JP7649043B2 - Lead-Free Solder Alloy - Google Patents
Lead-Free Solder Alloy Download PDFInfo
- Publication number
- JP7649043B2 JP7649043B2 JP2021545632A JP2021545632A JP7649043B2 JP 7649043 B2 JP7649043 B2 JP 7649043B2 JP 2021545632 A JP2021545632 A JP 2021545632A JP 2021545632 A JP2021545632 A JP 2021545632A JP 7649043 B2 JP7649043 B2 JP 7649043B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- solder alloy
- lead
- content
- free solder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Description
本発明は、はんだ付け特性や長期信頼性に優れた鉛フリーはんだ合金、及び当該合金を用いたはんだ接合体に関する。The present invention relates to a lead-free solder alloy having excellent soldering characteristics and long-term reliability, and to a soldered joint using said alloy.
地球環境負荷軽減のため、電子部品の接合材料として鉛フリーはんだは広く普及しており、Sn-Ag-Cu系はんだ合金やSn-Cu-Ni系はんだ合金はその代表的な組成である。
近年、Sn-Cu-Ni系はんだ合金は、機械的強度が高く、熱履歴や衝撃に対する接合強度の安定性、流動性が高く実装性が良いなどの優れた特性を有し、さらにSn-Ag-Cu系はんだと比較してコスト面での優位性も加わり、市場の普及が急速に進んでいる。To reduce the burden on the global environment, lead-free solders are widely used as joining materials for electronic components, and typical compositions thereof include Sn-Ag-Cu solder alloys and Sn-Cu-Ni solder alloys.
In recent years, Sn-Cu-Ni solder alloys have been rapidly gaining popularity in the market due to their excellent properties, such as high mechanical strength, stable joint strength against thermal history and impact, high fluidity and good mountability, as well as their cost advantage over Sn-Ag-Cu solder.
しかし、Sn-Cu-Ni系はんだ合金には皮膚感作物質として認知されている「Ni」が微量ながら含まれている。一方、「Ni」は500円硬貨にも含有されている物質であり、多くの人が素手で触れる機会の多い環境にもある成分となっている。
接合材料としての鉛フリーはんだは、電子部品や電子機器の製造時に多く用いられるが、500円硬貨のように一般の人が触れる機会に比べ、極めて限定的な環境での使用となることが現状である。
企業には、皮膚感作物質が含まれていない、より安全な製品の提供が求められている。However, Sn-Cu-Ni solder alloys contain trace amounts of "Ni," which is known to be a skin sensitizer. On the other hand, "Ni" is also contained in 500 yen coins, and is an ingredient in environments where many people have the opportunity to touch it with their bare hands.
Lead-free solder is widely used as a joining material in the manufacture of electronic components and devices. However, compared to 500-yen coins, which are often touched by the general public, its use is currently limited to very specific environments.
Companies are being called upon to provide safer products that do not contain skin sensitizers.
ところで、鉛フリーはんだに於いて、「Ni」の添加効果に関し多くの利点が知られ、とりわけ、Sn-Cuを主成分とする鉛フリーはんだ合金では「Ni」の添加により流動性の改善がなされることが特許文献1に開示されている。
更に、「Ni」添加の効果としては、特許文献2に開示されているように銅基板との接合界面に(Cu,Ni)6Sn5組成の金属間化合物(以下IMC)を生成することにより、機械的特性や接合信頼性に優れることが知られている。Incidentally, many advantages are known regarding the effect of adding "Ni" to lead-free solder. In particular, Patent Document 1 discloses that the fluidity of lead-free solder alloys whose main component is Sn-Cu can be improved by adding "Ni."
Furthermore, as disclosed in Patent Document 2, the effect of adding "Ni" is that it produces an intermetallic compound (hereinafter , IMC) having a composition of (Cu,Ni) 6Sn5 at the bonding interface with the copper substrate, which is known to provide excellent mechanical properties and bonding reliability.
そこで、「Ni」無添加の鉛フリーはんだ合金組成でありながら、「Ni」添加同様の優れたはんだ付け性や接合信頼性を有する鉛フリーはんだ合金組成が求められている。Therefore, there is a demand for a lead-free solder alloy composition that does not contain "Ni" but has excellent solderability and joint reliability similar to those containing "Ni."
本発明は、「Ni」無添加でありながら、「Ni」添加と同様のはんだ付け性並びに接合信頼性を有する鉛フリーはんだ合金及びはんだ接合の提供を目的とする。An object of the present invention is to provide a lead-free solder alloy and a solder joint that have the same solderability and joint reliability as those containing "Ni" even though they do not contain "Ni".
発明者らは、Sn-Cu系鉛フリーはんだ合金に於いて、「Ni」に代わる元素を鋭意検討の結果、Co、Mn、Pd、Rh、Feに「Ni」添加鉛フリーはんだ合金と同様のはんだ付け性並びに接合信頼性を有することを見出し、本発明を完成するに至った。The inventors conducted extensive research into elements that could be used in place of "Ni" in Sn-Cu based lead-free solder alloys and discovered that Co, Mn, Pd, Rh, and Fe have solderability and joint reliability similar to that of lead-free solder alloys to which "Ni" has been added, thereby completing the present invention.
すなわち本発明は、Sn-Cuを基本組成とし、基本組成にCo、Mn、Pd、Rh、Feの群から選択される1種又は2種以上を含有することを特徴とする鉛フリーはんだ合金、及び当該鉛フリーはんだ合金を用いたはんだ接合体である。That is, the present invention relates to a lead-free solder alloy having a basic composition of Sn-Cu and containing one or more elements selected from the group consisting of Co, Mn, Pd, Rh and Fe, and a solder joint using the lead-free solder alloy.
本発明は、「Ni」無添加でありながら、「Ni」添加鉛フリーはんだ合金と同等以上のはんだ付け性や高い接合信頼性を有することが可能であるため、電子部品並びに電子機器等への汎用性が広い範囲ではんだ付けに応用が可能であり、かつ、人体への影響が少なく安全性の高いはんだ合金である。The present invention is a solder alloy that does not contain "Ni" but has solderability and high joint reliability equal to or better than that of lead-free solder alloys containing "Ni". Therefore, it has a wide range of versatility and can be applied to soldering of electronic components and electronic devices, and has little effect on the human body and is highly safe.
以下に、本発明について詳細に説明する。
本発明の鉛フリーはんだ合金は、Sn-Cuを基本組成として、これにCo、Mn、Pd、Rh、Feの群から選択される1種又は2種以上を含有することを特徴とする鉛フリーはんだ合金、及び当該鉛フリーはんだ合金を用いたはんだ接合体である。
更に、酸化防止効果を有するGe、Ga、P、Si、Al、V、Zrを含有させることにより、はんだ付け性やはんだ付け時の作業性がより向上する。The present invention will be described in detail below.
The lead-free solder alloy of the present invention is a lead-free solder alloy having a basic composition of Sn-Cu and containing one or more elements selected from the group consisting of Co, Mn, Pd, Rh and Fe, and a soldered joint using the lead-free solder alloy.
Furthermore, by including Ge, Ga, P, Si, Al, V, and Zr, which have an antioxidant effect, the solderability and workability during soldering are further improved.
「Ni」を添加したSn-Cu系鉛フリーはんだ合金は、接合強度の安定性やはんだ付け性に優れた実装性能を有することが知られている。これらの要因として、「Ni」添加による(Cu、Ni)6Sn5のIMCの形成、ならびにIMC粒子の微細化が挙げられる。
Sn-Cu系はんだ合金におけるCu6Sn5は、186℃を境として、単斜晶(以下、η‘相)と六方晶(以下、η相)が、それぞれ安定な結晶構造であり、環境温度によって安定側の結晶構造へと相変態することが知られている。
さらに相変態時における結晶の体積変化によって、結晶内部に応力歪が蓄積することでクラックの発生につながる場合もあることが知られている。
一方、「Ni」を添加したSn-Cu系はんだ合金に形成される(Cu、Ni)6Sn5はη相のみであり、上記の相変態は起こらず、したがって結晶内部の応力歪の蓄積やクラックの発生は起こらず、安定した接合状態を維持することが可能となる。
また、微細化した(Cu、Ni)6Sn5のIMC粒子によって、はんだ合金は分散強化され、その機械的強度が向上する。
これらの優れた特性によって、冷熱環境が連続的に繰り返されるとヒートサイクルや高温下に長期保持されるエージング等の温度環境の変化を経ても、接合強度の低下は抑制され、より長期的に安定した接合を維持する効果がえられる。It is known that Sn-Cu based lead-free solder alloys with added "Ni" have excellent mounting performance, such as stable joint strength and excellent solderability. The factors behind this include the formation of IMC of (Cu,Ni) 6Sn5 by the addition of "Ni " and the refinement of IMC particles.
It is known that Cu 6 Sn 5 in Sn-Cu based solder alloy has stable crystal structures of monoclinic (hereinafter, η' phase) and hexagonal (hereinafter, η phase) at 186°C, and that it undergoes phase transformation to the more stable crystal structure depending on the environmental temperature.
Furthermore, it is known that the volume change of the crystal during phase transformation can lead to the accumulation of stress and strain inside the crystal, which can lead to the generation of cracks.
On the other hand, the (Cu,Ni) 6Sn5 formed in the Sn-Cu solder alloy with added "Ni " is only the η phase, and the above-mentioned phase transformation does not occur. Therefore, accumulation of stress distortion inside the crystal and occurrence of cracks do not occur, and it is possible to maintain a stable joint state.
In addition, the fine (Cu,Ni) 6 Sn 5 IMC particles disperse and strengthen the solder alloy, improving its mechanical strength.
These excellent properties prevent a decrease in bond strength even when exposed to heat cycles that involve continuous exposure to hot and cold environments, or to changes in the temperature environment such as aging caused by long periods of exposure to high temperatures, resulting in the effect of maintaining a stable bond for a longer period of time.
さらに、「Ni」の添加ではんだ合金の流動性が向上する。流動性の向上は実装性の改善という点で非常に重要な特性である。流動性が低下すると針状結晶が発生し、導体間をショートさせるブリッジが発生したり、電子部品を取り付けた基板が溶融層から離れるときに突起状のツノが発生するなど、品質不良になる。また、はんだ合金の基材や電子部品などに対するぬれ性が低下すると、スルーホール上がり性が悪くなり、品質不良となる。ブリッジやツノの発生、スルーホール上がりの悪化という現象が発生した製品は実装時に不良品として排除され、歩留まりが下がる。実装性の低下は量産作業での効率低下に大きく影響する。Furthermore, the addition of "Ni" improves the fluidity of the solder alloy. Improving fluidity is a very important characteristic in terms of improving mounting properties. When fluidity decreases, needle-like crystals are generated, bridges that short-circuit conductors, and protruding horns are generated when a board with electronic components attached separates from the molten layer, resulting in poor quality. In addition, when the wettability of the solder alloy to the base material or electronic components decreases, the through-hole ripping property deteriorates, resulting in poor quality. Products that experience phenomena such as the generation of bridges or horns or poor through-hole ripping are rejected as defective products during mounting, and the yield decreases. Deterioration of mounting properties has a significant impact on the efficiency decrease in mass production work.
本発明では、「Ni」添加した場合と同様の特性をもたせるため、「Ni」に置換可能な元素として、Co、Pd、Rh、Mn、Feを選択した。選択した元素は「Ni」の効果と同じように、IMC粒子を微細化する効果がある。In the present invention, in order to provide the same characteristics as when "Ni" is added, Co, Pd, Rh, Mn, and Fe are selected as elements that can be substituted for "Ni". The selected elements have the effect of refining IMC particles in the same way as "Ni".
「Ni」を添加したSn-Cu系鉛フリーはんだ合金は機械的強度が向上することが知られている。図2の「Ni」を添加したはんだ合金と、図3のCoを添加したはんだ合金のSEM写真を比べると、IMC粒子は楕円形状で、寸法も大きいもので長径約1.2μm、短径約0.8μmであり、同じ形状と寸法のIMCが接合界面に形成されている。Coを添加したはんだ合金は、「Ni」を添加した場合と同様にIMCが微細化され、さらに形状と寸法まで同じであることが判る。一方、Coを添加したはんだ合金でIMC粒子が微細化し、IMC粒子の形状と寸法が「Ni」を添加したはんだ合金と同一であることは、Coを添加したはんだ合金も同様に機械的強度が向上していると言える。
なお、接合界面で形成されるIMCは、はんだ合金よりも硬くて脆い性質があると知られている。IMCと基板と電子部品は線膨張係数が異なるため、熱衝撃によって応力が発生し、応力が偏ると、IMCにクラックが生じ、脆い部分のIMCが破壊され、はんだ合金の接合信頼性が損なわれる。IMCの成長を抑えて微細化することで、応力に耐える接合強度の安定した信頼性の高いはんだ合金となる。It is known that the mechanical strength of Sn-Cu lead-free solder alloys to which "Ni" has been added is improved. Comparing the SEM photographs of the solder alloy to which "Ni" has been added in FIG. 2 and the solder alloy to which Co has been added in FIG. 3, the IMC particles are elliptical, with the largest dimension being approximately 1.2 μm in major axis and approximately 0.8 μm in minor axis, and IMCs of the same shape and dimensions are formed at the joint interface. It can be seen that the IMCs of the solder alloy to which Co has been added are finer, as in the case of the addition of "Ni", and are also the same in shape and dimensions. On the other hand, the fact that the IMC particles of the solder alloy to which Co has been added are finer and that the shape and dimensions of the IMC particles are the same as those of the solder alloy to which "Ni" has been added indicates that the mechanical strength of the solder alloy to which Co has been added is also improved.
It is known that the IMC formed at the joint interface is harder and more brittle than the solder alloy. The linear expansion coefficients of the IMC, the board, and the electronic components are different, so stress is generated by thermal shock. If the stress is biased, cracks will occur in the IMC, and the IMC in the brittle parts will be destroyed, compromising the joint reliability of the solder alloy. By suppressing the growth of the IMC and miniaturizing it, a highly reliable solder alloy with stable joint strength that can withstand stress will be obtained.
NiやCoと同様に、IMC粒子を微細化する元素のPd、Rh、Mn、Fe、をはんだ合金に添加することで、「Ni」を添加したときと同じ形状のIMCが形成され、機械的強度の向上と、接合強度が安定した信頼性の高いはんだ合金になることが期待できる。Like Ni and Co, by adding the elements Pd, Rh, Mn, and Fe, which refine the IMC particles, to a solder alloy, it is expected that an IMC of the same shape as when "Ni" is added will be formed, resulting in a solder alloy with improved mechanical strength and stable joint strength and high reliability.
次に、はんだ合金の実装性に影響する流動性を比較するため、指標となるぬれ性を測定して比較した。表2および図1に記載した「Ni」を他の元素に置換したはんだ合金のぬれ性の測定し、その結果からは、「Ni」を添加したはんだ合金よりも、ぬれ性が向上していることがわかる。特にCoを添加したはんだ合金は、「Ni」を添加した比較例1と比べると90~94%の値であり、Pd、Rh、Mn、Feと比較してもぬれ性を向上させる優れた効果のあることが判った。ぬれ性の測定結果から、本発明のはんだ合金は流動性が向上しており、ブリッジやツノの発生を抑え、スルーホール上がり性を改善するといった、実装性が優れているはんだ合金であることが判明した。Next, in order to compare the fluidity that affects the mounting property of the solder alloys, the wettability as an index was measured and compared. The wettability of the solder alloys in which "Ni" listed in Table 2 and FIG. 1 was replaced with other elements was measured, and the results showed that the wettability was improved compared to the solder alloy to which "Ni" was added. In particular, the solder alloy to which Co was added had a value of 90 to 94% compared to Comparative Example 1 to which "Ni" was added, and it was found to have an excellent effect of improving wettability compared to Pd, Rh, Mn, and Fe. From the results of the wettability measurement, it was found that the solder alloy of the present invention has improved fluidity, suppresses the occurrence of bridges and horns, and improves through-hole rising, making it a solder alloy with excellent mounting property.
本発明の鉛フリーはんだ合金は、Sn及びCuを基本組成とし、これにCo、Mn、Pd、Rh、Feの群から選択される1種又は2種以上を含有することを特徴とする。
Cuの含有量は0.1~1.0質量%が好ましく、0.5~0.9質量%がより好ましい。
Coの含有量は0.001~0.1質量%が好ましく、0.01~0.05質量%がより好ましい。
Mnの含有量は0.001~0.01質量%が好ましく、0.003~0.008質量%がより好ましい。
Pdの含有量は0.01~1.0質量%が好ましく、0.04~0.1質量%がより好ましい。
Rhの含有量は0.005~0.5質量%が好ましく、0.01~0.1質量%がより好ましい。
Feの含有量は0.001~0.01質量%が好ましく、0.003~0.008質量%がより好ましい。
そして、Snの含有量は、上記の元素及び不可避不純物以外となる。
Co、Mn、Pd、Rh、Feの「Ni」置換元素の中では、Coが好ましい。 The lead-free solder alloy of the present invention is characterized in that it has a basic composition of Sn and Cu, and further contains one or more elements selected from the group consisting of Co, Mn, Pd, Rh and Fe.
The Cu content is preferably 0.1 to 1.0 mass %, and more preferably 0.5 to 0.9 mass %.
The Co content is preferably 0.001 to 0.1 mass %, and more preferably 0.01 to 0.05 mass %.
The Mn content is preferably 0.001 to 0.01 mass %, and more preferably 0.003 to 0.008 mass %.
The Pd content is preferably 0.01 to 1.0 mass %, and more preferably 0.04 to 0.1 mass %.
The Rh content is preferably from 0.005 to 0.5 mass %, more preferably from 0.01 to 0.1 mass %.
The Fe content is preferably 0.001 to 0.01 mass %, and more preferably 0.003 to 0.008 mass %.
The Sn content is other than the above elements and unavoidable impurities.
Among the "Ni" substituting elements Co, Mn, Pd, Rh, and Fe, Co is preferred.
また、本発明の鉛フリーはんだ合金に添加することが出来る酸化防止効果を有する元素として、Ge、Ga、P、Si、Al、V、Zr、の群より選択される1種又は2種以上があげられ、その含有量は本発明の効果を有する範囲に於いて特に制限はないが、以下の含有量が好ましい。
Geの含有量は0.0001~0.1質量%が好ましく、0.005~0.01質量%がより好ましい。
Gaの含有量は0.0001~0.1質量%が好ましく、0.003~0.008質量%がより好ましい。
Pの含有量は0.0001~0.1質量%が好ましく、0.003~0.005質量%がより好ましい。
Siの含有量は0.0001~0.1質量%が好ましく、0.005~0.01質量%がより好ましい。
Alの含有量は0.0001~0.05質量%が好ましく、0.003~0.008質量%がより好ましい。
Vの含有量は0.0001~0.05質量%が好ましく、0.005~0.01質量%がより好ましい。
Zrの含有量は0.0001~0.05質量%が好ましく、0.005~0.01質量%がより好ましい。 In addition, examples of elements having an antioxidant effect that can be added to the lead-free solder alloy of the present invention include one or more elements selected from the group consisting of Ge, Ga, P, Si, Al, V, and Zr. There are no particular restrictions on the content of these elements as long as they have the effect of the present invention, but the following contents are preferred.
The Ge content is preferably from 0.0001 to 0.1 mass %, and more preferably from 0.005 to 0.01 mass %.
The Ga content is preferably 0.0001 to 0.1 mass %, and more preferably 0.003 to 0.008 mass %.
The P content is preferably 0.0001 to 0.1 mass %, and more preferably 0.003 to 0.005 mass %.
The Si content is preferably 0.0001 to 0.1 mass %, and more preferably 0.005 to 0.01 mass %.
The Al content is preferably 0.0001 to 0.05 mass %, and more preferably 0.003 to 0.008 mass %.
The V content is preferably from 0.0001 to 0.05 mass %, and more preferably from 0.005 to 0.01 mass %.
The Zr content is preferably 0.0001 to 0.05 mass %, and more preferably 0.005 to 0.01 mass %.
本発明の鉛フリーはんだ合金は、Sn及びCuを基本組成として、これにCo、Mn、Pd、Rh、Feの群から選択される1種又は2種以上を含有することを特徴とし、
更に酸化防止効果を有する元素として、Ge、Ga、P、Si、Al、V、Zrの群より選択される1種又は2種以上を含有させることにより、優れたはんだ付け特性や高い接合信頼性を有することを可能にするが、本発明の効果を有する範囲に於いて、Ag、Sb、Bi、In、Zn、Ti等も含有させることが出来る。
また、用途に応じて任意に形状を加工することができ、例えば、ディップはんだ付け方法によるはんだ接合を行う場合は棒状のはんだ形状に、リフローはんだ付け方法によりはんだ接合を行う場合はペースト状やボール状、及びプリフォーム形状に、はんだ鏝を用いたはんだ接合の場合には、やに入りはんだ等の線状にそれぞれ加工して用いることが可能である。 The lead-free solder alloy of the present invention is characterized in that it contains Sn and Cu as a basic composition, and further contains one or more elements selected from the group consisting of Co, Mn, Pd, Rh, and Fe,
Furthermore, by containing one or more elements selected from the group consisting of Ge, Ga, P, Si, Al, V and Zr as elements having an antioxidant effect, it is possible to obtain excellent soldering characteristics and high joint reliability, but Ag, Sb, Bi, In, Zn, Ti, etc. can also be contained within the range in which the effects of the present invention are obtained.
In addition, the shape can be processed as desired depending on the application. For example, when soldering is performed by dip soldering, the solder can be processed into a rod-like solder shape; when soldering is performed by reflow soldering, the solder can be processed into a paste, ball, or preform shape; and when soldering is performed using a soldering iron, the solder can be processed into a wire shape such as resin-cored solder.
本発明について実施例で更に詳しく説明する。
(ぬれ性評価)
本発明の効果を立証するために、ぬれ性評価を実施した。
〔評価試料〕
評価試料:表1に示す組成のはんだ合金 The present invention will now be described in more detail with reference to examples.
(Wettability evaluation)
In order to verify the effect of the present invention, a wettability evaluation was carried out.
[Evaluation Sample]
Evaluation sample: Solder alloy with the composition shown in Table 1
〔評価方法〕
・JISZ3197:2012「ウェッティングバランス法」に準じ、実施例1~25及び比較例1~3のはんだ合金、標準フラックスB、並びにリン脱酸銅板(厚さ:0.3mm、幅:10mm、長さ:30mm)を準備し、株式会社レスカ製ソルダーチェッカ(SAT-5100)を用い、浸漬深さ2mm、浸漬速度20mm/秒、浸漬時間10秒、はんだ槽温度を液相線温度より35±3℃(JISに準じる)の条件で測定し評価を実施した。
その結果を表2及び図1に示した。
なお、表2及び図1に示す評価は、ゼロクスタイム及び比較例1のゼロクロスタイムを100%とした数値を、実施例1~25と比較例2、3を表したものである。[Evaluation method]
In accordance with JIS Z3197:2012 "Wetting balance method," the solder alloys of Examples 1 to 25 and Comparative Examples 1 to 3, standard flux B, and phosphorus deoxidized copper plate (thickness: 0.3 mm, width: 10 mm, length: 30 mm) were prepared, and using a solder checker (SAT-5100) manufactured by Rhesca Corporation, measurements were performed under the following conditions: immersion depth: 2 mm, immersion speed: 20 mm/sec, immersion time: 10 sec, and solder bath temperature: 35±3°C (in accordance with JIS) from the liquidus temperature, and evaluation was performed.
The results are shown in Table 2 and FIG.
The evaluations shown in Table 2 and FIG. 1 show values for Examples 1 to 25 and Comparative Examples 2 and 3, with the zero cross time and the zero cross time of Comparative Example 1 taken as 100%.
表2および図1に示すように、実施例1~25の全試料は、100%を下回る数値を示し、ぬれ性の改善効果がある「Ni」を添加した比較例1と比較して、ぬれ性が優れていることが判明した。その中でもCoを含有している実施例2、6~8、9、12、17、20~22は90~94%であり、他の元素を添加した実施例の94~98%と比べて小さく、ぬれ性改善の効果が高いことがわかる。As shown in Table 2 and Figure 1, all samples of Examples 1 to 25 showed values below 100%, and it was found that the wettability was superior to that of Comparative Example 1, which added "Ni" that has an effect of improving wettability. Among them, Examples 2, 6 to 8, 9, 12, 17, and 20 to 22, which contained Co, showed values of 90 to 94%, which is smaller than the 94 to 98% of the examples in which other elements were added, and it is clear that the effect of improving wettability was high.
さらに実施例6~25では、酸化防止効果を有する元素として、Ge0.0001~0.1質量%、Ga0.0001~0.1質量%、P0.0001~0.1質量%、Si0.0001~0.1質量%、Al0.0001~0.05質量%、V0.0001~0.05質量%、Zr0.0001~0.05質量%を1種又は2種以上を含有している。実施例6~25のゼロクロスタイムは、すべて比較例1よりも小さい結果であり、酸化防止のある元素を含有しても、ぬれ性を阻害せず、金属間化合物の粒子を微細化する元素が効果を発揮していることがわかる。Furthermore, in Examples 6 to 25, one or more of the following elements having an antioxidant effect were contained: Ge 0.0001 to 0.1 mass%, Ga 0.0001 to 0.1 mass%, P 0.0001 to 0.1 mass%, Si 0.0001 to 0.1 mass%, Al 0.0001 to 0.05 mass%, V 0.0001 to 0.05 mass%, and Zr 0.0001 to 0.05 mass%. The zero cross times of Examples 6 to 25 were all shorter than that of Comparative Example 1, and it can be seen that the inclusion of an element having an antioxidant effect does not inhibit wettability, and the element that refines the particles of the intermetallic compound is effective.
表2及び図1に示された結果から、本発明の実施例は何れも「Ni」を添加した比較例1と比較してぬれ性に優れていることが判明した。
また、試料溶融時の状態を目視で観察したところ、実施例1~25は比較例1と比べ、流動性に遜色ないことも確認できた。From the results shown in Table 2 and FIG. 1, it was found that all of the examples of the present invention were superior in wettability compared to Comparative Example 1 in which "Ni" was added.
In addition, when the state of the samples when melted was visually observed, it was confirmed that Examples 1 to 25 were comparable in fluidity to Comparative Example 1.
(接合状態の評価)
接合状態を評価する為、ぬれ性を評価した実施例2、比較例1および比較例2の銅板(リン脱酸銅板)を表面エッチング処理し表面を観察した。
〔観察試料作製方法〕
水酸化ナトリウム溶液(濃度:50g/L)とオルトニトロフェノール溶液(濃度:35g/L)を混合した溶液を約60℃に加温した状態で、ぬれ性を評価した銅板のはんだ付表面を約5分浸漬後、綿棒で研磨後、流水で洗浄し、自然乾燥させ観察試料とした。
〔観察方法〕
日本電子株式会社製走査電子顕微鏡(JSM-6360LA)を用いて、倍率7000倍にて観察し、評価した。(Evaluation of bonding state)
In order to evaluate the bonding state, the copper plates (phosphorus deoxidized copper plates) of Example 2, Comparative Example 1, and Comparative Example 2, which had been evaluated for wettability, were subjected to a surface etching treatment, and the surfaces were observed.
[Method of preparing observation samples]
The soldered surface of the copper plate for which wettability was evaluated was immersed for approximately 5 minutes in a mixed solution of sodium hydroxide solution (concentration: 50 g/L) and orthonitrophenol solution (concentration: 35 g/L) heated to approximately 60°C, then polished with a cotton swab, washed with running water, and naturally dried to prepare an observation sample.
[Observation method]
The specimen was observed and evaluated at a magnification of 7000 times using a scanning electron microscope (JSM-6360LA) manufactured by JEOL Ltd.
図2~図4のSEM写真より、実施例2と比較例1では接合界面に形成されたIMC粒子を比較すると、どちらも楕円形状であり、粒子サイズは大きいもので長径1.2μm、短径0.8μm程度であり、同じ形状と寸法のIMCが、接合界面に形成されている。Coの添加したはんだ合金は、「Ni」を添加したはんだ合金の場合と同様にIMCが微細化され、さらに形状と寸法まで同じであることが判る。
しかしながら、NiやCoを含有させなかった比較例2は、実施例2や比較例1と比べるとその形状は円形に近く、IMCの粒子サイズの直径が大きいもので2.0μm程度であり、実施例2や「Ni」を含有させた比較例1の約2倍となっている。 2 to 4, comparing the IMC particles formed at the joint interface in Example 2 and Comparative Example 1, both have an elliptical shape, with the largest particle size being about 1.2 μm in major axis and 0.8 μm in minor axis, and IMCs of the same shape and dimensions are formed at the joint interface. It can be seen that the IMCs are finer in the solder alloy to which Co is added, just like in the solder alloy to which "Ni" is added, and furthermore, the shape and dimensions are the same.
However, in Comparative Example 2, which did not contain Ni or Co, the shape was closer to a circle compared to Example 2 and Comparative Example 1, and the diameter of the IMC particle size was as large as about 2.0 μm, which was approximately twice as large as in Example 2 and Comparative Example 1, which contained "Ni."
「Ni」を添加したSn-Cu系鉛フリーはんだ合金は機械的強度が向上することが知られている。Coを添加したはんだ合金のIMC粒子が微細化し、IMC粒子の形状と寸法が「Ni」を添加したはんだ合金と同一であることは、Coを添加したはんだ合金も同様に機械的強度が向上していることを示す。
また接合界面で形成されるIMCは、はんだ合金よりも硬くて脆い性質があると知られている。IMCと基板と電子部品は線膨張係数が異なるため、熱衝撃によって応力が発生し、応力が偏ると、IMCにクラックが生じ、脆い部分のIMCが破壊され、はんだ合金の接合信頼性が損なわれる。IMCの成長を抑えて微細化することで、応力に耐える接合強度の安定した信頼性の高いはんだ合金となる。
NiやCoと同様に、IMC粒子を微細化する元素のPd、Rh、Mn、Fe、をはんだ合金に添加することで、「Ni」を添加したときと同じ形状のIMCが形成されているため、機械的強度の向上と、接合強度が安定した信頼性の高いはんだ合金になることが期待できる。It is known that the mechanical strength of Sn-Cu based lead-free solder alloys with added Ni is improved. The fact that the IMC particles of the solder alloy with added Co are finer and the shape and size of the IMC particles are the same as those of the solder alloy with added Ni indicates that the mechanical strength of the solder alloy with added Co is also improved.
In addition, the IMC formed at the joint interface is known to be harder and more brittle than the solder alloy. Because the linear expansion coefficients of the IMC, the board, and the electronic components are different, thermal shock generates stress, and if the stress is biased, cracks will form in the IMC, destroying the IMC in the brittle parts and compromising the joint reliability of the solder alloy. By suppressing the growth of the IMC and miniaturizing it, a highly reliable solder alloy with stable joint strength that can withstand stress will be obtained.
Like Ni and Co, by adding the elements Pd, Rh, Mn, and Fe, which refine the IMC particles, to a solder alloy, an IMC of the same shape as when "Ni" is added is formed, which is expected to result in a solder alloy with improved mechanical strength and stable joint strength and high reliability.
つまり図2~図4のSEM写真は、実施例2のSn-Cuを基本組成とする組成にCoを含有した本発明の鉛フリーはんだ合金が、「Ni」を含有した従来の組成である比較例1と同様に機械的強度が向上し接合強度が安定した、信頼性の高いはんだ合金であることを現している。
同様にMn、Pd、Rh、Feの元素にもIMC粒子を微細化させるので、Mn、Pd、Rh、Feを添加することで形成されたIMC粒子は、はんだ合金の機械的強度を向上し、接合強度を安定させる効果があり、Mn、Pd、Rh、Feを添加したはんだ合金は、信頼性の高いはんだ合金であると推測される。 In other words, the SEM photographs in Figs. 2 to 4 show that the lead-free solder alloy of the present invention, which has a composition based on Sn-Cu in Example 2 and contains Co, is a highly reliable solder alloy with improved mechanical strength and stable joint strength, similar to Comparative Example 1, which has a conventional composition containing "Ni."
Similarly, the elements Mn, Pd, Rh, and Fe also refine the IMC particles, so the IMC particles formed by adding Mn, Pd, Rh, and Fe have the effect of improving the mechanical strength of the solder alloy and stabilizing the joint strength, and it is presumed that a solder alloy to which Mn, Pd, Rh, and Fe are added is a highly reliable solder alloy.
(はんだ付け性評価)
次に、本発明の鉛フリーはんだ合金の凝固試験結果について説明する。
〔凝固試験方法〕
試料となるはんだ合金を約50g計量し、270℃で溶解した後、鋳型に約40g注ぎ、室温放冷し、凝固試料とした。
〔凝固試験評価方法及び結果〕
評価方法として、表面の光沢、引け巣の有無を目視で評価した。
本発明の実施例2の凝固試料である図5と「Ni」を含有した比較例1の凝固試料である図6は、夫々表面光沢に優れ、引け巣が見られないのに対し、Coを含有しない比較例2である図7は表面光沢はあるものの凝固試料の中央部に引け巣が見られる。
「Ni」の添加の表面光沢に優れ、引け巣を発生しないという効果が、同様の効果がCoを添加した実施例2にも見られることから、本発明の鉛フリーはんだ合金の成分であるCoが「Ni」の代替効果を有していることの証明となっている。
(Solderability evaluation)
Next, the results of a solidification test of the lead-free solder alloy of the present invention will be described.
[Coagulation test method]
Approximately 50 g of the solder alloy sample was weighed out and melted at 270° C., and then approximately 40 g was poured into a mold and allowed to cool at room temperature to obtain a solidified sample.
[Coagulation test evaluation method and results]
The evaluation was performed by visually checking the surface gloss and the presence or absence of shrinkage cavities.
FIG. 5, which is a solidified sample of Example 2 of the present invention, and FIG. 6, which is a solidified sample of Comparative Example 1 containing "Ni", each have excellent surface gloss and no shrinkage cavities are observed, whereas FIG. 7, which is Comparative Example 2 containing no Co, has a surface gloss but has shrinkage cavities in the center of the solidified sample.
The effect of adding "Ni" is excellent in surface gloss and does not cause shrinkage cavities. Similar effects are seen in Example 2 in which Co is added, proving that Co, which is a component of the lead-free solder alloy of the present invention, has an effect of substituting "Ni".
本発明は、「Ni」無添加でありながら、「Ni」を含有する鉛フリーはんだ合金が有するはんだ付け性やはんだ付け時の作業性や、機械的特性や接合信頼性が、同等以上に優れるはんだ接合部を提供することが可能である為、電子機器や電子部品等の接合に広く応用が期待できる。The present invention is capable of providing solder joints that are equivalent to or superior to lead-free solder alloys that contain "Ni" in terms of solderability, workability during soldering, mechanical properties, and joint reliability, even though the present invention does not contain any "Ni" additives. Therefore, the present invention is expected to be widely applicable to the joining of electronic devices, electronic components, and the like.
Claims (3)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019165971 | 2019-09-12 | ||
JP2019165971 | 2019-09-12 | ||
PCT/JP2020/034572 WO2021049643A1 (en) | 2019-09-12 | 2020-09-11 | Lead-free solder alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2021049643A1 JPWO2021049643A1 (en) | 2021-03-18 |
JP7649043B2 true JP7649043B2 (en) | 2025-03-19 |
Family
ID=74865764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021545632A Active JP7649043B2 (en) | 2019-09-12 | 2020-09-11 | Lead-Free Solder Alloy |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7649043B2 (en) |
WO (1) | WO2021049643A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001482A (en) | 2001-06-19 | 2003-01-08 | Tokyo Daiichi Shoko:Kk | Lead-free solder alloy |
JP2006061914A (en) | 2004-08-24 | 2006-03-09 | Nihon Almit Co Ltd | Solder alloy |
JP2007038228A (en) | 2005-07-29 | 2007-02-15 | Nihon Almit Co Ltd | Solder alloy |
WO2009028147A1 (en) | 2007-08-24 | 2009-03-05 | Kabushiki Kaisha Toshiba | Bonding composition |
WO2013099849A1 (en) | 2011-12-27 | 2013-07-04 | 千住金属工業株式会社 | Sn-Cu-BASED LEAD-FREE SOLDER ALLOY |
US20150151386A1 (en) | 2013-12-04 | 2015-06-04 | Mk Electron Co., Ltd. | Lead-free solder, solder paste and semiconductor device |
WO2016189900A1 (en) | 2015-05-26 | 2016-12-01 | 千住金属工業株式会社 | Solder alloy, solder ball, chip solder, solder paste and solder joint |
JP2018167310A (en) | 2017-03-30 | 2018-11-01 | 千住金属工業株式会社 | Solder alloy, solder ball, chip solder, solder paste and solder joint |
-
2020
- 2020-09-11 JP JP2021545632A patent/JP7649043B2/en active Active
- 2020-09-11 WO PCT/JP2020/034572 patent/WO2021049643A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001482A (en) | 2001-06-19 | 2003-01-08 | Tokyo Daiichi Shoko:Kk | Lead-free solder alloy |
JP2006061914A (en) | 2004-08-24 | 2006-03-09 | Nihon Almit Co Ltd | Solder alloy |
JP2007038228A (en) | 2005-07-29 | 2007-02-15 | Nihon Almit Co Ltd | Solder alloy |
WO2009028147A1 (en) | 2007-08-24 | 2009-03-05 | Kabushiki Kaisha Toshiba | Bonding composition |
WO2013099849A1 (en) | 2011-12-27 | 2013-07-04 | 千住金属工業株式会社 | Sn-Cu-BASED LEAD-FREE SOLDER ALLOY |
US20150151386A1 (en) | 2013-12-04 | 2015-06-04 | Mk Electron Co., Ltd. | Lead-free solder, solder paste and semiconductor device |
WO2016189900A1 (en) | 2015-05-26 | 2016-12-01 | 千住金属工業株式会社 | Solder alloy, solder ball, chip solder, solder paste and solder joint |
JP2018167310A (en) | 2017-03-30 | 2018-11-01 | 千住金属工業株式会社 | Solder alloy, solder ball, chip solder, solder paste and solder joint |
Also Published As
Publication number | Publication date |
---|---|
WO2021049643A1 (en) | 2021-03-18 |
JPWO2021049643A1 (en) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102447392B1 (en) | Lead Free Solder Alloys for Electronic Applications | |
US6703113B2 (en) | Pb-free solder composition and soldered article | |
TWI457192B (en) | Solder connector | |
WO2015083661A1 (en) | Solder material and joining structure | |
TWI782134B (en) | Low-silver alternative to standard sac alloys for high reliability applications | |
JPH02101132A (en) | Low melting point solder | |
JP5973992B2 (en) | Solder alloy | |
CN107984110A (en) | A kind of low temperature lead-free solder alloy | |
JP7649043B2 (en) | Lead-Free Solder Alloy | |
CN102642097A (en) | Low-silver lead-free solder alloy | |
JP2016172286A (en) | Solder for aluminum, and solder joint | |
JP2019136776A (en) | Solder joint method | |
TWI821211B (en) | Cost-effective lead-free solder alloy for electronic applications | |
KR102732357B1 (en) | High reliability lead-free solder alloy for electronic applications in extreme environments | |
JP2022026896A (en) | Solder alloys and molded solders | |
JP2000169957A (en) | Vanadium-nickel target material, electrode material, and packaging component | |
JP3166826B2 (en) | Solder alloy | |
CN118989719A (en) | Low-melting-point high-strength welding solder | |
JPS60166191A (en) | Solder alloy with excellent fatigue resistance | |
JPS63143232A (en) | Copper alloy for lead frame |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7649043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |