[go: up one dir, main page]

JPS60149223A - Temperature-frequency characteristic correcting method - Google Patents

Temperature-frequency characteristic correcting method

Info

Publication number
JPS60149223A
JPS60149223A JP599384A JP599384A JPS60149223A JP S60149223 A JPS60149223 A JP S60149223A JP 599384 A JP599384 A JP 599384A JP 599384 A JP599384 A JP 599384A JP S60149223 A JPS60149223 A JP S60149223A
Authority
JP
Japan
Prior art keywords
frequency
temperature
data
cpu
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP599384A
Other languages
Japanese (ja)
Other versions
JPH0469450B2 (en
Inventor
Koji Akiyama
秋山 好司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaesu Musen Co Ltd
Original Assignee
Yaesu Musen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaesu Musen Co Ltd filed Critical Yaesu Musen Co Ltd
Priority to JP599384A priority Critical patent/JPS60149223A/en
Publication of JPS60149223A publication Critical patent/JPS60149223A/en
Publication of JPH0469450B2 publication Critical patent/JPH0469450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/023Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes
    • H03L1/025Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes and a memory for digitally storing correction values

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To correct the variance of the oscillation frequency to a temperature change by controlling the generation data of a CPU stored in a pair with the temperature data after applying the generation data to a reference oscillator with D/A conversion. CONSTITUTION:When the data to be stored to a RAM8 is produced within a range of applied temperatures, an antenna 1 is connected to a receiver 2 to receive a known radio wave having an accurate frequency such as a standard radio wave, etc. Then coincidence is obtained between the display frequency of the receiver 2 and a known frequency. While the output 54 of a reference oscillator 5 is given to the receiver 2 as a standard for setting and display of the reception frequency. A voltage control variable capacity diode 53 is connected to a crystal oscillator 52 which decides an oscillation frequency. Then the control voltage 41 to be applied to the diode 53 is varied to perform the fine control of the oscillation frequency. This compensates the variance of the oscillation frequency due to a temperature change and secures a fixed frequency.

Description

【発明の詳細な説明】 この発明は単一の水晶発振器を基準周波数源として受信
周波数を設定および表示する無線受信機の基準発振周波
数の温度特性の補正方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for correcting temperature characteristics of a reference oscillation frequency of a radio receiver that sets and displays a reception frequency using a single crystal oscillator as a reference frequency source.

単一の水晶発振器を基準周波数源として受信周波数を設
定および表示する無線受信機としては、例えばスー・ぐ
−ヘテロゲイン方式受信機において、受信周波数は中間
周波数十局部発振周波数であることから、第1局部発振
器をPLL(Phase LockedLoop)制御
のVCO(Voltage Controlled 0
scillator)として、H2の桁まで設定するこ
とが可能であシ、また受信周波数をデジタル表示で正確
に読み取ることが可能であるが、それ等周波数の絶対確
度はPLL回路の基準周波数および周波数カウンタのク
ロック周波数の確度に依存し、また多重変換方式では各
変換段の局部発振器の周波数確度の影響も受けるので、
受信周波数確度を良好に保つためにはそれ等すべての発
振器の温度および経年変化の安定度を良く構成すると共
に周波数設定の調整も厳密に行う必要があシ、設計、製
作、調整に多大の労力を要するのを軽減するために、単
一の基準周波数を分周、逓倍、混合して前記の必要な各
周波数を得る形式のものであシ、確度の必要な発振器は
1個だけで済むから、調整や保守が極めて容易である。
As a radio receiver that sets and displays the receiving frequency using a single crystal oscillator as a reference frequency source, for example, in a Sue-G heterogain type receiver, the receiving frequency is an intermediate frequency and a local oscillation frequency. The local oscillator is controlled by PLL (Phase Locked Loop) VCO (Voltage Controlled 0).
It is possible to set up to the H2 digit as a signal generator (scillator), and it is possible to accurately read the reception frequency on a digital display, but the absolute accuracy of these frequencies depends on the reference frequency of the PLL circuit and the frequency counter. It depends on the accuracy of the clock frequency, and in the multiplex conversion method, it is also affected by the frequency accuracy of the local oscillator in each conversion stage.
In order to maintain good reception frequency accuracy, it is necessary to configure the temperature and aging stability of all oscillators well, and to precisely adjust the frequency settings, which requires a great deal of effort in design, production, and adjustment. In order to reduce the required frequency, the required frequencies are obtained by dividing, multiplying, and mixing a single reference frequency, and only one oscillator is required for accuracy. , extremely easy to adjust and maintain.

そして基準周波数発振器としては周波数安定度の点から
水晶発振器が使用されるが、特に問題とされる温度−周
波数安定度は主どして使用水晶発振子によシ決まシ、初
期のXカットやYカット発振子では温度による周波数変
化が比較的に大きかったので、これを恒温槽に入れて使
用することが多かったのであるが、その後のRカット・
R′カット、あるいは現在のATカット、GTカット等
では常温付近における温度−周波数特性が極めて良好な
ので、無線機用としては恒温槽を用いなくても十分に電
波法の要求を上回る性能を保持している。ところが、最
近の周波数設定と表示の細密化に伴い、それに見合う周
波数確度の維持が問題となって来ている。温度−周波数
変化については水晶発振子あるいは発振器全体を恒温槽
に収めることによシ完全に解決できることであるが、恒
温槽の使用は、スペースと機構部品の増加に加えて、電
源投入後に恒温槽が動作温度(40〜60℃程度)に達
するまでの期間は周波数変化が大きいので、実動までの
予熱時間は非恒温槽機よシも遥かに長く必要とし、これ
を避けるためには機器の休止時も恒温槽には少なくとも
数ワットの電力を通電しておく必要があり、省エネルギ
ーに反することに々る。
A crystal oscillator is used as a reference frequency oscillator from the viewpoint of frequency stability, but the temperature-frequency stability, which is a particular problem, is mainly determined by the crystal oscillator used. Y-cut oscillators had relatively large frequency changes due to temperature, so they were often used in a thermostat; however, later R-cut oscillators
The R' cut, or the current AT cut, GT cut, etc., have extremely good temperature-frequency characteristics near room temperature, so they can sufficiently maintain performance that exceeds the requirements of the Radio Law even without using a constant temperature oven for radio equipment. ing. However, as frequency settings and displays have become more precise in recent years, maintaining frequency accuracy commensurate with this has become a problem. Temperature-frequency changes can be completely resolved by housing the crystal oscillator or the entire oscillator in a thermostatic oven, but using a thermostatic oven increases space and mechanical parts, and also Since there is a large frequency change during the period until the machine reaches its operating temperature (approximately 40 to 60 degrees Celsius), the preheating time before actual operation is much longer than that of a non-thermal oven machine, and to avoid this, it is necessary to It is necessary to keep at least several watts of electricity flowing through the thermostatic chamber even when it is not in use, which often goes against energy conservation.

本発明は」二記のような現状に対応するためになされた
ものであって、本発明の実施例を示す第1図を参照して
説明すれば、 単一の水晶発振器5を基準周波数源として受信周波数を
設定および表示する無線受信機2において、 (1)同調指示出力21をCPU 3に入力する手段と
、 (2) CPU 3の発生する、ステップ間隔で増減す
るデータ31をD / A変換器4で変換した制御電圧
41を受信機基準周波数源5に加えて、その周波数を増
減せしめる手段と、 (3)基準発振器(5あるいは水晶振動子52)の温度
を感知する感温素子6の温度指示量をA/D変換器7で
変換した71をCPUに入力する手段と、(4) 同調
指示出力21が同調点を指示すると、CPUの発生する
データ31の増減を停止する手段と、 (5) その時のCPU 3の発生データ31と感温素
子6の温度データ71とを一対としてRAM 8に記憶
する手段と、 (6) その温度データ71と一対としてRAM 8に
記憶されたCPU 3の発生データ31をD / A変
換して基準発振器5に加えることによシ、その発振周波
数54を制御する手段と、 よシ成ることを特徴とする温度−周波数補正方法であっ
て、実施に際しては、先づ適用温度範囲においてRAM
 8に記憶するデータを作成するだめに、受信機2にア
ンテナ1を接いで、標準電波あるいは放送電波のごとく
周波数が正確で既知の電波を受信して受信機の周波数表
示が既知周波数と一致するようにする。同調指示出力2
1はビート音出力によるときはゼロビート点であり、デ
スクリミネータ方式では直流出力ゼロ点が同調点となり
、この場合は出力極性の正負によって離調方向の判定が
可能である。
The present invention has been made in order to cope with the current situation as described in 2.The present invention will be described with reference to FIG. 1 showing an embodiment of the present invention. The radio receiver 2 that sets and displays the receiving frequency as follows: (1) means for inputting the tuning instruction output 21 to the CPU 3; and (2) means for inputting the data 31 generated by the CPU 3, which increases and decreases at step intervals, to a D/A. means for applying the control voltage 41 converted by the converter 4 to the receiver reference frequency source 5 to increase or decrease its frequency; and (3) a temperature sensing element 6 for sensing the temperature of the reference oscillator (5 or crystal oscillator 52). (4) means for inputting the temperature instruction amount 71 converted by the A/D converter 7 to the CPU; and (4) means for stopping the increase/decrease of the data 31 generated by the CPU when the tuning instruction output 21 indicates a tuning point. , (5) means for storing the generated data 31 of the CPU 3 at that time and the temperature data 71 of the temperature sensing element 6 as a pair in the RAM 8; and (6) a CPU that stores the temperature data 71 and the temperature data 71 as a pair in the RAM 8. A temperature-frequency correction method comprising means for controlling the oscillation frequency 54 of the reference oscillator 5 by D/A converting the generated data 31 of the reference oscillator 5. In this case, the RAM should be
In order to create the data to be stored in 8, connect antenna 1 to receiver 2 and receive radio waves with accurate and known frequencies, such as standard radio waves or broadcast radio waves, so that the frequency display on the receiver matches the known frequency. Do it like this. Tuning instruction output 2
1 is the zero beat point when using the beat sound output, and the zero point of the direct current output is the tuning point in the discriminator method, and in this case, the direction of detuning can be determined by the positive or negative sign of the output polarity.

基準発振器5の出力54は受信機2に与えて受信周波数
設定と表示の基準となるもので、発振周波数を決定する
水晶振動子52には直列(図示)または並列に電圧制御
可変容量ダイオード53を接ぎ、これに加える制御電圧
41を変化して発振周波数を微調整することによシ、温
度変化による発振周波数の変動を補償して一定周波数を
保持することが出来るものである。従って制御電圧値は
温度変化範囲と、それに対応する水晶振動子の周波数変
化量で決まシ、当然温度−周波数変化は小さいことが望
まれる。水晶振動子は一般に使用温度付近で温度−周波
数変化が小さくなるように製作されるが、第2図にAT
カット振動子の特性例を示すように常温T。を中心に広
い温度範囲で周波数変化は少なくなっておシ、最低温度
TLのときの周波数をft、s最高温度THのときの周
波数をfnとすると、fH−fLの変化量は電波法規を
満足し、実用上でも支障の無い範囲にあることは前述の
通りであるが、別の目的から更に高い周波数確度が要求
されるのであって、恒温槽以外の方法としては水晶振動
子と直列まだは並列のコンデンサの温度係数を利用して
周波数変化を補償する手段もあるが、広い温度変化には
適応困難であシ、丑して第2図のような複雑な変化を補
償することは不可能である。
The output 54 of the reference oscillator 5 is given to the receiver 2 and serves as a reference for setting and displaying the reception frequency.A voltage-controlled variable capacitance diode 53 is connected in series (as shown) or in parallel to the crystal oscillator 52 that determines the oscillation frequency. By finely adjusting the oscillation frequency by changing the control voltage 41 applied to the oscillator, it is possible to compensate for fluctuations in the oscillation frequency due to temperature changes and maintain a constant frequency. Therefore, the control voltage value is determined by the temperature change range and the corresponding frequency change amount of the crystal resonator, and it is naturally desired that the temperature-frequency change be small. Crystal resonators are generally manufactured so that the temperature-frequency change is small near the operating temperature.
Room temperature T to show an example of the characteristics of a cut vibrator. The frequency change decreases over a wide temperature range centered on s.If the frequency at the lowest temperature TL is ft, and the frequency at the highest temperature TH is fn, the amount of change in fH-fL satisfies the radio regulations. However, as mentioned above, it is within a range that does not pose any problem in practical use, but higher frequency accuracy is required for another purpose, and as a method other than a thermostatic oven, it is not possible to connect the crystal unit in series. There is a way to compensate for frequency changes by using the temperature coefficient of parallel capacitors, but it is difficult to adapt to wide temperature changes, and it is impossible to compensate for complex changes like the one shown in Figure 2. It is.

本発明の場合は使用温度範囲を0〜50℃とすると、第
2図のTLは0℃、THは50℃である。
In the case of the present invention, assuming that the operating temperature range is 0 to 50°C, TL in FIG. 2 is 0°C and TH is 50°C.

T1〜Tnはこの間を等分した中間温度であって、10
℃0℃間隔ば5等分、5℃間隔ならば10等分となシ、
各設定温度において発振周波数54は中心周波数f。に
引き戻すように制御電圧41を加えるのであるから、発
振周波数変化は水晶振動子の特性の各設定温度間の変化
分だけとなり、全体の変化量に比して極めて小さくなシ
、また設定温度間隔を小さくするほど変化分も小さくで
きることは当然である。
T1 to Tn are intermediate temperatures equally divided between these temperatures, and 10
If the interval is 0°C, it is divided into 5 equal parts, and if the interval is 5°C, it is divided into 10 equal parts.
At each set temperature, the oscillation frequency 54 is the center frequency f. Since the control voltage 41 is applied to pull the oscillation frequency back to , the oscillation frequency change is only the change in the crystal resonator's characteristics between each set temperature, which is extremely small compared to the overall amount of change. It goes without saying that the smaller the value, the smaller the amount of change.

制御電圧41はCPU(Central Proces
sor Unit)の出力するデータ31をD/A (
デジタル−アナログ)変換して得るのであるから、デー
タ31の範囲と変化のステップ間隔は逆算で決定される
The control voltage 41 is controlled by the CPU (Central Process
D/A (
Since the data 31 is obtained by converting the data 31 (digital to analog), the range of the data 31 and the step interval of change are determined by back calculation.

1だ補償データを得るためには基準発振器5をTLから
THの温度範囲で変化してやる必要がある。基準発振周
波数foは、温度を水晶振動子の規定中心温度状態とし
て既知周波数を受信することで自動的にまるから、発振
器5の各設定温度ごとに同調指示出力が同調点を指示す
るようにCPUデータ31(制御電圧41でもある)を
与えれば発振周波数は自動的にfoとなるので、foを
量的に知る必要は無いものである。またその時の発振器
の温度るゆえ、各温度状態におけるデータ31と71と
を対としてRAM(Random Access Me
mory) 8に記憶させるのであるから、発振器温度
と制御電圧の関係は緊密にセットされておシ、各設定温
度は厳密に決める必要は無く、大体予定の設定温度にな
ったらばCPU動作のスタートボタン10を押すと、C
PUはデータ31を所定のデータ値の範囲を所定のステ
ップで増減する動作を行う。これに従い受信機の同調周
波数は微細に増減し、その途中でCPUは同調指示出力
21の「同調点」を読み取って、データ31のステップ
変化を停止して固定し、その時のデータ31と温度デー
タはRAM 8に対として記憶させる。以上の操作を各
設定温度について行い、結果をRAM 8に記憶して置
き、受信時にはCPUは常に温度データ71を監視し、
RAM8に記憶中の温度データと参照して、両者が一致
したときの対として記憶されている周波数制御データを
31として出力するものである。従って基準発振器の温
度が上昇するときの動作は第2図に示すように、TLか
らT1までは温度上昇と共に周波数が増加するがT1で
元のf。になり、またT2まで少し変化してf。に々る
補償動作をくり返えすのであって、設定温度間隔を小さ
くするほどf。よりの偏差も小さく出来ることは明らか
である。またRAM8の記憶はバックアップ電池9を置
くことにより受信機電源切断時でも保持することができ
るから、データ記憶操作は出荷時に一度行っておけば良
く、また前記のように温度設定さえ出来れば使用者が容
易に行うことが可能であり、基準発振器の経年変化をも
含めて補正されるので、受信機の周波数確度を常に最良
に維持できる利益がある。動作の中心となるCPUは受
信機に肌用のCPUの余裕能力を利用すれば経済的負担
も少なくて有利である。
In order to obtain compensation data of 1, it is necessary to vary the reference oscillator 5 in the temperature range from TL to TH. The reference oscillation frequency fo is automatically determined by receiving a known frequency with the temperature set to the specified center temperature state of the crystal oscillator. If data 31 (also control voltage 41) is given, the oscillation frequency automatically becomes fo, so there is no need to know fo quantitatively. Also, since the temperature of the oscillator at that time is the same, data 31 and 71 at each temperature state are stored in a RAM (Random Access Mechanism) as a pair.
(more) 8, the relationship between the oscillator temperature and the control voltage is set closely, and each set temperature does not need to be determined strictly, and CPU operation will start once the planned set temperature is reached. When button 10 is pressed, C
The PU performs an operation of increasing or decreasing the data 31 within a predetermined data value range in predetermined steps. Accordingly, the tuning frequency of the receiver increases or decreases minutely, and in the middle of this, the CPU reads the "tuning point" of the tuning instruction output 21, stops the step change of the data 31, fixes it, and combines the data 31 and temperature data at that time. are stored in RAM 8 as a pair. The above operations are performed for each set temperature, the results are stored in RAM 8, and when receiving, the CPU always monitors the temperature data 71,
It refers to the temperature data stored in the RAM 8 and outputs the frequency control data stored as a pair when the two match as 31. Therefore, as shown in FIG. 2, when the temperature of the reference oscillator increases, the frequency increases as the temperature rises from TL to T1, but returns to the original f at T1. , and then changed slightly until T2, then f. The compensation operation is repeated repeatedly, and the smaller the set temperature interval, the more f. It is clear that the deviation can also be reduced. Furthermore, the memory in the RAM 8 can be retained even when the receiver is powered off by installing a backup battery 9, so the data storage operation only needs to be performed once at the time of shipment. can be easily carried out, and since the aging of the reference oscillator is also corrected, there is an advantage that the frequency accuracy of the receiver can always be maintained at its best. It is advantageous to use the spare capacity of the CPU for the skin in the receiver as the CPU, which plays a central role in the operation, will reduce the economic burden.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施構成例を示すブロック図、第2図
は水晶振動子の温度−周波数変化特性曲線例と本発明に
よる周波数補償状態を説明する図である。 1・・・アンテナ、2・・・受信機、3・・・CPU、
4・・・D/A変換器、5・・・基準周波数発振器、6
・・・感温素子、7・・・A / D変換器、8・・・
RAM、9・・・バックアップ電池、10・・・スター
トブタン、21・・・同調指示出力、31・・・周波数
制御データ、41・・・周波数制御電圧、52・・・水
晶振動子、53・・・電圧制御容量ダイオード、54・
・・基準発振器出力。 特許出願人 八重洲無線株式会社
FIG. 1 is a block diagram showing an example of an implementation configuration of the present invention, and FIG. 2 is a diagram illustrating an example of a temperature-frequency change characteristic curve of a crystal resonator and a frequency compensation state according to the present invention. 1... Antenna, 2... Receiver, 3... CPU,
4...D/A converter, 5...Reference frequency oscillator, 6
... Temperature sensing element, 7... A/D converter, 8...
RAM, 9... Backup battery, 10... Start button, 21... Tuning instruction output, 31... Frequency control data, 41... Frequency control voltage, 52... Crystal resonator, 53...・Voltage controlled capacitance diode, 54・
...Reference oscillator output. Patent applicant Yaesu Musen Co., Ltd.

Claims (1)

【特許請求の範囲】 単一の水晶発振器を基準周波数源として受信周波数を設
定および表示する無線受信機において、(1)同調指示
出力をCPUに入力する手段と、(2) CPUの発生
する、ステップ間隔で増減するデータをD / A変換
した制御電圧を受信機基準周波数源に加えてその周波数
を増減せしめる手段と、(3)基準発振器の温度を感知
する感温素子の温度指示量をA / D変換してCPU
に入力する手段と、(4) 前記(1)の同調指示出力
が同調点を指示すると、前記(2)のCPUの発生する
デー′夕の増減を停止する手段と、 (5)その時のCPUの発生データと感温素子の温度デ
ータとを一対としてRAMに記憶する手段と、(6)受
信時にCPUは前記(3)の感温素子の温度指示量と、
前記(5)のRAMに記憶した感温素子の温度データと
を監視して、両者が一致すると、その温度データと一対
としてRAMに記憶されたCPUの発生データをD /
 A変換して基準発振器に加えることによシ、発振周波
数を制御する手段と、より成ることを特徴とする温度−
周波数補正方法。
[Scope of Claims] A radio receiver that sets and displays a reception frequency using a single crystal oscillator as a reference frequency source, comprising: (1) means for inputting a tuning instruction output to a CPU; (2) a means for inputting a tuning instruction output to a CPU; (3) means for increasing or decreasing the frequency by applying a control voltage obtained by D/A converting data that increases or decreases at step intervals to the receiver reference frequency source; and (3) means for increasing or decreasing the frequency of the reference oscillator. / D conversion and CPU
(4) means for stopping the increase/decrease of the data generated by the CPU in (2) when the tuning instruction output in (1) indicates a tuning point; (5) the CPU at that time; means for storing the generated data and the temperature data of the temperature sensing element as a pair in a RAM; (6) upon reception, the CPU receives the temperature instruction amount of the temperature sensing element of (3);
The temperature data of the temperature sensing element stored in the RAM in (5) above is monitored, and if the two match, the temperature data and the CPU generation data stored in the RAM as a pair are D/
and means for controlling the oscillation frequency by converting the oscillation frequency into a reference oscillator.
Frequency correction method.
JP599384A 1984-01-17 1984-01-17 Temperature-frequency characteristic correcting method Granted JPS60149223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP599384A JPS60149223A (en) 1984-01-17 1984-01-17 Temperature-frequency characteristic correcting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP599384A JPS60149223A (en) 1984-01-17 1984-01-17 Temperature-frequency characteristic correcting method

Publications (2)

Publication Number Publication Date
JPS60149223A true JPS60149223A (en) 1985-08-06
JPH0469450B2 JPH0469450B2 (en) 1992-11-06

Family

ID=11626310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP599384A Granted JPS60149223A (en) 1984-01-17 1984-01-17 Temperature-frequency characteristic correcting method

Country Status (1)

Country Link
JP (1) JPS60149223A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161411U (en) * 1986-04-04 1987-10-14
US4746879A (en) * 1986-08-28 1988-05-24 Ma John Y Digitally temperature compensated voltage-controlled oscillator
JPS63152204A (en) * 1986-12-17 1988-06-24 Nec Corp Temperature compensation type piezoelectric oscillator
EP0310863A2 (en) * 1987-09-28 1989-04-12 Siemens Aktiengesellschaft Method for the temperature compensation of a voltage-controlled quartz oscillator in a phase-locked loop
EP0735675A2 (en) * 1995-03-29 1996-10-02 Mitsubishi Denki Kabushiki Kaisha Radio communication apparatus and adjusting method thereof
USRE36973E (en) * 1989-10-12 2000-11-28 Seiko Epson Corporation Digitally-corrected temperature-compensated crystal oscillator having a correction-suspend control for communications service
JP2011004287A (en) * 2009-06-19 2011-01-06 Panasonic Electric Works Co Ltd Wireless receiving circuit and switch apparatus using the same
WO2013042318A1 (en) * 2011-09-22 2013-03-28 Hitachi Koki Co., Ltd. Air compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572313U (en) * 1978-11-08 1980-05-19
JPS58184809A (en) * 1982-04-22 1983-10-28 Nippon Telegr & Teleph Corp <Ntt> Frequency controlling method of digital control type temperature compensated crystal oscillator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572313U (en) * 1978-11-08 1980-05-19
JPS58184809A (en) * 1982-04-22 1983-10-28 Nippon Telegr & Teleph Corp <Ntt> Frequency controlling method of digital control type temperature compensated crystal oscillator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161411U (en) * 1986-04-04 1987-10-14
US4746879A (en) * 1986-08-28 1988-05-24 Ma John Y Digitally temperature compensated voltage-controlled oscillator
JPS63152204A (en) * 1986-12-17 1988-06-24 Nec Corp Temperature compensation type piezoelectric oscillator
EP0310863A2 (en) * 1987-09-28 1989-04-12 Siemens Aktiengesellschaft Method for the temperature compensation of a voltage-controlled quartz oscillator in a phase-locked loop
USRE36973E (en) * 1989-10-12 2000-11-28 Seiko Epson Corporation Digitally-corrected temperature-compensated crystal oscillator having a correction-suspend control for communications service
EP0735675A2 (en) * 1995-03-29 1996-10-02 Mitsubishi Denki Kabushiki Kaisha Radio communication apparatus and adjusting method thereof
EP0735675A3 (en) * 1995-03-29 1997-06-18 Mitsubishi Electric Corp Radio communication apparatus and adjusting method thereof
JP2011004287A (en) * 2009-06-19 2011-01-06 Panasonic Electric Works Co Ltd Wireless receiving circuit and switch apparatus using the same
WO2013042318A1 (en) * 2011-09-22 2013-03-28 Hitachi Koki Co., Ltd. Air compressor
CN103748362A (en) * 2011-09-22 2014-04-23 日立工机株式会社 Air compressor
US9518587B2 (en) 2011-09-22 2016-12-13 Hitachi Koki Co., Ltd. Air compressor

Also Published As

Publication number Publication date
JPH0469450B2 (en) 1992-11-06

Similar Documents

Publication Publication Date Title
EP0202072B1 (en) Frequency synthesizer
JP3000673B2 (en) Automatic frequency controller
US20020005765A1 (en) Digital indirectly compensated crystal oscillators
CN101202531A (en) Temperature compensation method, apparatus and access point
JPS63219225A (en) Clock signal generator
EP1010251A1 (en) Temperature compensation circuit for a crystal oscillator
JPS60149223A (en) Temperature-frequency characteristic correcting method
US4241435A (en) Electronic timepiece oscillator circuit
JPH098551A (en) High stable oscillation circuit
JPS6247212A (en) Synthesizer device
JPS6016134B2 (en) Atomic frequency standard device
JPH04504035A (en) Automatic calibration of oscillators in heterodyne radio receivers
JP2001257531A (en) Crystal oscillator
JPS5883296A (en) Electronic time piece
JPH021962Y2 (en)
JP3141539B2 (en) Radio and its automatic frequency adjustment method
JP2931595B2 (en) Digital temperature compensated oscillator
JPS59152735A (en) Transceiver
JPS6062727A (en) Frequency stabilizer to temperature change in crystal oscillator
JP4336019B2 (en) Portable radio and method for correcting IC for RTC
JPS60178718A (en) Receiver circuit
JPS5823018B2 (en) electronically tuned receiver
RU2060584C1 (en) Oscillator with automatic frequency control
JPH0882686A (en) Real-time clock accuracy improvement circuit
JP2004172686A (en) Reference signal generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees