en) Deep-drawing, thermally weldable at least three-layer polyamide and polyolefins based foil from a recycling process, containing high proportion of recyclate and method of obtaining such foil
JP3939738B1 (en) Adhesive material, method for producing the same, adhesive material using the same, and method for producing laminate
PL174088B1 (en) Deep-drawing, thermally weldable multilayered polyamide and polyolefins based foil from a recycling process, containing high proportion of recyclate and method of obtaining such foil
CN116749624A (en) Frozen stretched film and preparation process thereof
JPS58175635A (en) Highly stretched multilayered film and manufacture thereof
US7981339B2 (en) Method of producing non-mutually-adhesive polymer pellet, and apparatus therefor
US4888249A (en) Method for improving the bond strength of Saran polymers to polyamides
JPH11291422A (en) Stretch film for packaging
CN116547149A (en) Article of manufacture
JP3253402B2 (en) Laminated resin film
JPH0818404B2 (en) Metal-deposited film and laminated body thereof
JP3223350B2 (en) Wrapping film for packaging and manufacturing method thereof
JPH0948099A (en) Polyolefin-base coextrusion multi-layer film
JPH0631879A (en) Wrapping material for tire