[go: up one dir, main page]

JPS60158670A - Thin film transistor and its manufacturing method - Google Patents

Thin film transistor and its manufacturing method

Info

Publication number
JPS60158670A
JPS60158670A JP59014057A JP1405784A JPS60158670A JP S60158670 A JPS60158670 A JP S60158670A JP 59014057 A JP59014057 A JP 59014057A JP 1405784 A JP1405784 A JP 1405784A JP S60158670 A JPS60158670 A JP S60158670A
Authority
JP
Japan
Prior art keywords
thin film
film
gate
main electrode
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59014057A
Other languages
Japanese (ja)
Other versions
JPH0572749B2 (en
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59014057A priority Critical patent/JPS60158670A/en
Publication of JPS60158670A publication Critical patent/JPS60158670A/en
Publication of JPH0572749B2 publication Critical patent/JPH0572749B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent contamination during processes, and to reduce mask processes to numbers the same as or fewer than the conventional devices by continuously depositing an amorphous Si film, a gate insulating film and a conductive film for a gate electrode in the same chamber by using plasma CVD, etc. CONSTITUTION:First and second main electrode regions 1, 2 and 11, 12 in a T1 consisting of a metallic film and an n<+> amorphous Si film (a-Si film) and first and second main electrode regions 101, 102 and 111, 112 in a R2 are formed on an insulator substrate 10. a-Si films 3, 103, gate insulating films 4, 104 and conductive films 5, 105 for a gate electrode are deposited, and unnecessary sections are removed. The conductive film 105 for the gate electrode in a thin-film transistor (TFTT2) extends up to a section in the vicinity of the second main electrode 2 in a TFTT1. A metallic film is deposited to form a wiring between the gate electrode 105 in the TFTT2 and the second main electrode region 2 in the TFTT1.

Description

【発明の詳細な説明】 本発明は、信頼性が高く、製造が容易な薄膜トランジヌ
タ(T P T)とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film transistor (TPT) that is highly reliable and easy to manufacture, and a method for manufacturing the same.

アモルファスSj(α−8i)を主に用いたTPTは、
呉造温度が低いので大面積かつ安価な電子装置例えば液
晶表示装置やイメージセンサ−への応用が期待さnてい
る。しかし、大面積装置やコストの低減には、製造工程
の簡単化が象tnる。一方、信頼性の向上もまた必侠と
されている。
TPT mainly using amorphous Sj (α-8i) is
Due to the low temperature at which it is produced, it is expected to be applied to large-area, inexpensive electronic devices such as liquid crystal display devices and image sensors. However, large-area devices and cost reductions require simplification of the manufacturing process. On the other hand, improving reliability is also considered a must.

第1図は従来のTPTの製造工程例を示している。第1
回(α)では、ガ2ヌや石英等の絶縁物基板10上にン
ーヌやドレインとなる第1.第2主電極領域1,2をn
+α−s7や金、属膜七〇らの多層膜で形成した断面を
示す。第1#第2主電穏領域1.2は基板10である絶
縁物を介して離間し、その相互距離がほぼチャンネル長
に相当する。第1図(b)では、全面にα−8(膜3を
プラズマOVD、光OVD、イオンビーム堆積法、分子
綜蒸着等で堆積し、不要部を除去した断面を示す。α−
S(膜3には水素またはフッ素が添刀口さ牡禁制帯内準
位密度が低く抑えら扛ている。しかし、この工程でα−
s4が外気に露出するため表面が汚染されやすい問題が
ある。第1図((+)には、ゲート絶縁膜4となる酸化
硅素膜を前述のα−si膜と同様な方法で堆積した後、
第1.第2主電極領域1,2上にコンタクト用開孔を設
けた状態を示す。やはり、ここでもゲート絶縁膜4が外
気にさらされてしまう問題がちる。第1図(d)に示す
様に、A4やOf、MOpM1等金R(多層膜)を堆積
しゲート電極5、第1.第2主IIt極1,2の外部取
り出し配線21.22を設けて完成する。以上の従来例
では、チャネルが形成されるa−Bi膜3やゲート絶縁
膜4の表面が外気にさらさn1汚染ひいてはしきい値電
圧、その温度変動の原因となる。また、マスク工程が4
回必要であり、こtを減少することもコスト低減のため
有効である。
FIG. 1 shows an example of a conventional TPT manufacturing process. 1st
In the step (α), the first lattice film, which becomes a drain or drain, is placed on an insulating substrate 10 made of quartz or the like. The second main electrode regions 1 and 2 are n
A cross section formed of a multilayer film of +α-s7, gold, and metal film 70 is shown. The first #second main current moderation regions 1.2 are separated from each other via an insulator, which is the substrate 10, and the mutual distance therebetween approximately corresponds to the channel length. FIG. 1(b) shows a cross section in which α-8 (film 3 is deposited on the entire surface by plasma OVD, optical OVD, ion beam deposition, molecular helix deposition, etc., and unnecessary parts are removed. α-
S (film 3 is doped with hydrogen or fluorine to suppress the level density in the forbidden band to be low. However, in this process, α-
Since s4 is exposed to the outside air, there is a problem that the surface is easily contaminated. In FIG. 1 ((+), after depositing a silicon oxide film to become the gate insulating film 4 in the same manner as the α-si film described above,
1st. A state in which contact holes are provided on the second main electrode regions 1 and 2 is shown. Again, there is a problem that the gate insulating film 4 is exposed to the outside air. As shown in FIG. 1(d), gold R (multilayer film) such as A4, Of, MOpM1, etc. is deposited to form the gate electrode 5 and the first. The external wiring 21 and 22 for the second main IIt poles 1 and 2 are provided to complete the process. In the conventional example described above, the surfaces of the a-Bi film 3 and the gate insulating film 4 on which the channel is formed are exposed to the outside air, which causes n1 contamination, which in turn causes the threshold voltage and its temperature fluctuation. Also, the mask process is 4
It is also effective to reduce costs.

本発明は、斜上の従来工程の問題点に鑑てなさ匹たもの
で、α−”srs ゲート絶縁膜、ゲート電極用導電膜
の堆積を外気に露出することなく行なえるTPTの構造
を提供するものである。さらにα−si膜の高抵抗性を
利用して配線工程を簡単化する目的をも有する。
The present invention has been made in view of the problems of the conventional process of slanting, and provides a TPT structure in which α-"srs gate insulating film and conductive film for gate electrode can be deposited without being exposed to the outside air. It also has the purpose of simplifying the wiring process by utilizing the high resistance of the α-Si film.

以下に図面を用いて本発明を詳述する。第2図では、2
ケのTFTTIとT2が隣υ合っている場合の製造工程
例を示す。第2図(α)では、絶縁物基板10上に、金
属膜とn十α−si膜とから成るT1の第1及び第2主
電砥領域1,2及び11 、12、さらにT2の第1.
第2主電極領域101 、102及び111 、112
 (図示せず〕を形成した断面を示す。第2図<b>で
は、c−8jli3 、103 、ゲート絶縁膜4 、
104、ゲート電極用導電膜5 、105を堆積後、不
要部分を同一マスク工程で除去した断面を示す。ル+α
−8i )嘆11 、12 、111 、112は、こ
の工程で一部除去さ肚ることがちる。この例では、TF
TT2のゲート電極用導電膜105が、TFTTlの第
2主電極2の近くまで延在している。この場・a、延在
する距離は、TPTT2のチャンネル長より長く、幅は
チャンネル幅より狭いことが必要でるる。第2図(0)
では、金!AUを堆積してTFTT2のゲート電極10
5とTPTTlの第2主電極領域2間の配線又は、必要
によシ他の配線を形成した断面を示し、第2図(d)に
は、その平面図を示す。本例においては、マスク工程は
3回であり工程が簡単化さしている。ゲート電極面積が
従来より大きくなる欠点があるが、ゲート絶縁膜下のα
−日(が高抵抗のため従来に比しゲート容量の増加、及
びゲートリーク電流の増力口は実質的にわずかである。
The present invention will be explained in detail below using the drawings. In Figure 2, 2
An example of the manufacturing process when TFTTI and T2 are adjacent to each other will be shown. In FIG. 2(α), the first and second main abrasive regions 1, 2, 11, 12 of T1, which are made of a metal film and an n+α-Si film, and the main abrasive regions 1, 2, 11, 12 of T2, and 1.
Second main electrode regions 101 , 102 and 111 , 112
(not shown). In FIG. 2<b>, c-8jli3, 103, gate insulating film 4,
104 shows a cross section in which unnecessary portions are removed by the same mask process after depositing conductive films 5 and 105 for gate electrodes. Le+α
-8i) Parts of 11, 12, 111, and 112 tend to be partially removed in this process. In this example, T.F.
The gate electrode conductive film 105 of TT2 extends close to the second main electrode 2 of TFTTl. In this case, the length of the field a must be longer than the channel length of TPTT2, and the width must be narrower than the channel width. Figure 2 (0)
So, gold! AU is deposited to form the gate electrode 10 of TFTT2.
2(d) shows a cross section in which wiring or other wiring is formed between the second main electrode region 2 of TPTT1 and the second main electrode region 2 of TPTTl, and FIG. 2(d) shows a plan view thereof. In this example, the mask process is performed three times, which simplifies the process. The disadvantage is that the gate electrode area is larger than the conventional one, but the α under the gate insulating film
- Since the resistance is high, the increase in gate capacitance and the increase in gate leakage current are substantially small compared to the conventional technology.

さら、に、TPTTlの第2主電極2とTFTT2のM
l、第2主電極101 、102とがα−841141
03を介して短絡されているが、実質的にc−sj漠1
03の高抵抗性のため電気的に#1とんど影響しない様
T F T′T 2のゲート電極延在部分の寸法を選ぶ
ことが可能である。本発明においては、α−s4膜3.
103、ゲート絶縁膜4 、104は少なく共、プラズ
マOVD等を用いれば同一チャンバーまたは外気にさら
すことな(別チャ/バー(インライン屋のとき〕で連続
堆積できるので汚染の心配はない。またゲート電極5 
、105も例えばn十α−s4を用いることにより、連
続堆積を行なえる。さらに、ゲート電極としてはn十α
−s4の次にM、、Or、Mll、W、Tα等の金属や
その硅化物を連れ堆積すnば抵抗減少に有効である。第
3図には、本発明の他の実施例についての工程断面図を
示す。第3図(ロ))は、絶縁物基板10上に第1及び
へ(2主電極領域1,2を形成した断面であり、第3図
(b)は連続してα−s4膜3、ゲート絶縁膜4、ゲー
ト電極用導電膜5を堆積した断面を示す。第3図(C)
では、同一形状にゲート電極5、ゲート絶#2R4、α
−s4膜3に島状に残した状態を示す。第3図(d)は
、フィールド絶縁膜6を全面に堆積後、各電体のコンタ
クトを開孔し、金属によって第1.第2主電糧1 、2
、ゲート電極5の各配線21 、22 、25を行ない
、完成した状態を示す。フィールド絶縁膜6として、プ
ラズマOVD。
Furthermore, the second main electrode 2 of TPTTl and M of TFTT2
l, the second main electrodes 101 and 102 are α-841141
Although short-circuited through 03, substantially c-sj
Due to the high resistance of #03, it is possible to select the dimensions of the gate electrode extension portion of T F T'T 2 so as to have almost no influence on #1 electrically. In the present invention, α-s4 membrane 3.
103, the gate insulating films 4 and 104 can be deposited consecutively in the same chamber or in separate chambers (when used in-line) without being exposed to the outside air by using plasma OVD, etc., so there is no need to worry about contamination. Electrode 5
, 105 can also be continuously deposited by using, for example, n+α-s4. Furthermore, as a gate electrode, n
-It is effective to reduce the resistance if metals such as M, Or, Mll, W, Tα or their silicides are deposited next to s4. FIG. 3 shows a process sectional view of another embodiment of the present invention. FIG. 3(b) is a cross section of the first and second main electrode regions 1, 2 formed on the insulating substrate 10, and FIG. 3(b) shows the α-s4 film 3, A cross section of the deposited gate insulating film 4 and gate electrode conductive film 5 is shown. FIG. 3(C)
Then, in the same shape, gate electrode 5, gate electrode #2R4, α
-S4 Shows a state left in the form of islands on the membrane 3. FIG. 3(d) shows that after the field insulating film 6 is deposited on the entire surface, contacts for each electric body are opened, and the first. 2nd main power supply 1, 2
, wirings 21 , 22 , and 25 of the gate electrode 5 are completed, and the completed state is shown. The field insulating film 6 is plasma OVD.

光0VDt−初めとする低温堆積による酸化硅累膜や窒
化硅累膜が用いらnるのを初め、塗布酸化膜やポリイミ
ドの様な塗布絶隷膜も用いらnる。このフィールド絶縁
膜6のために、マスク工程は従来と同じになるが、各電
極や配線間の絶縁をより完全に行なえる。
In addition to low-temperature deposited silicon oxide and silicon nitride films such as 0VDt photo-coated films, coated oxide films and coated films such as polyimide are also used. Because of this field insulating film 6, the masking process is the same as the conventional one, but the insulation between each electrode and wiring can be more completely achieved.

第4図には、本発明を縦型TFTK適用したときの実施
例が示されている。@4図(ハ))では、基板10上に
第1主電極領域1(例えばn+a−Bi/cr〕を形成
後、絶縁M16と第2主電極領域(例えばM6 /n十
G−8(〕2を堆積し、第1主電極領域1と一部オーバ
ーラップして第2主電極領域2、絶縁膜16をバターニ
ングしたFF?面である。第4図(b)では、α−日i
膜3、ゲート絶縁B4.ゲート電極5を連続堆積し、絶
縁膜16の側面部にこれら3層膜を残したものでちる。
FIG. 4 shows an embodiment in which the present invention is applied to a vertical TFTK. In Figure 4 (c), after forming the first main electrode region 1 (e.g. n+a-Bi/cr) on the substrate 10, the insulation M16 and the second main electrode region (e.g. M6/n+G-8()) are formed on the substrate 10. 2 is deposited, and the second main electrode region 2 and the insulating film 16 are patterned so as to partially overlap the first main electrode region 1. In FIG. 4(b), α-day i
Membrane 3, gate insulation B4. The gate electrode 5 is successively deposited, leaving these three layers on the side surfaces of the insulating film 16.

第4図((+)では、フィールド絶縁膜6を堆積、コン
タクト開孔、金鶴配線を行なって完成した断面を示す。
FIG. 4 ((+)) shows a completed cross section after depositing a field insulating film 6, forming contact holes, and making wires.

この例は、チャンネル長が絶縁[16の厚みとほぼ等し
い場合であるが、絶縁膜16の側面をなだらかにした場
合にも適用できる。縦ff1TFTの従来の製造方法で
は、α−日i堆積後α−si膜をバターニングし、ゲー
ト絶縁膜を堆積していたので、フィールド絶縁膜の役目
をゲート絶縁膜が果たしていた。そのため充分厚いフィ
ールド絶縁膜は得らnなかったし、ゲートとフィールド
絶縁膜の膜厚を異ならせるためには、さらに1回のマス
ク工程を必要としていた。本発明によ2’Lば、従来と
同じマスク工程数で独立にゲート絶、級、模とフィール
ド絶縁膜の厚み、膜質を選択できる利点がある。
In this example, the channel length is approximately equal to the thickness of the insulating film 16, but it can also be applied to a case where the side surfaces of the insulating film 16 are smoothed. In the conventional method for manufacturing vertical ff1 TFTs, the α-Si film was patterned after α-Si deposition and a gate insulating film was deposited, so that the gate insulating film played the role of a field insulating film. Therefore, it was not possible to obtain a sufficiently thick field insulating film, and one additional mask process was required to make the gate and field insulating films different in thickness. According to the present invention, there is an advantage that the thickness and quality of the field insulating film can be selected independently with the same number of mask steps as in the conventional method.

以上の様に本発明によfしば、工程途中の汚染に強くか
つ、マスク工程は従来と同等それ以下の工程で製造でき
るTPTが実現できる。また、フィールド絶縁膜とゲー
ト絶縁、膜の膜厚1.膜質を独立に選択できる利点を有
する。主にa−EJiを例に説明してきたが、多結晶s
6.他の半導体薄膜についても本発明は適用でき、本発
明は工業的に重要である。
As described above, according to the present invention, it is possible to realize a TPT that is resistant to contamination during the process and can be manufactured using a mask process that is equal to or less than the conventional mask process. Also, the film thickness of the field insulating film and gate insulating film is 1. It has the advantage that the film quality can be selected independently. Although the explanation has mainly been given using a-EJi as an example, polycrystalline s
6. The present invention can also be applied to other semiconductor thin films, and the present invention is industrially important.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(υ〜Cd)は従来のTPTの製造工程断面図、
第2図(α)〜(+1)は本発明によるTPTの製造工
程断面図で第2図(d)は平面図であり、第3図(α)
〜(d)及び第4図(α)〜(6)はそnぞt本発明の
他の実施例を説明するための断面図である。 11.第1主電極領域、21.第2主電極領域30.α
−s4膜 40.ゲート絶縁膜 5.。 ゲート電極 6,16.、絶縁膜 10.、基板以上 千1図 第3図 第4図
Figure 1 (υ~Cd) is a cross-sectional view of the conventional TPT manufacturing process.
Figures 2 (α) to (+1) are cross-sectional views of the manufacturing process of TPT according to the present invention, Figure 2 (d) is a plan view, and Figure 3 (α)
-(d) and FIGS. 4(α)-(6) are sectional views for explaining other embodiments of the present invention. 11. first main electrode region, 21. Second main electrode region 30. α
-s4 membrane 40. Gate insulating film 5. . Gate electrode 6,16. , insulating film 10. , more than 1,000 boards Figure 3 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)、絶縁物をはさんで互いに離間して設けらした第
1.第2の主電極領域と、011記絶縁物及びfitl
記主冗極領電極接して設けられた半導体薄膜と、前記主
電極領域に接する側と反対の前記半導体薄膜の表面に設
けら牡たゲート絶縁膜及びゲート電極より成る薄膜トラ
ンジスタにおいて、前記ゲート電極、ゲート絶縁膜及び
半導体薄膜がほぼ同一の形状に形成さnていることを特
徴とする薄膜トランジスタ。
(1) The first insulators are spaced apart from each other with an insulating material in between. The second main electrode region, the 011 insulator and the fitl
A thin film transistor comprising a semiconductor thin film provided in contact with the main electrode region, a gate insulating film and a gate electrode provided on the surface of the semiconductor thin film opposite to the side in contact with the main electrode region, the gate electrode; A thin film transistor characterized in that a gate insulating film and a semiconductor thin film are formed in substantially the same shape.
(2)、前記第1及び第2の主電極領域が縦方向に絶縁
物薄膜をはさんで離間さtl、fcR型薄膜トランジス
タであることを特徴とする特許請求の範囲第1項記載の
薄膜トランジスタ。
(2) The thin film transistor according to claim 1, wherein the first and second main electrode regions are spaced apart from each other in the vertical direction with an insulating thin film interposed therebetween, and is an fcR type thin film transistor.
(3)。絶縁物基板もしくはi8緑膜をはさんで互いに
離間した第1及び第2の主電極領域を形成する第1工程
、半導体薄膜を堆積する第2工程、ゲート絶縁膜を堆積
する第3工程、ゲート電極用導電膜を堆積する第4工程
、前記ゲート電極用導電膜、ゲート粘緑膜、半導体薄膜
を同一マスクを用いて選択エッチする第5工程、少なく
共前記ゲート電極に接する金属薄膜によって他のトラン
ジスタの第1もしくは第2主電極領域に配線する第6エ
程より属る薄膜トランジスタの製造方法。
(3). A first step of forming first and second main electrode regions separated from each other with an insulating substrate or i8 green film in between, a second step of depositing a semiconductor thin film, a third step of depositing a gate insulating film, and a gate. a fourth step of depositing a conductive film for an electrode; a fifth step of selectively etching the conductive film for the gate electrode, the gate mucogreen film, and the semiconductor thin film using the same mask; A method for manufacturing a thin film transistor, which includes a sixth step of wiring in the first or second main electrode region of the transistor.
(4)前記第2.第3.第4工程が外気に露出すること
な(連続的に行なわ扛ることを特徴とする特i−F請求
の範囲第3項記載の薄膜トランジスタの製造方法。
(4) Said 2. Third. 4. The method for manufacturing a thin film transistor according to claim 3, wherein the fourth step is performed continuously without being exposed to the outside air.
(5) Sil記第5工程の後に、全面に絶縁膜を堆積
し、第1及び第2主電極領域上とゲート電極上の一部に
コンタクト用量孔f、設ける付那工程を設けることを特
徴とする特許請求の範囲第3項もしくは第4項記載の薄
膜トランジスタの製造方法。
(5) After the fifth step of Sil, an insulating film is deposited on the entire surface, and a contact hole f is formed on a part of the first and second main electrode regions and the gate electrode. A method for manufacturing a thin film transistor according to claim 3 or 4.
JP59014057A 1984-01-28 1984-01-28 Thin film transistor and its manufacturing method Granted JPS60158670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014057A JPS60158670A (en) 1984-01-28 1984-01-28 Thin film transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014057A JPS60158670A (en) 1984-01-28 1984-01-28 Thin film transistor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS60158670A true JPS60158670A (en) 1985-08-20
JPH0572749B2 JPH0572749B2 (en) 1993-10-12

Family

ID=11850456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014057A Granted JPS60158670A (en) 1984-01-28 1984-01-28 Thin film transistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS60158670A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171161A (en) * 1986-01-23 1987-07-28 Nec Corp thin film semiconductor device
JPS6446982A (en) * 1987-08-17 1989-02-21 Casio Computer Co Ltd Manufacture of thin-film transistor
JPH0221663A (en) * 1988-07-08 1990-01-24 Sharp Corp Manufacture of thin film transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232385A (en) * 1983-06-15 1984-12-27 株式会社東芝 Active matrix type display unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232385A (en) * 1983-06-15 1984-12-27 株式会社東芝 Active matrix type display unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171161A (en) * 1986-01-23 1987-07-28 Nec Corp thin film semiconductor device
JPS6446982A (en) * 1987-08-17 1989-02-21 Casio Computer Co Ltd Manufacture of thin-film transistor
JPH0221663A (en) * 1988-07-08 1990-01-24 Sharp Corp Manufacture of thin film transistor

Also Published As

Publication number Publication date
JPH0572749B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
US4924279A (en) Thin film transistor
US6383831B2 (en) Methods of forming thin-film transistor display devices
US4502204A (en) Method of manufacturing insulated gate thin film field effect transistors
JPH02168630A (en) Thin film transistor, its
US4119992A (en) Integrated circuit structure and method for making same
US4169746A (en) Method for making silicon on sapphire transistor utilizing predeposition of leads
GB2064866A (en) Field effect semiconductor device
JPS60158670A (en) Thin film transistor and its manufacturing method
JPS61187272A (en) Thin-film field-effect transistor and manufacture thereof
JP3055782B2 (en) How to manufacture thin film transistors
JPH10173195A (en) Thin film transistor and its manufacturing method
JPS59189676A (en) Semiconductor device
JPH02196470A (en) Thin film transistor and manufacture thereof
JPH1041516A (en) Thin film transistor its manufacturing method and liquid crystal display device mounting the transistor
JP2797361B2 (en) Semiconductor device
JPS62115868A (en) Manufacture of semiconductor device
JPS6367780A (en) Thin film transistor and its manufacturing method
JP2515040B2 (en) Semiconductor device and manufacturing method thereof
JPS61136272A (en) Manufacturing method of thin film transistor
JPS6333305B2 (en)
JPH01106470A (en) Thin film transistor
JPS62105475A (en) Thin film transistor and its manufacturing method
JPS60257172A (en) semiconductor equipment
JPS61268068A (en) Thin film transistor and its manufacturing method
JPH05110103A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370