JPS60166191A - Solder alloy with excellent fatigue resistance - Google Patents
Solder alloy with excellent fatigue resistanceInfo
- Publication number
- JPS60166191A JPS60166191A JP1965484A JP1965484A JPS60166191A JP S60166191 A JPS60166191 A JP S60166191A JP 1965484 A JP1965484 A JP 1965484A JP 1965484 A JP1965484 A JP 1965484A JP S60166191 A JPS60166191 A JP S60166191A
- Authority
- JP
- Japan
- Prior art keywords
- solder alloy
- solder
- alloy
- soldering
- fatigue resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000679 solder Inorganic materials 0.000 title claims abstract description 55
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 38
- 239000000956 alloy Substances 0.000 title claims abstract description 38
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052709 silver Inorganic materials 0.000 abstract description 11
- 239000004332 silver Substances 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 6
- 230000006866 deterioration Effects 0.000 abstract description 2
- 229910052797 bismuth Inorganic materials 0.000 abstract 1
- 229910052802 copper Inorganic materials 0.000 abstract 1
- 230000007547 defect Effects 0.000 abstract 1
- 230000003252 repetitive effect Effects 0.000 abstract 1
- 229910052718 tin Inorganic materials 0.000 abstract 1
- 238000005476 soldering Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 239000010949 copper Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910009038 Sn—P Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/268—Pb as the principal constituent
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、5n−Pb−Bi−Cu系のはんだ合金に
関”し、とくに、各種電子回路基板、半導体部品等の電
子部品のはんだ付けに際し、銀くわれを防止するととも
に、はんだ接合部の繰り返し応力に対する耐疲労特性を
向上させるものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 5n-Pb-Bi-Cu based solder alloy, and is particularly used to prevent silver corrosion when soldering electronic components such as various electronic circuit boards and semiconductor components. At the same time, it improves the fatigue resistance of the solder joint against repeated stress.
一般に、各種電子回路基板等の電子部品は、ガラス、セ
ラミック、合成樹脂等の基板の表面に、銀めっきを施し
て導電パターンを形成し、この導電パターンに端子や個
別部品等をはんだ付けしたものが使用されている。これ
らの電子部品のはんだ付けに5n−Pb系のはんだ合金
を用いた場合、基板上の銀めっき膜がはんだ合金中に拡
散溶解して、いわゆる銀くわれ現象が発生し、接合部の
はんだ付は強度が著しく低下する。また、薄型の電子回
路基板のように耐熱性の低い電子部品に融点の高いはん
だ合金ではんだ付けすると、亀裂ができて製品の品質を
害することになる。In general, electronic components such as various electronic circuit boards are made by applying silver plating to the surface of a substrate made of glass, ceramic, synthetic resin, etc. to form a conductive pattern, and then soldering terminals and individual components to this conductive pattern. is used. When a 5n-Pb-based solder alloy is used to solder these electronic components, the silver plating film on the board diffuses and dissolves into the solder alloy, causing a so-called silver hollowing phenomenon, which impedes the soldering of the joints. The strength decreases significantly. Furthermore, if a solder alloy with a high melting point is used to solder an electronic component with low heat resistance, such as a thin electronic circuit board, cracks will form, impairing the quality of the product.
このような問題を解決するはんだ合金として、従来から
各種の提案がなされておシ、たとえばSn−Pb −C
d 系(特公昭49−21028号)、Sn −Pb−
Cd−Ag 系(特公昭49’−23986号)、Bi
−Pb系、B i −Sb/Ag −Pb系(特開昭
53−113245号)、B1−8n−Pb系、B i
−Sn −Sb/Ag −Pb系(特開昭54−72
738号)、Sn−Ag−8b−Pb系(特開昭56−
144893号)、5n−Cd−P−Pb系(特公昭5
7−39880号)、Sn−Pb−REM系、Sn−P
b−Ag−REM系(特開1)B57−160594号
)、B1−Pb−8n系(特開昭58−218394号
)等が知られている。Various proposals have been made as solder alloys to solve these problems, such as Sn-Pb-C.
d series (Special Publication No. 49-21028), Sn -Pb-
Cd-Ag system (Special Publication No. 49'-23986), Bi
-Pb system, B i -Sb/Ag -Pb system (JP-A-53-113245), B1-8n-Pb system, B i
-Sn -Sb/Ag -Pb system (JP-A-54-72
No. 738), Sn-Ag-8b-Pb system (Unexamined Japanese Patent Publication No. 1983-
144893), 5n-Cd-P-Pb system (Special Publication No. 144893), 5n-Cd-P-Pb system (No.
7-39880), Sn-Pb-REM system, Sn-P
The b-Ag-REM system (Japanese Unexamined Patent Application Publication No. 1987-160594), the B1-Pb-8n system (Japanese Unexamined Patent Publication No. 58-218394), etc. are known.
これらのはんだ合金は、銀くわれが防止され、低温度で
のはんだ付けが可能である点では、すぐれた効果を有し
ているが、経済性、作業性、衛生面のほか、ぬれ性等の
点において一長一短があるほか、はんだ接合部の機械的
強度については、なお改善すべき問題が侵されていた。These solder alloys have excellent effects in that silver corrosion is prevented and soldering can be performed at low temperatures, but in addition to economy, workability, hygiene, and wettability, etc. In addition to having advantages and disadvantages in terms of the mechanical strength of solder joints, there were still problems that needed to be improved.
とくに、半導体パワーデバイスのように、金属フレーム
にシリコンペレットをはんだ付けする構造のものでは、
金属フレームとシリコンとの熱膨張率の差によって生ず
る歪が接合部のはんだによって吸収されるため、はんだ
接合部には、機械的性質として引張シ、クリープ、曲げ
などの繰り返し応力に耐えられる接合強度が要求される
。しかし、従来のはんだ合金では、接合部が繰り返し応
力を受けると、疲労によシはんだ相の特性が劣化して、
接合部が早期に音]離することか多く、半導体部品の信
頼性に大きな影響を与えるという問題がある。In particular, semiconductor power devices, which have a structure in which silicon pellets are soldered to a metal frame,
Since the strain caused by the difference in coefficient of thermal expansion between the metal frame and silicon is absorbed by the solder in the joint, the solder joint has mechanical properties that allow it to withstand repeated stresses such as tensile stress, creep, and bending. is required. However, with conventional solder alloys, when the joint is subjected to repeated stress, the properties of the solder phase deteriorate due to fatigue.
There is a problem in that the joints often separate prematurely, which greatly affects the reliability of semiconductor components.
この発明者らは、上記の問題を解決するため、種々の実
験と検討とを重ねた結果、5n−Pb−Bi系はんだ合
金に、一定範囲のCuを添加することにより、従来のは
んだ合金の銀くわれ防止効果を損うことなく、シかも繰
9返し応力に対する耐疲労特性にすぐれたはんだ合金が
得られることを見出して、この発明を完成するに至った
のである。In order to solve the above problem, the inventors conducted various experiments and studies, and found that by adding a certain range of Cu to a 5n-Pb-Bi solder alloy, the conventional solder alloy could be improved. They discovered that it is possible to obtain a solder alloy that has excellent fatigue resistance against repeated stress without impairing the effect of preventing silver corrosion, and has completed this invention.
す々わち、この発明のはんだ合金は、20〜47重量%
の5n12〜12重量%のBi、 0.03〜0.5重
量%のCu、残部pbの組成からなることを特徴とする
ものである。That is, the solder alloy of this invention has a content of 20 to 47% by weight.
5n12 to 12% by weight of Bi, 0.03 to 0.5% by weight of Cu, and the balance PB.
この発明の各成分の組成範囲およびその限定理由は、下
記の通シである。The composition range of each component of this invention and the reason for its limitation are as follows.
Snは、20重量%未満の含有量では、固相線温度が1
83℃以上となり、融点が高くなって過熱による酸化が
著しくなシ、耐熱性の低い電子部品に悪影響を与えるか
ら適当でない。また、47重量%を超えて含有すると、
Agとの金属間化合物の生成が促進されるため、硬くて
脆い接合部が形成され易く、電子回路基板上のAgめっ
き膜の溶解防止効果が減少するだけでなく、はんだ合金
の製造コストが高く々るので好ましくない。When the content of Sn is less than 20% by weight, the solidus temperature is 1.
It is not suitable because the temperature is 83° C. or higher, the melting point becomes high, oxidation is significant due to overheating, and it adversely affects electronic components with low heat resistance. Also, if it contains more than 47% by weight,
Since the formation of intermetallic compounds with Ag is promoted, hard and brittle joints are likely to be formed, which not only reduces the dissolution prevention effect of the Ag plating film on the electronic circuit board, but also increases the manufacturing cost of the solder alloy. This is not desirable because it causes
B1は、Agの溶解を抑制するのに有効な元素であるだ
けでなく、はんだ自体の融点を低下させる効果がある。B1 is not only an effective element for suppressing the dissolution of Ag, but also has the effect of lowering the melting point of the solder itself.
しかしこの発明のはんだ合金の場合、2重量%未満の含
有量では、この効果が十分でなく、また12重量%を超
えて含有すると、はんだ゛ の融点が下がシすぎるだけ
でなく、はんだ自体の粘性が減少して脆くなるので機械
的強度が低下すCuは、この発明のはんだ合金の特徴を
与える重要元素であって、微量の添加によって、機械的
強度を著しく向上させることができる。しかしこの発明
のはんだ合金においてはBiとの配合関係から0.03
重量%未満の添加では十分な改善が得られないので、最
低0.03重量%は必要である。しかし、0.5重量%
を超えて添加すると融点が高くなシ2、またはんだの機
榊的強度を低下させ、流動性にも悪影響を与えるので適
当でない。However, in the case of the solder alloy of the present invention, if the content is less than 2% by weight, this effect is not sufficient, and if the content exceeds 12% by weight, not only the melting point of the solder becomes too low, but also the solder itself Cu is an important element that provides the characteristics of the solder alloy of the present invention, and its mechanical strength can be significantly improved by adding a small amount. However, in the solder alloy of this invention, 0.03
If less than 0.03% by weight is added, sufficient improvement cannot be obtained, so a minimum amount of 0.03% by weight is required. However, 0.5% by weight
It is not appropriate to add more than 20% of the melting point because the melting point will be high, the mechanical strength of the solder will be lowered, and the fluidity will be adversely affected.
次に、この発明のはんだ合金の機械的強度について試験
した結果を、従来のSn −Pb系はんだ合金と対比し
て第1表に示す。Next, the results of testing the mechanical strength of the solder alloy of the present invention are shown in Table 1 in comparison with a conventional Sn--Pb solder alloy.
試験用試料は、JIS 6号に規定する試験片を調製し
、インストロン型万能試験機によシ引張シ強さと伸びと
を測定した。引張シ速度は10 mm 、Ajn。As test samples, test pieces specified in JIS No. 6 were prepared, and tensile strength and elongation were measured using an Instron universal testing machine. The tensile speed was 10 mm, Ajn.
試験温度は20℃である。The test temperature is 20°C.
この発明のはんだ合金の化学成分(重量%)は、Sn4
6%、848%、CuO,05%、pb残部である。The chemical composition (wt%) of the solder alloy of this invention is Sn4
6%, 848%, CuO, 05%, remainder pb.
従来のはんだ合金は、JIS−Z−3282に規定され
たA等級に属する製品である。Conventional solder alloys are products belonging to grade A specified in JIS-Z-3282.
第 1 表
第1表の数値から明らかなように、この発明のはんだ合
金の引張シ強さは、従来のはんだ合金のうちSn 60
− Pb 40と同等であるが、伸びがほぼ4倍近くま
で増大し、高い粘性を有していることがわかる。したが
って、この発明のはんだ合金は、繰シ返し応力を受けて
も劣化し難く、破断に至るまでの時間が長く、従来のは
んだ合金よシもはるかにすぐれた耐疲労特性を備えてい
ることになる。Table 1 As is clear from the values in Table 1, the tensile strength of the solder alloy of the present invention is higher than that of Sn 60 among conventional solder alloys.
- Although it is equivalent to Pb 40, the elongation is increased to nearly four times, indicating that it has high viscosity. Therefore, the solder alloy of this invention is difficult to deteriorate even when subjected to repeated stress, takes a long time to break, and has far superior fatigue resistance properties than conventional solder alloys. Become.
また、この発明のはんだ合金のはんだ付は強度の試験結
果を、従来の銀くわれ防止用はんだ合金と対比して第2
表に示す。In addition, the soldering strength test results of the solder alloy of this invention were compared with the conventional solder alloy for preventing silver corrosion.
Shown in the table.
アルミナ基板(30咽×30箭×1.0論)の表面に、
Ag−Pdのめつき膜(厚さ20μm)を形成して、そ
の上にリード線(直径1.0調のSr+めっきされた銅
線)をはんだ付けしたもの(10個)について試験した
。On the surface of the alumina substrate (30 × 30 × 1.0),
Tests were conducted on 10 pieces of Ag-Pd plated film (thickness: 20 μm) formed on which lead wires (Sr+plated copper wire with a diameter of 1.0) were soldered.
(1) はんだ付は条件
予備加熱 120℃X30sec
本加熱 230℃X40sec
ホツトブレ・−ト加熱
(2)はんだ印刷条件
メタルマスク 穴径3.0mm、厚さ0.3mm(3)
インストロン型万能試験機による引張シ試験条件
引張り速度 10 m/min
試験温度 20℃
第 2 表
第2表の結果から明らかなように、この発明のはんだ付
は強度は、従来のはんだ合金に比べて2倍以上であるこ
とが確認された。(1) Soldering conditions Preheating: 120°C x 30sec Main heating: 230°C x 40sec Hot bullet heating (2) Solder printing conditions: Metal mask hole diameter 3.0mm, thickness 0.3mm (3)
Tensile test conditions using an Instron universal testing machine Tensile speed: 10 m/min Test temperature: 20°C Table 2 As is clear from the results in Table 2, the strength of the soldering of this invention is higher than that of conventional solder alloys. It was confirmed that the amount was more than double.
なお、上記のはんだ付は強度試駆に用いたアルミナ基板
↓のAg −Pbめっき膜のはんだ合金中への拡散状態
を調べるため、はんだ付は温度250℃で20sec、
160sec間、はんだ付けを行々つたものについて、
はんだ付は部所面の組織を顕微鏡下で観察したところ、
はんだ付は時間20secではめつき膜の拡散はほとん
ど見られず、はんだ付は時間160secの場合でも、
僅かに拡散層が判別できる程度であって、めっき膜がほ
ぼ完全に近い状態で残存しており、銀くわれ防止の点に
ついても、すぐれた効果を発揮することが鼻付けされた
。The above soldering was carried out at a temperature of 250°C for 20 seconds in order to investigate the diffusion state of the Ag-Pb plating film of the alumina substrate ↓ used for strength testing into the solder alloy.
For those that were soldered for 160 seconds,
When we observed the structure of soldering parts under a microscope, we found that
Hardly any diffusion of the plating film was observed when soldering was carried out for 20 seconds, and even when soldering was carried out for 160 seconds.
The plating film remained almost completely intact, with only a slight diffusion layer being discernible, and it was noted that it was highly effective in preventing silver corrosion.
以上、説明したように、この発明めはんだ合金は、従来
のはんだ合金よシも太き々伸ひを有し、粘性がすぐれて
いるので、はんだ接合部に繰り返し応力が作用しても疲
労による特性の劣化が生ぜず、しかも銀くわれ防止効果
については、従来のこの種のはんだ合金よりもすぐれた
特性を有しているから、電子回路基板、半導体部品等の
電子部品のはんだ付は用として成型品はんだやクリーム
はんだに適用して、高信頼性および安定性が得られるだ
けでなく、その他の電気機器部品および一般工作品用の
棒状はんだ、板状はんだ、やに入りはんだ等にも広く適
用することができる。As explained above, the solder alloy of this invention has much greater elongation than conventional solder alloys and has excellent viscosity, so even if repeated stress is applied to the solder joint, it will not cause fatigue. It does not cause any deterioration in properties and has better properties than conventional solder alloys in preventing silver corrosion, so it is not suitable for soldering electronic components such as electronic circuit boards and semiconductor components. Not only can it be applied to molded solder and cream solder to achieve high reliability and stability, but also to rod-shaped solder, plate-shaped solder, flux-cored solder, etc. for other electrical equipment parts and general workpieces. Can be widely applied.
Claims (1)
を特徴とする耐疲労特性にすぐれたはんだ合金。Claims: 20-47% by weight of 5n12-12% by weight of Bj. A solder alloy with excellent fatigue resistance characterized by comprising 0.03 to 0.5% by weight of Cu and the balance PB.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1965484A JPS60166191A (en) | 1984-02-06 | 1984-02-06 | Solder alloy with excellent fatigue resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1965484A JPS60166191A (en) | 1984-02-06 | 1984-02-06 | Solder alloy with excellent fatigue resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60166191A true JPS60166191A (en) | 1985-08-29 |
JPH0124599B2 JPH0124599B2 (en) | 1989-05-12 |
Family
ID=12005229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1965484A Granted JPS60166191A (en) | 1984-02-06 | 1984-02-06 | Solder alloy with excellent fatigue resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60166191A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011658A (en) * | 1989-05-31 | 1991-04-30 | International Business Machines Corporation | Copper doped low melt solder for component assembly and rework |
US20090310318A1 (en) * | 2008-06-16 | 2009-12-17 | Cisco Technology, Inc. | Attaching a lead-free component to a printed circuit board under lead-based assembly conditions |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3725144A (en) * | 1968-04-16 | 1973-04-03 | Gen Motors Corp | Heat treatable creep resistant solder |
JPS5436751A (en) * | 1977-08-29 | 1979-03-17 | Toshiba Corp | Display device |
-
1984
- 1984-02-06 JP JP1965484A patent/JPS60166191A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3725144A (en) * | 1968-04-16 | 1973-04-03 | Gen Motors Corp | Heat treatable creep resistant solder |
JPS5436751A (en) * | 1977-08-29 | 1979-03-17 | Toshiba Corp | Display device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011658A (en) * | 1989-05-31 | 1991-04-30 | International Business Machines Corporation | Copper doped low melt solder for component assembly and rework |
US20090310318A1 (en) * | 2008-06-16 | 2009-12-17 | Cisco Technology, Inc. | Attaching a lead-free component to a printed circuit board under lead-based assembly conditions |
Also Published As
Publication number | Publication date |
---|---|
JPH0124599B2 (en) | 1989-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100309229B1 (en) | Lead-free solder and soldered article | |
KR100419274B1 (en) | Pb-free solder composition and soldered article | |
US6180055B1 (en) | Lead-free solder alloy | |
US4441118A (en) | Composite copper nickel alloys with improved solderability shelf life | |
US6296722B1 (en) | Lead-free solder alloy | |
JP3575311B2 (en) | Pb-free solder and soldering article | |
JPH08164495A (en) | Lead-free solder for organic substrate connection and mounted products using the same | |
JP2001520585A (en) | Lead-free solder | |
US7022282B2 (en) | Lead-free solder and soldered article | |
JPH0318497A (en) | Solder with low melting point | |
JPH0653901B2 (en) | Copper alloy for electronic and electrical equipment | |
JPS59170231A (en) | High tension conductive copper alloy | |
JP2005131705A (en) | Pb-FREE SOLDER ALLOY, AND SOLDER MATERIAL AND SOLDER JOINT USING THE SAME | |
JPS60166191A (en) | Solder alloy with excellent fatigue resistance | |
JPH0534409B2 (en) | ||
JP2910527B2 (en) | High temperature solder | |
JP2000169922A (en) | Molybdenum-nickel target material, electrode material, and packaging component | |
JPH0422595A (en) | Cream solder | |
JP3708252B2 (en) | Solder alloy powder for reflow mounting of electronic parts | |
JPS63112092A (en) | Low melting-point solder alloy | |
JP3698161B2 (en) | Pb-free solder | |
JP7649043B2 (en) | Lead-Free Solder Alloy | |
JPS6182994A (en) | Solder alloy with excellent fatigue resistance | |
JPS6393835A (en) | Copper alloy for lead material of semiconductor equipment | |
JP2783981B2 (en) | Solder alloy |