[go: up one dir, main page]

JPS60158645A - Semiconductor integrated circuit wiring method - Google Patents

Semiconductor integrated circuit wiring method

Info

Publication number
JPS60158645A
JPS60158645A JP1191284A JP1191284A JPS60158645A JP S60158645 A JPS60158645 A JP S60158645A JP 1191284 A JP1191284 A JP 1191284A JP 1191284 A JP1191284 A JP 1191284A JP S60158645 A JPS60158645 A JP S60158645A
Authority
JP
Japan
Prior art keywords
wiring
layer
integrated circuit
semiconductor integrated
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1191284A
Other languages
Japanese (ja)
Inventor
Shuichi Terai
寺井 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1191284A priority Critical patent/JPS60158645A/en
Publication of JPS60158645A publication Critical patent/JPS60158645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体集積回路における配線方式、特に多層配
線構造を有する回路装置の配線方式に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a wiring system in a semiconductor integrated circuit, and particularly to a wiring system for a circuit device having a multilayer wiring structure.

〔発明の背景〕[Background of the invention]

LSI製造技術の進歩に伴い、素子間の配線に用いる配
線層は、従来のポリシリコン層(Ps層)とメタル層(
通常AQ層)の合計2層から、さらにメタル層を追加し
た、3層配線が現実のものになってきている。この配線
層は自動配線方式の場合、それぞれの層での配線走行方
向が前もって規定され、例えば図1 (イ)に示す二つ
の配線層1゜2.3上の各配線は、同図(ロ)に示す如
く互いに直交せる配線格子によって定義されている。こ
こで、配線層1上の配線1a、lb・・・・・・はAQ
、配線層2上の配線2a、2b・・・・・・はAQ、配
線層3上の配線はポリシリコンPsによるものである。
With the advancement of LSI manufacturing technology, the wiring layers used for wiring between elements have changed to conventional polysilicon layers (Ps layers) and metal layers (
From a total of two layers (typically AQ layer) to three-layer wiring with the addition of a metal layer, it is becoming a reality. When this wiring layer is an automatic wiring method, the running direction of the wiring in each layer is defined in advance. For example, each wiring on the two wiring layers 1° 2. ) are defined by mutually orthogonal wiring grids. Here, the wirings 1a, lb... on the wiring layer 1 are AQ
, the wirings 2a, 2b, . . . on the wiring layer 2 are made of AQ, and the wiring on the wiring layer 3 is made of polysilicon Ps.

各層間の接続は、格子の交点に置かれるコンタクトホー
ル(スルーホールともいう、図示せず)によって行なわ
れる。
Connections between each layer are made by contact holes (also called through holes, not shown) placed at the intersections of the grid.

さて、第2図に示す如きLSI上の各素子、例えばNA
NDゲート4,5等の入出力端子6,7は、通常ポリシ
リコン層上にあるため、ゲート間の端子接続を、従来の
2層配線(ポリシリコン層とAQ−IJW)で自動配線
するとX方向にポリシリコン層9、X方向にAQ−1層
10を用いて行°なわれることになる。11がコンタク
トホールである。
Now, each element on the LSI as shown in FIG.
The input/output terminals 6, 7 of the ND gates 4, 5, etc. are usually on a polysilicon layer, so if the terminal connections between the gates are automatically wired using conventional two-layer wiring (polysilicon layer and AQ-IJW), This is done using a polysilicon layer 9 in the X direction and an AQ-1 layer 10 in the X direction. 11 is a contact hole.

しかし、ポリシリコンの配線抵抗は、AQの配線抵抗の
1000倍近くあり、自動配線の結果、X方向のポリシ
リコン配線が長くなりすぎ、高速動作の要求されるLS
Iでは信号遅延が問題となっていた。
However, the wiring resistance of polysilicon is nearly 1000 times that of AQ, and as a result of automatic wiring, the polysilicon wiring in the X direction becomes too long.
I had a problem with signal delay.

〔発明の概要〕[Summary of the invention]

本発明はLSIチップのレイアウト設計(配置配線設計
ともいう)に於て、抵抗値の異る2つの配線層にJLを
便宜上、A層、B層と呼ぶ。A層の方がB層より低抵抗
であるとする。−例としてA層はアルミニウム配線層、
BWはポリシリコン配線層が対応する。)を選択的に使
用し、信号遅延の制約が厳しいネット(ネツ1−とは、
同一信号で接続される端子集合のこと)には、A層、そ
うでないネツ1〜にはBlの各配線層を用いることによ
り、デツプ面積の増加をきたすことなく、配線長に起因
する信号遅延を制御可能どするLSI自動配線方式に関
する。
In the present invention, in the layout design (also referred to as placement and wiring design) of an LSI chip, two wiring layers having different resistance values are referred to as JL and B layer for convenience. It is assumed that layer A has a lower resistance than layer B. -For example, the A layer is an aluminum wiring layer,
BW corresponds to a polysilicon wiring layer. ) is used selectively and has strict constraints on signal delay (nets 1-).
By using the A layer for terminals connected with the same signal (a set of terminals connected with the same signal) and the Bl wiring layer for other terminals 1 to 1, the signal delay caused by the wiring length can be avoided without increasing the depth area. This invention relates to an LSI automatic wiring system that enables control of

ここで、前述の第1図に示す如く、第2のアルミ配線層
(A Q −2層)2をX方向に設けることにより、上
記ポリシリコンによるX方向配線長の増加に伴う信号遅
延を防ぐことが期待できる。しかし、すべてのX方向配
線をとのA Q −2M2で行うとすると、第1図から
容易にわかるとおり、ポリシリコン層3と共用した揚6
・に比べ2倍の格子本数が必要となり、この結果チップ
面積の増加を引起すこととなる。チップ面積の増加は、
LSI製造歩留りの低下をきたし問題である。
Here, as shown in the above-mentioned FIG. 1, by providing the second aluminum wiring layer (AQ-2 layer) 2 in the X direction, signal delay caused by the increase in the wiring length in the X direction due to the polysilicon can be prevented. We can expect that. However, if all X-direction wiring is done with AQ-2M2, as can be easily seen from Figure
- Twice the number of grids is required compared to the above case, which results in an increase in the chip area. The increase in chip area is
This is a problem because it causes a decrease in LSI manufacturing yield.

“ さて一方、相互に接続すべきゲート端子間距離が短
い場合、あえてAQ−2層2を用いなくとも、ポリシリ
コン層による配線3で対応することも可能である。
"On the other hand, if the distance between the gate terminals to be connected to each other is short, it is possible to use the wiring 3 made of a polysilicon layer without using the AQ-2 layer 2.

従って、近い距離の配線にはポリシリコン層。Therefore, a polysilicon layer is used for short distance wiring.

遠い距離の配線にはAQ−2層という様に場合に応じて
使用配線層を切換えることにより、各配線層の有効活用
によってデツプ面積の増加を抑えつつ、信号遅延を規定
水準内に保った配線が実現できる。
By switching the wiring layer used depending on the situation, such as using the AQ-2 layer for long-distance wiring, we can effectively utilize each wiring layer to suppress the increase in depth area and maintain signal delay within the specified level. can be realized.

本発明はかかる処理を自動化するもので、以下にその手
順番3ついて説明する。
The present invention automates such processing, and step number 3 thereof will be explained below.

〔発明の実施例〕[Embodiments of the invention]

図3(イ)は素子の配置の一例を模式的に示すもので、
各素子は同図(ロ)の如きセルCとよばれる論理単位(
例えばNAND、NORゲー1−やフリップフロップ等
)にまとめられ、このセルがレイアウト設計での配置の
単位となる。この例では三つのセル列CA□、CA2.
CAgからなっている。この配置をプログラムで実現す
るのがいわゆる自動配置とよばれる処理であるが、本発
明は配置処理を扱うものでないため、その詳細は省略す
る。
Figure 3 (a) schematically shows an example of the arrangement of elements.
Each element is a logical unit (cell C) as shown in the same figure (b).
For example, NAND, NOR gates, flip-flops, etc.), and this cell serves as a unit of arrangement in layout design. In this example, there are three cell columns CA□, CA2 .
It consists of CAg. This arrangement is realized by a program in a process called automatic arrangement, but since the present invention does not deal with arrangement processing, the details thereof will be omitted.

さて1本発明が対象とするLS、I構成法の1つに、い
わゆるビルディングブロック方式によるカスタムLSI
がある。これは、もう1つのLSI構成法であるゲート
アレ一方式、或いはマスタスライス方式と異り、セルを
配置する位置が固定化されておらず、全ての配線を完了
することによってはじめてセルの絶対位置が確定される
ものである。従って自動配置処理の終了段階では、図3
に示した各セルCは1つの列CA、等の内の順列が決ま
っているのみで各セル列のy座標は未確定の状態にある
Now, one of the LS and I configuration methods targeted by the present invention is a custom LSI using the so-called building block method.
There is. This differs from the other LSI configuration methods, the gate array type or master slice type, in that the cell placement position is not fixed, and the absolute position of the cell cannot be determined until all wiring is completed. It is confirmed. Therefore, at the end stage of the automatic placement process,
For each cell C shown in , the permutation within one column CA, etc. is only determined, and the y-coordinate of each cell column is in an undetermined state.

しかるに、後段の自動配線に於°Cは、上述の要請、す
なわち、「遠く離れた端子間はAQ−2層で、近くの端
子間はポリシリコン層で、配線する」ことを実現する為
には配置が終了した段階で各セルの端子間のX方向座標
を知る必要がある。また、5.1上記の[遠い、近い」
という表現を定量的な値で把握する必要がある。
However, in the automatic wiring at the later stage, in order to achieve the above-mentioned requirement, ``wire between distant terminals with AQ-2 layer, and between nearby terminals with polysilicon layer.'' It is necessary to know the X-direction coordinates between the terminals of each cell when the arrangement is completed. Also, 5.1 above [distant, near]
It is necessary to understand this expression in terms of quantitative values.

以下に図4を用いて本発明で実現した手順を説明する。The procedure realized by the present invention will be explained below using FIG. 4.

ステップI セルの相対順列が規定された各セル列に対し「チャネル
割当て法jとよぶ配線手法によって、各セル列間の配線
を行う。
Step I: For each cell column in which the relative permutation of cells is defined, wiring between each cell column is performed using a wiring method called "channel assignment method j."

チャネル割当法とはセル列ではさまtた配線領域内で、
当該領域の上辺、下辺にある端子について、各ネットの
最も左、及び最も右にある端子で形成される線分区II
I (これを幹線とよぶ)を抽出し、これを各ネットの
幹線が互いに重ならない様配線格子番二並べる方法を指
す。(文献rMO8−LSIのレイアウトCAD:小沢
、堀野(昭48年電気4学会連合大会)」参照)これに
より各配線領域内での幹線の本数がまり、y方向に幹線
数を数えることにより配線領域の高さがまる。
The channel allocation method is to
Regarding the terminals on the upper and lower sides of the area, line segment II formed by the leftmost and rightmost terminals of each net
This refers to a method of extracting I (this is called a trunk line) and arranging it in a wiring grid number two so that the trunk lines of each net do not overlap with each other. (Refer to the document rMO8-LSI Layout CAD: Ozawa, Horino (1972 Federation of Electrical Engineers of Japan Conference)") This calculates the number of main lines in each wiring area, and by counting the number of main lines in the y direction, the wiring area The height of is reduced.

これをH4(iは各配線領域番号)とする。This is designated as H4 (i is each wiring area number).

ステップ2 各ネットで出力端子を持つセルを探し、そのネジ1〜内
の入力端子までのy方向の距離をめる。
Step 2 Find a cell with an output terminal in each net, and find the distance in the y direction to the input terminal in screws 1 to 1.

距離計算には下式を用いる。The following formula is used to calculate the distance.

(lj= ΣH,+C− に、 m Qj:出力端子から、そのネット内の端子jまでのy方
向の距離 Hk:出力端子からそのネジ1〜内の端子jに至るまで
に縦断する各配線領域の高さ C,、:出力端子からそのネジ1〜内の端子jに至るま
でに縦断するセル列の高さ ステップ3 各QJについて、9.1とθを比較する。ここにθはポ
リシリコンとAQ−2の使朋切換の判断基準値で、外部
より設定可能な値である。
(lj = ΣH, +C-, m Qj: Distance in the y direction from the output terminal to the terminal j within the net Hk: Each wiring area that traverses from the output terminal to the terminal j within the screw 1 Height C, ,: Height of the cell row extending vertically from the output terminal to the terminal j inside the screw 1 Step 3 For each QJ, compare 9.1 and θ.Here, θ is the polysilicon This is the criterion value for switching between modes for AQ-2, and is a value that can be set externally.

Q」≦0なら当該出力端子と、端子jの間のy方向はポ
リシリコン層を用いて配線する。
If Q''≦0, a polysilicon layer is used for wiring in the y direction between the output terminal and the terminal j.

(t」>θなら当該出力端子と端子jの間のy方向はΔ
ff−2層をも〕て配線する。
(t”>θ, the y direction between the output terminal and terminal j is Δ
ff-2 layer].

すべてのネット・についてステップ2,3をくり返す。Repeat steps 2 and 3 for all nets.

以上が本発明の処理手順である。The above is the processing procedure of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配置の状態をもとに各端子間の垂直距
離を正確に見積り、得られた値を用いて抵抗値の異る2
つの配線層の選択をより厳密に行うことによって、チッ
プ面積の増加をおさえつつ配線長に起因する信号遅延を
制御可能とする自動配線が可能となり、LS I製造上
の歩留り向上とLSI性能向上に関して極めて効果大で
ある。
According to the present invention, the vertical distance between each terminal is accurately estimated based on the arrangement state, and the obtained value is used to estimate the vertical distance between two terminals with different resistance values.
By selecting two wiring layers more precisely, it becomes possible to perform automatic wiring that can control signal delays caused by wiring length while suppressing an increase in chip area. It is extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は多層配置構造を模式的に示す図、第2図は素子
間の配線状態を示すイ既略図、第3図はセルの配置状態
を示す模式図、第4図は本発明の詳細な説明するための
、セル配置と配線の関係を第 2 図 第 3 図 (イ) (0)
Fig. 1 is a diagram schematically showing the multilayer arrangement structure, Fig. 2 is a schematic diagram showing the wiring state between elements, Fig. 3 is a schematic diagram showing the arrangement state of cells, and Fig. 4 is a detailed diagram of the present invention. To explain the relationship between cell placement and wiring, Figure 2 and Figure 3 (A) (0)

Claims (1)

【特許請求の範囲】 少なくとも2つの配線層は同一方向に配線が走行し、か
つ、上記2つの配線層がそれぞれ高抵抗配線材料と低抵
抗配線材料の異る2つの材料より成る3層以上の多層配
線半導体集積回路に於る端子間配線に関し、 (1)同一信号で接続される各端子グループについてグ
ループ内の端子群の座標のうち、高抵抗配線層の走行方
向と同一の座標成分h 1 t h2 y・・・・・・
hn (nはグループ内の端子の数)を抽出し、 (2)抽出した該座標成分中で、出力端子の座標成分h
 o++lと入力端子(j)の座標成分の差Q、+=l
h、、、h」1 をめ、 (3)上記QJと、あらかじめ設定された基準値θを比
較し。 (4)比較結果の大小に応じ、 (イ)Q、≦θなら高抵抗配線層を用いて配線しく口)
Q、〉θなら低抵抗配線層を用いて配線する ことを特徴とする半導体集積回路の配線方式。
[Scope of Claims] At least two wiring layers have wiring running in the same direction, and each of the two wiring layers has three or more layers each made of two different materials, a high-resistance wiring material and a low-resistance wiring material. Regarding wiring between terminals in a multilayer wiring semiconductor integrated circuit, (1) For each terminal group connected by the same signal, among the coordinates of the terminal group within the group, the coordinate component h 1 that is the same as the running direction of the high resistance wiring layer. t h2 y・・・・・・
hn (n is the number of terminals in the group); (2) Among the extracted coordinate components, the coordinate component h of the output terminal
Difference Q between coordinate components of o++l and input terminal (j), +=l
(3) Compare the above QJ with the preset reference value θ. (4) Depending on the magnitude of the comparison result, (a) If Q, ≦θ, use a high resistance wiring layer for wiring)
A semiconductor integrated circuit wiring method characterized in that if Q, 〉θ, wiring is performed using a low resistance wiring layer.
JP1191284A 1984-01-27 1984-01-27 Semiconductor integrated circuit wiring method Pending JPS60158645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191284A JPS60158645A (en) 1984-01-27 1984-01-27 Semiconductor integrated circuit wiring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191284A JPS60158645A (en) 1984-01-27 1984-01-27 Semiconductor integrated circuit wiring method

Publications (1)

Publication Number Publication Date
JPS60158645A true JPS60158645A (en) 1985-08-20

Family

ID=11790921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191284A Pending JPS60158645A (en) 1984-01-27 1984-01-27 Semiconductor integrated circuit wiring method

Country Status (1)

Country Link
JP (1) JPS60158645A (en)

Similar Documents

Publication Publication Date Title
JPH05102305A (en) Automatic layout method of semiconductor integrated circuit
JPH09162279A (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH02262354A (en) Semiconductor integrated circuit device and wiring method thereof
JPH0786407A (en) Multilayer wiring method for integrated circuits
US6651236B2 (en) Semiconductor integrated circuit device, and method of placement and routing for such device
DE102023123018B4 (en) Wafer-scale chip structure and method and system for designing the structure
JPH04142060A (en) Wiring method for semiconductor integrated devices
JPS60158645A (en) Semiconductor integrated circuit wiring method
JPS6210023B2 (en)
JP2933605B1 (en) How to create layout data
US20080184188A1 (en) Integrated Circuit Design Method for Efficiently Generating Mask Data
CN110858587B (en) Chip and power supply planning method
JP2818247B2 (en) Automatic wiring method for semiconductor device
JPH07153844A (en) Semiconductor integrated circuit device
JPH09115905A (en) Dummy pattern design method
TWI683230B (en) Chip and power planning method
US6845346B1 (en) Iterative method of parasitics estimation for integrated circuit designs
JPS63300530A (en) integrated circuit
JP2947219B2 (en) Wiring structure of standard cell type semiconductor integrated circuit
JP5035003B2 (en) Wiring layout apparatus, wiring layout method, and wiring layout program
DE10104233B4 (en) Method for assigning lines to wiring levels for semiconductor integrated circuit devices
JPH104141A (en) Semiconductor integrated device
JP2007103579A (en) Semiconductor integrated circuit device, and method of laying out power and ground lines therein
JPH11177029A (en) Semiconductor integrated circuit
JPS6028242A (en) Multilayer wiring structure