JPS60135506A - Production of ferromagnetic metallic powder - Google Patents
Production of ferromagnetic metallic powderInfo
- Publication number
- JPS60135506A JPS60135506A JP58241003A JP24100383A JPS60135506A JP S60135506 A JPS60135506 A JP S60135506A JP 58241003 A JP58241003 A JP 58241003A JP 24100383 A JP24100383 A JP 24100383A JP S60135506 A JPS60135506 A JP S60135506A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- aqueous solution
- suspension
- goethite
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明i末磁気記録媒体の主原料である磁性粉のうち、
最近特に記録密度及び感度、出力の向上が期待される、
強磁性金属粉末の製造に関するものである。Detailed Description of the Invention Among the magnetic powders that are the main raw materials of the magnetic recording medium of the present invention,
Recently, improvements in recording density, sensitivity, and output are expected.
It relates to the production of ferromagnetic metal powder.
磁性体(粉末)としては飽和磁化(σB)、抗磁力(口
C)などの磁気特性が高いはかりでなく、°塗料中に於
ける分散性、更に、塗膜においても表面状態が平滑でし
か屯緻密ψ均一に磁性粉が多量に充填される事が必要で
おる。つまり、金属粉の軸比が大きく、かつ微細で、そ
の粒度分布も狭いことが条件となる。一般には、更に化
学的安定性があり耐食性にすぐれていることがくり返し
使用しても出力、感度のドロップがなく、実用上重要で
ある。The magnetic material (powder) does not have high magnetic properties such as saturation magnetization (σB) and coercive force (C), but also has good dispersibility in paint, and also has a smooth surface condition in the paint film. It is necessary to fill a large amount of magnetic powder densely and uniformly. In other words, the metal powder must have a large axial ratio, be fine, and have a narrow particle size distribution. In general, chemical stability and excellent corrosion resistance are important for practical use, as there is no drop in output or sensitivity even after repeated use.
本発明はこの様な課題を解決するものである。The present invention solves these problems.
すなわち、第1鉄塩水溶液とアルカリ水溶液とを反応さ
せて得られる水酸化物を酸化して針状晶のゲータイトを
生成させ、脱水・還元工程での封孔及び還元反応での針
状の治水防止及び粒子間の焼結を防止するための耐熱成
分としてのStO,をゲータイトの表面に被着させ、更
に脱水管還元処理でo、1〜α5趨の鉄粉を製造する全
工程に於いて、種々の検討試験の結果、本発明に到達し
た。That is, hydroxide obtained by reacting a ferrous salt aqueous solution with an alkaline aqueous solution is oxidized to produce acicular goethite, which is used for sealing in the dehydration/reduction process and for acicular flood control in the reduction reaction. In the entire process of manufacturing iron powder in the range of o, 1 to α5, by depositing StO as a heat-resistant component on the surface of goethite to prevent sintering between particles, and then by dehydration tube reduction treatment. As a result of various investigation tests, the present invention was arrived at.
すなわち、本発明は第1鉄塩水溶液をアルカリ水浴液で
中和して得られた水酸化物の懸濁液を酸化性ガスと接触
させ酸化することにより針状ゲータイト粒子を生成させ
、脱水・還元処理を行い強磁性金属粉末を製造する方法
において、(1)鉄に対して1〜10重量%のニッケル
を含む量のニッケル塩を第1鉄塩水溶液に溶解させ、該
第1鉄塩水溶液をアルカリ水溶液で中和し、鉄及びニッ
ケルの水酸化物を生成させ、これを酸化性ガスと接触さ
せニッケル含有ゲータイ)1−生成させる第1工程
(幻 ニッケル含有ゲータイトの懸濁液からニッケル含
有ゲータイトを分離し酸洗してPHft7Hf上調整し
中性又は酸性の懸濁液とする第2工程
+81 得られた中性又は酸性の懸濁液に、鉄に対して
1〜40重量%のニッケルを含むニッケル塩の水浴液を
アルカリ水浴液と共に添加し、ニッケル含有ゲータイト
粒子表面に水酸化ニッケルを被覆し、f過、水洗し、水
懸濁液とする第5工程
(4)次いで、得られた水懸濁液に、鉄に対して2〜1
0重量%のケイ素を含む量のケイ素化合物を添加し、更
にニッケル含有ゲータイトの粒子表面にケイ素化合物を
被覆する第4工程
を経て得たニッケル化合物及びケイ素化合物を被覆した
ニッケル含有ゲータイトをio〜900℃で脱水処理し
、500〜550℃で水素還元することを特徴とする強
磁性金属粉末の製造法を提供するものである。That is, in the present invention, a hydroxide suspension obtained by neutralizing a ferrous salt aqueous solution with an alkaline bath liquid is brought into contact with an oxidizing gas and oxidized to produce acicular goethite particles, which are then dehydrated and oxidized. In a method for producing a ferromagnetic metal powder by performing a reduction treatment, (1) dissolving a nickel salt in an amount containing 1 to 10% by weight of nickel based on iron in an aqueous ferrous salt solution; is neutralized with an alkaline aqueous solution to produce hydroxides of iron and nickel, and this is brought into contact with an oxidizing gas to produce nickel-containing goethite. 2nd step of separating goethite, pickling it and adjusting the pH to 7Hf to make a neutral or acidic suspension +81 Add nickel in an amount of 1 to 40% by weight based on iron to the resulting neutral or acidic suspension. A fifth step (4) in which a nickel salt water bath solution containing nickel salt is added together with an alkaline water bath solution, the surface of the nickel-containing goethite particles is coated with nickel hydroxide, and the particles are filtered and washed to form a water suspension. 2 to 1 for iron in aqueous suspension.
The nickel compound and the nickel-containing goethite coated with the silicon compound obtained through the fourth step of adding a silicon compound in an amount containing 0% by weight of silicon and further coating the particle surface of the nickel-containing goethite with a silicon compound are The present invention provides a method for producing ferromagnetic metal powder, which is characterized by dehydration treatment at 500°C and hydrogen reduction at 500 to 550°C.
次に、本発明の各工程について具体的に説明する。Next, each step of the present invention will be specifically explained.
まず、第1鉄塩の水溶液にNi/F6−1〜10%(重
量比)好ましくは2〜7%(重量比)になる様にニッケ
ルの水溶性塩會加え十分攪拌後、所定量のアルカリ水溶
液を加えNi (OH)、とF”(OH)*の混在する
懸濁液を製造する。更に強力攪拌を継続し、同時に窒素
ガスを約1時間導入し、前述の水酸化物の70ツクを破
壊し、細く分散させるとともに系内の溶存酸素を追い出
して、次の均一酸化反応に備える。酸化反応は液粘度制
御で150〜s o a C−Pになる様に連続的に、
空気を吹き込み反応速度をコントロールする、この様に
してニッケル含有のd、−FeOOH粒子を製造する。First, a water-soluble nickel salt solution is added to an aqueous solution of ferrous salt in an amount of Ni/F6-1 to 10% (weight ratio), preferably 2 to 7% (weight ratio), and after thorough stirring, a predetermined amount of alkali is added. An aqueous solution is added to produce a suspension containing Ni (OH) and F" (OH)*. Strong stirring is continued, and at the same time nitrogen gas is introduced for about 1 hour, and 70% of the hydroxide is added. The liquid is broken down and dispersed finely, and the dissolved oxygen in the system is expelled to prepare for the next homogeneous oxidation reaction.The oxidation reaction is carried out continuously by controlling the liquid viscosity so that the liquid viscosity becomes 150~so a C-P.
Nickel-containing d,-FeOOH particles are produced in this way by blowing air to control the reaction rate.
しかしNt/F@が2.5%以上は、α−Ff100H
粒子の表面に付着しているのみでこの11脱水・還元す
ると成分の偏析した鉄粉になりがちである。つまりこの
ニッケル含有のα−F・00Ht−PH7以下、好まし
くはPH7〜5までf過水洗をくりかえし、酸洗して副
生ずるNaC影などを十分除去(Na/F・<0.1%
)した後、再度リパルプし、更に鉄に対して1〜40%
(重量比)のニッケル塩水溶液をアルカリ水溶液と共に
添付し被覆工Sを行う。However, when Nt/F@ is 2.5% or more, α-Ff100H
If these 11 are only attached to the surface of particles and are dehydrated and reduced, they tend to become iron powder with segregated components. In other words, this nickel-containing α-F・00Ht-PH is repeated until the pH is 7 or less, preferably 7 to 5.
), then repulped again and further repulped by 1 to 40% based on iron.
A nickel salt aqueous solution of (weight ratio) is attached together with an alkaline aqueous solution and coating S is performed.
この際、カルボン酸などを同時に添加すると、α−Fe
00Hの分散性は格段と向上し、アルカリ水溶液添加に
より生成したNi (OH)、は、α−FI100H粒
子の個々の表面に均一に付着し、浮遊のN1(OH)、
粒子が電子顕微鏡写真では認められなくなり、好ましい
方法の1つである。At this time, if carboxylic acid etc. are added at the same time, α-Fe
The dispersibility of 00H has been significantly improved, and the Ni (OH) generated by adding an aqueous alkaline solution is uniformly attached to the individual surfaces of α-FI100H particles, and the floating N1 (OH),
This is one of the preferred methods, as the particles are no longer visible in electron micrographs.
このニッケル被着処理を施したα−Fe00Hを再度r
過した後リパリプしてシリカ被着工程に移る、シリカ被
着におけるα−peOOH,スラリーの濃度は401/
−e以下、好ましくは201/11以下にすると、α−
Fe 00I(粒子の凝集体もなくなり、均一に分散し
シリカの被着効率は向上し、ニッケル含有のα−F60
0H粒子の表面に均一に被着されて、その後の脱水・還
元に於けるα−F@OOH粒子の形崩れとが、粒子間の
焼結が防止され、磁気特性がすぐれた鉄粉が得られるば
かりでなく比表面積も大きく、分散−配向性にもすぐれ
たものとなる。被着量としてはS1/l’e(重量比)
テ29f;以上、好tL<は4%以上にすることが前述
のシリカ被着の目的を達成することが解った。シリカの
原料としてはシリカ・ゾルが、Naの含有量、反応系の
PHの上昇を考えると操作も簡単でシリカの被着効率も
高くほぼ全量が残留被着する。特にコロイド−シリカの
粒子の細いものが有効であるが、凡用のコロイダルシリ
カでも充分通用するものである。その他、水ガラスなど
の珪酸塩も、スラリー液の粘度も低下し分散性向上の点
でシリカゲル以上にシリカ被着状況は曳好な効果が発揮
されるが、製品のNa5PHの問題とか、シリカ被着収
率を向上するなどに於いて操作上の難しさがある。この
点に於いてコロイダルシリカ使用が有利でおるが、スラ
リー濃度を小さくするなどの対策で、水ガラス使用時の
低粘度〜シリカの均一被着の効果に匹敵する条件を付加
することに留意する必要がある。This nickel-adhered α-Fe00H was re-r
The concentration of α-peOOH slurry in silica deposition is 401/
-e or less, preferably 201/11 or less, α-
Fe 00I (no particle agglomerates, uniform dispersion, improved silica adhesion efficiency, nickel-containing α-F60
The α-F@OOH particles are uniformly deposited on the surface of the 0H particles, and the deformation of the α-F@OOH particles during subsequent dehydration and reduction prevents sintering between the particles, resulting in iron powder with excellent magnetic properties. Not only that, but also the specific surface area is large and the dispersion-orientation properties are excellent. The amount of adhesion is S1/l'e (weight ratio)
From the above, it was found that setting tL< to 4% or more achieves the above-mentioned purpose of silica deposition. As a raw material for silica, silica sol is easy to operate considering the Na content and the increase in pH of the reaction system, and the silica deposition efficiency is high, so that almost all of the silica remains deposited. In particular, colloidal silica with fine particles is effective, but ordinary colloidal silica can also be used. In addition, silicates such as water glass are more effective than silica gel in terms of reducing the viscosity of the slurry liquid and improving dispersibility, but there are problems with Na5PH in the product and silica coating. There are operational difficulties in improving the sorption rate. In this respect, the use of colloidal silica is advantageous, but it should be noted that by taking measures such as reducing the slurry concentration, conditions must be added to match the low viscosity and uniform adhesion of silica when using water glass. There is a need.
以上のα−i’eooHの合成及び必要な成分を。Synthesis of the above α-i'eooH and necessary components.
その表面に均一に被着させたニッケル含有のα−FeO
OHを脱水管還元工程で合金化させて適正な保磁力(H
l)にする。種々検討の結果、脱水条件特に保持時間1
時間以上好ましくは5時間以上保持することにより比表
面積(BET)及び飽和磁化(σ8)の変化もなく保磁
力のみが暫減する事を見い出した。Nickel-containing α-FeO uniformly deposited on its surface
OH is alloyed in the dehydration tube reduction process to obtain an appropriate coercive force (H
l). As a result of various studies, the dehydration conditions, especially the retention time 1
It has been found that by holding the sample for at least 5 hours, preferably for at least 5 hours, only the coercive force gradually decreases without any change in the specific surface area (BET) or saturation magnetization (σ8).
この時の水素還元条件は、反応終了時の水素ガスの無点
を−45〜−55℃に設定し、400℃で約5〜6時間
((1F’h0s:約tokg、H1:200MしN)
保持したものである。The hydrogen reduction conditions at this time were as follows: -45 to -55°C for hydrogen gas at the end of the reaction, and at 400°C for about 5 to 6 hours ((1F'h0s: about tokg, H1: 200M, N )
It was retained.
尚、水素還元による鉄粉の特性値への影響は、保磁力(
He)−飽和磁化(σS)−比表面積(BET)の総合
バランスで、決定されるべI値であるし、各値は別個に
それ以前の処理工程の条件によっても変化を受ける要因
がある。特に脱水処理温度を700〜750”Cの範囲
に固定すれは、前述の値は次の様に変動する。The effect of hydrogen reduction on the characteristic values of iron powder is due to the coercive force (
The I value is determined by the overall balance of He) - saturation magnetization (σS) - specific surface area (BET), and each value is subject to change depending on the conditions of the previous processing steps. In particular, when the dehydration temperature is fixed in the range of 700 to 750''C, the above values vary as follows.
HC;保持時間の延長とともに低下。HC: Decrease as retention time increases.
σS ;はとんど変化なし。σS: There is almost no change.
BET ;
また水素還元温度の影響としては、温度の上昇に伴って
σSは増大し、BETは逆に低下する。BET; Further, as an effect of the hydrogen reduction temperature, as the temperature increases, σS increases, and BET conversely decreases.
珍は(脱水温度によって若干変動するが)、ある還元温
度範囲でピークがありその後低下してくる。つまり72
5℃脱水では430℃でかすかにピークが見られるが約
400〜460℃でほぼフラットの値である。460℃
以上の還元では、粒子の形崩れ及び粒子間の焼結が起る
ものであるが、前述の温度範囲でHe−σB−BETの
バランスを考えコントロールすることは可能である。Chin (it varies slightly depending on the dehydration temperature) has a peak in a certain reduction temperature range and then decreases. That is 72
In 5°C dehydration, a faint peak is seen at 430°C, but the value is almost flat between about 400 and 460°C. 460℃
In the above reduction, deformation of particles and sintering between particles occur, but it is possible to control the balance of He-σB-BET within the above-mentioned temperature range.
以上の処理により製造した針状晶の磁性鉄粉は、超微細
であることも原因で、非常に活性で、その11では自燃
性を有するし、磁気特性の経時変化も激しく、一般の使
用に耐えないため、有機溶媒に還元後の鉄粉を浸漬し、
空気中で徐徐に当咳有機溶媒を蒸発除去過揚で鉄粉の表
面で僅かづつ酸化反応を起こさせ、緻密な酸化被膜を形
成する方法が良く知られているが、大量かつ、短時間処
理では充分量の有機溶媒中に鉄粉を浸漬させ、酸化性ガ
スを吹きこみ酸化処理するのが一般的である。その他、
還元反応終了後反応炉内でN、 、 Arなどの不活性
なガス中の酸素分圧を低濃度より哲人増加させて、酸化
被膜を形成させる気相酸化法もある。本発明ではこの酸
化被膜による安定化処理法について特別制限するもので
なく、いずれの方法でも良い。The acicular magnetic iron powder produced by the above process is extremely active due to its ultra-fine size, and in 11 cases it is self-combustible, and its magnetic properties change drastically over time, making it unsuitable for general use. Since the iron powder is not durable, the iron powder after reduction is immersed in an organic solvent.
A well-known method is to gradually evaporate the organic solvent in the air and cause an oxidation reaction on the surface of the iron powder little by little by overlifting to form a dense oxide film. Generally, iron powder is immersed in a sufficient amount of an organic solvent, and then oxidized by blowing in an oxidizing gas. others,
There is also a gas phase oxidation method in which the partial pressure of oxygen in an inert gas such as N, Ar, or the like is increased from a low concentration in a reactor after the reduction reaction is completed to form an oxide film. In the present invention, there is no particular restriction on the stabilization treatment method using the oxide film, and any method may be used.
以下実施例により、本発明を更に具体的に説明する。The present invention will be explained in more detail below with reference to Examples.
実施例1
電解鉄4.80kgを塩酸水溶液(55XHCn2a1
kg′t−水240kg1C混合)に溶解させ、Fel
十濃度2011/−C3のFeC−13を水溶液240
沼を作り、これにN1m+濃度2o1/−eのN ’C
−e を水溶液14.44を加え、更にNa OH水溶
液(濃度172.5.F/J)24(lを加えアルカリ
当量で理論値の約6倍量(mol)とした。この間、窒
素ガス(歯)を1oN、#z4Mの流量で強力攪拌しな
がら導入した。Example 1 4.80 kg of electrolytic iron was dissolved in hydrochloric acid aqueous solution (55XHCn2a1
kg't - 240 kg of water (mixed with 1C) and Fel
10 Aqueous solution of FeC-13 with concentration 2011/-C3 240
Create a swamp and fill it with N'C of N1m + concentration 2o1/-e.
14.44 of an aqueous solution of -e was added, and 24 (l) of an aqueous NaOH solution (concentration 172.5.F/J) was added to make the amount (mol) about 6 times the theoretical value (alkali equivalent). During this time, nitrogen gas ( (teeth) was introduced with strong stirring at a flow rate of 1oN and #z4M.
50分後に微細なFe(0H)t(及びN1 (OH)
t )粒子が均一に分散・混合した懸濁液を得た。After 50 minutes, fine Fe(0H)t(and N1(OH)
t) A suspension in which particles were uniformly dispersed and mixed was obtained.
次に窒素ガスを導入しながら懸濁液1に30分間で常温
より40℃まで昇温し、次に窒素ガスを空気に交換し、
1o陶/Mの流量で馬てい型の軟管(ノズル:2*%X
50ケ)より、均一に導入し酸化反応及び加水分解反応
によりゲータイト(α−FeOOH)を合成した。Next, while introducing nitrogen gas, the temperature of Suspension 1 was raised from room temperature to 40°C for 30 minutes, and then the nitrogen gas was exchanged with air.
Horse-shaped soft tube (nozzle: 2*%
Goethite (α-FeOOH) was synthesized by homogeneously introducing 50 pieces of powder and carrying out an oxidation reaction and a hydrolysis reaction.
反応には2時間50分を要した。The reaction required 2 hours and 50 minutes.
この反応はニッケルの添加量はNi /Feで6%wt
でおり、反応終了時の粘度も低く(約2600.P)、
合成したa−Fe00Hは粒子径も小さく(長軸:約0
.55jIm、軸比:約20)、粒子径も比較的揃った
針状晶である。In this reaction, the amount of nickel added was 6%wt in Ni/Fe.
and the viscosity at the end of the reaction is low (approximately 2600.P).
The synthesized a-Fe00H has a small particle size (long axis: approximately 0
.. 55jIm, axial ratio: about 20), and the particle size is relatively uniform.
この懸濁液をr過・水洗し、残留するNnOH及びNa
Cff1 を除去した後、このケーキより2、sskg
(水71%)を採取し水46でリブくリブし、強力攪拌
のもとに硫酸水溶液を滴下し、PH5とし、α−Fg1
00Hに含有されない遊離のN1(OH)を粒を塩解し
、f過・水洗を繰返した余分のN1分を除去したα−F
e00Hのケーキを得て、更に水21.8でリパリブし
た。This suspension was filtered and washed with water, and the remaining NnOH and Na
After removing Cff1, 2,sskg from this cake
(water 71%) was collected and ribbed with 46% water, and under strong stirring, sulfuric acid aqueous solution was added dropwise to adjust the pH to 5, and α-Fg1
α-F, in which free N1 (OH) not contained in 00H is dissolved in salt, and excess N1 is removed by repeated f-filtration and water washing.
A cake of e00H was obtained, which was further reparibbed with 21.8 g of water.
次にこれに塩化ニッケルの水溶液(Ni(ffl。Next, this is added to an aqueous solution of nickel chloride (Ni(ffl).
・6H20で2o1i’/J)を0.55廓添加し、強
力攪拌のもとに、Na OH溶液(濃度:175&/A
)0.151を滴下中和し微細なN i (OH) !
としてα−FeOOHの表面に析出させた。f過水法に
よりPH9以下として全体で鉄との重量比で約6%のニ
ッケルを含有するα−FeOOHを合成した。更にこの
ケーキに水46を加え、強力攪拌のもとにリパルプし、
α−Fe00H′t−均一に分散させコロイダルシリカ
(日量化学スノーテックス−30SiO,中50〜51
%wt)を約460d添加した。・Add 0.55 g of 2o1i'/J in 6H20, and add NaOH solution (concentration: 175 &/A) under strong stirring.
) 0.151 dropwise to neutralize fine Ni (OH)!
It was deposited on the surface of α-FeOOH. α-FeOOH containing approximately 6% nickel in weight ratio to iron was synthesized using the f-hydrogenation method with a pH of 9 or less. Furthermore, add 46% of water to this cake, repulp it under strong stirring,
α-Fe00H't-Uniformly dispersed colloidal silica (Nichikagaku Snowtex-30SiO, medium 50-51
% wt) was added for about 460 d.
(シリカ添加量でSt/Fe1−4%wt)特殊機械工
業社製のホモ之キサー8.T型で約500ORPMでシ
リカを均一に懸濁させた後f過してSiQ、被着のα−
Fe00Hのケーキを得た。r通抜、約100℃で乾燥
し、粉砕機(東京アトマイザ−製造社製のアトマイザ−
・ミル)で解砕後、大気中で725℃に設置したマツフ
ル炉内で5時間保持しα−Fe * 0 sとした。(St/Fe1-4%wt in silica addition amount) Homo-no-Kisa 8. manufactured by Tokushu Kikai Kogyo Co., Ltd. After uniformly suspending silica at approximately 500 ORPM in a T-type, SiQ and α-
A cake of Fe00H was obtained. Dry at about 100°C, crusher (Atomizer manufactured by Tokyo Atomizer Manufacturing Co., Ltd.)
After being crushed in a Matsufuru furnace set at 725° C. in the atmosphere for 5 hours, it was made into α-Fe*0 s.
次に400℃にて水素ガスにより還元し、約0. ’4
8 kgの磁性鉄粉を生成した。水素還元炉は、水素ガ
スを流動用に使用した流動層型炉である。Next, it was reduced by hydrogen gas at 400°C to about 0. '4
8 kg of magnetic iron powder was produced. A hydrogen reduction furnace is a fluidized bed type furnace that uses hydrogen gas for fluidization.
生成した鉄粉は長軸が0.15μm、軸比15の針状で
、非常に活性であるため、トルエンに浸漬し、徐々に空
気中で乾燥し、安定化した。粉末の磁気特性及び比表面
積を第1表に示す様に極めて秀れた特性値を有するもの
である。また第1図に得られた鉄粉の電子顕微鏡4真(
倍率: 27.000倍)を示す。The produced iron powder had a needle shape with a long axis of 0.15 μm and an axial ratio of 15, and was very active, so it was stabilized by immersing it in toluene and gradually drying it in air. The powder has extremely excellent magnetic properties and specific surface area as shown in Table 1. In addition, Fig. 1 shows 4 electron microscopes of the iron powder obtained (
Magnification: 27.000 times).
実施例2
実施例1の酸化、加水分解で得たα−FeOOHの一部
をr過・水洗を繰り返し、PH<10のα−FeOOH
スラリーとし、実施例1と同様に酸洗浄〜f力・水洗に
より約2.6 kg (水分76%)のα−peQOH
ケーキを得た。次にこれに水21Jを加え強力攪拌のも
とにリバリプした後、塩化ニッケルの水溶液(N1C1
*・6ル0で201i/J)t−164J添加し、十分
攪拌した後、苛性ソーダ液C1ysl/43)0.44
沼で中和し、微細なN1(OH)* としてα−Fe0
0Hの表面に析出させた。f過・水洗によりPH9以下
として、全体で鉄との重量比で10%のニッケルを含有
するα−FeOOHを合成した。Example 2 A part of α-FeOOH obtained by oxidation and hydrolysis in Example 1 was repeatedly filtered and washed with water to obtain α-FeOOH with pH<10.
Approximately 2.6 kg (moisture 76%) of α-peQOH was made into a slurry and washed with acid, f-force and water in the same manner as in Example 1.
Got the cake. Next, 21 J of water was added to this and revived under strong stirring, followed by an aqueous solution of nickel chloride (N1C1
*・After adding 201i/J)t-164J at 6L0 and stirring thoroughly, add caustic soda solution C1ysl/43)0.44
Neutralized in the swamp and converted to α-Fe0 as fine N1(OH)*
It was deposited on the surface of 0H. α-FeOOH containing 10% nickel in weight ratio to iron was synthesized by adjusting the pH to 9 or less by f-filtering and washing with water.
更に、このC1−Fe0OHItリパルプし、約16g
/43のスラリー濃度になる様に水を加えた後、珪酸ソ
ーダ(JISS号)を加え、希硝酸水溶液を滴下し最終
的にPHを7として鉄との重量比(81/F6 )で約
6’Xになる様に前述のN1含有のa−Fe00Hの表
面にsio、t−被着させた。Furthermore, this C1-Fe0OHIt was repulped and about 16g
After adding water to a slurry concentration of /43, sodium silicate (JISS No.) was added, and a dilute aqueous nitric acid solution was added dropwise to finally adjust the pH to 7, making the weight ratio to iron (81/F6) about 6. sio and t- were deposited on the surface of the above-mentioned N1-containing a-Fe00H so as to form 'X'.
f通抜乾燥し、実施例1と同じ装置で脱水(725℃X
10Hr)還元して鉄粉金得た。It was drained and dried, and dehydrated using the same equipment as in Example 1 (725°C
10 hours) to obtain iron powder gold.
第1表に磁気特性値を記す。Table 1 shows the magnetic property values.
実施例3
ゲータイト合成に於ける空気の吹込み量を1013Al
より51/Mに変更し、また合成後のNtの含有量t−
Ni/F・で約15Xとなる様に塩化ニッケルを添加し
、中和した以外は全て実施例2と同様の方法で鉄粉を生
成した。第1表に磁気特性を示す。Example 3 The amount of air blown in goethite synthesis was changed to 1013Al
51/M, and the Nt content after synthesis t-
Iron powder was produced in the same manner as in Example 2, except that nickel chloride was added and neutralized so that Ni/F. was approximately 15X. Table 1 shows the magnetic properties.
く同一にし、N1共沈及びその後のNi被着を省略した
α−Fe00Hを合成し、脱水・還元により鉄粉を製造
した。鉄粉は、粒形の不揃い及び枝分れが日立ち、充填
性が悪く、分散性に劣るものである。第1表に得られた
鉄粉の磁気特性を示し、第2図に電子顕微鏡写真(倍率
: 27.000倍)を示す。α-Fe00H was synthesized using the same method, omitting the N1 coprecipitation and subsequent Ni deposition, and produced iron powder by dehydration and reduction. Iron powder has irregular grain shapes and branching, poor filling properties, and poor dispersibility. Table 1 shows the magnetic properties of the obtained iron powder, and FIG. 2 shows an electron micrograph (magnification: 27.000 times).
第1表Table 1
第1図は本発明の一実施例で得られた磁性鉄粉の電子顕
微鏡写真を示すもので、第2図は比較例で得られた磁性
鉄粉の電子顕微鏡写真を示すものである。倍率はいずれ
も27.000倍である。
特許出願人 東洋1達工業株式会社
41−FIG. 1 shows an electron micrograph of magnetic iron powder obtained in an example of the present invention, and FIG. 2 shows an electron micrograph of magnetic iron powder obtained in a comparative example. The magnification is 27.000 times in both cases. Patent applicant: Toyo Ichida Kogyo Co., Ltd. 41-
Claims (1)
た水酸化物の懸濁液を酸化性ガスと接触させ酸化するこ
とにより針状ゲータイト粒子を生成させ、脱水、還元処
理を行い強磁性金属粉末を製造する方法において、 (1) 鉄に対して1〜10重量%のニッケルを含む量
のニッケル塩を第1鉄塩水溶液に溶解させ、該第1鉄塩
水溶液をアルカリ水溶液で中和し、鉄及びニッケルの水
酸化物を生成させ、これを酸化性ガスと接触させニッケ
ル含有ゲータイ)1−生成させる第1工程 (2) ニッケル含有ゲータイトの懸濁液からニッケル
含有ゲータイトを分離し酸洗して酎を7以下に調整し中
性又は酸性の懸濁液とする第2工程 13) 得られた中性又は酸性の懸濁液に、鉄に対して
1〜40重量%のニッケルを含むニッケル塩の水溶液を
アルカリ水溶液と共に添加し、ニッケル含有ゲータイト
粒子表面に水酸化ニッケルを被覆し、f過、水洗し、水
懸濁液とする第3工程 (4)次いで、得られた水懸濁液に、鉄に対して2〜1
0重量%のケイ素を含む量のケイ素化合物を添加し、更
にニッケル含有ゲータイトの粒子表面にケイ素化合物を
被覆する第4工程 を経て得たニッケル化合物及びケイ素化合物金被覆した
ニッケル含有ゲータイトを600〜900℃で脱水処理
し、300〜550℃で水素還元することを特徴とする
強磁性金属粉末の製造法。[Claims] t A hydroxide suspension obtained by neutralizing a ferrous salt aqueous solution with an alkaline aqueous solution is brought into contact with an oxidizing gas and oxidized to produce acicular goethite particles, and dehydrated. , a method for producing ferromagnetic metal powder by performing a reduction treatment, (1) dissolving a nickel salt in an amount containing 1 to 10% by weight of nickel based on iron in an aqueous ferrous salt solution, and dissolving the ferrous salt in an aqueous solution; The first step (2) of neutralizing the aqueous solution with an alkaline aqueous solution to generate iron and nickel hydroxides, and contacting this with an oxidizing gas to generate nickel-containing goethite (2) from a suspension of nickel-containing goethite The second step is to separate the nickel-containing goethite and pickle it to adjust the concentration to 7 or less to make a neutral or acidic suspension.13) Add 1 to the iron to the resulting neutral or acidic suspension. A third step (4) in which an aqueous solution of a nickel salt containing ~40% by weight of nickel is added together with an aqueous alkaline solution to coat the surface of the nickel-containing goethite particles with nickel hydroxide, which is filtered and washed with water to form an aqueous suspension. The resulting aqueous suspension is then added with 2 to 1
The nickel compound and silicon compound gold-coated nickel-containing goethite obtained through the fourth step of adding a silicon compound in an amount containing 0% by weight of silicon and further coating the particle surface of the nickel-containing goethite with a silicon compound has a nickel content of 600 to 900%. A method for producing a ferromagnetic metal powder, which comprises dehydrating the powder at a temperature of 300 to 550°C and reducing it with hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58241003A JPS60135506A (en) | 1983-12-22 | 1983-12-22 | Production of ferromagnetic metallic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58241003A JPS60135506A (en) | 1983-12-22 | 1983-12-22 | Production of ferromagnetic metallic powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60135506A true JPS60135506A (en) | 1985-07-18 |
JPH0368923B2 JPH0368923B2 (en) | 1991-10-30 |
Family
ID=17067879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58241003A Granted JPS60135506A (en) | 1983-12-22 | 1983-12-22 | Production of ferromagnetic metallic powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60135506A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6265307A (en) * | 1985-09-14 | 1987-03-24 | Mitsui Toatsu Chem Inc | Manufacture of magnetic iron powder |
JPS62186501A (en) * | 1986-02-05 | 1987-08-14 | バスフ アクチェン ゲゼルシャフト | Manufacture of needle-shape ferromagnetic metal powder elementarily made of iron |
US4970124A (en) * | 1988-05-11 | 1990-11-13 | Eastman Kodak Company | New magnetic metallic particles using rare-earth elements |
JPH0338005A (en) * | 1989-07-05 | 1991-02-19 | Kanto Denka Kogyo Co Ltd | Method for manufacturing metal magnetic powder for magnetic recording |
JP2005277094A (en) * | 2004-03-24 | 2005-10-06 | Dowa Mining Co Ltd | Magnetic powder for coating type magnetic recording medium corresponding to high density and manufacturing method thereof |
JP2014231624A (en) * | 2013-05-29 | 2014-12-11 | 株式会社デンソー | METHOD FOR PRODUCING Fe-Ni ALLOY POWDER, Fe-Ni ALLOY POWDER AND MAGNET |
WO2017209256A1 (en) * | 2016-06-02 | 2017-12-07 | エム・テクニック株式会社 | Silicon compound-coated metal particles |
US9949898B2 (en) | 2015-10-05 | 2018-04-24 | M. Technique Co., Ltd. | Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide |
US10400107B2 (en) | 2016-02-02 | 2019-09-03 | M. Technique Co., Ltd. | Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52134858A (en) * | 1976-05-07 | 1977-11-11 | Kanto Denka Kogyo Kk | Method of making magnetic recording magnetic powder containing iron as main constituent |
JPS54122664A (en) * | 1978-03-16 | 1979-09-22 | Kanto Denka Kogyo Kk | Production of magnetic powder for magnetic recording based on iron |
JPS56156706A (en) * | 1980-05-06 | 1981-12-03 | Hitachi Maxell Ltd | Manufacture of magnetic metallic powder |
-
1983
- 1983-12-22 JP JP58241003A patent/JPS60135506A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52134858A (en) * | 1976-05-07 | 1977-11-11 | Kanto Denka Kogyo Kk | Method of making magnetic recording magnetic powder containing iron as main constituent |
JPS54122664A (en) * | 1978-03-16 | 1979-09-22 | Kanto Denka Kogyo Kk | Production of magnetic powder for magnetic recording based on iron |
JPS56156706A (en) * | 1980-05-06 | 1981-12-03 | Hitachi Maxell Ltd | Manufacture of magnetic metallic powder |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6265307A (en) * | 1985-09-14 | 1987-03-24 | Mitsui Toatsu Chem Inc | Manufacture of magnetic iron powder |
JPS62186501A (en) * | 1986-02-05 | 1987-08-14 | バスフ アクチェン ゲゼルシャフト | Manufacture of needle-shape ferromagnetic metal powder elementarily made of iron |
US4970124A (en) * | 1988-05-11 | 1990-11-13 | Eastman Kodak Company | New magnetic metallic particles using rare-earth elements |
JPH0338005A (en) * | 1989-07-05 | 1991-02-19 | Kanto Denka Kogyo Co Ltd | Method for manufacturing metal magnetic powder for magnetic recording |
JP2005277094A (en) * | 2004-03-24 | 2005-10-06 | Dowa Mining Co Ltd | Magnetic powder for coating type magnetic recording medium corresponding to high density and manufacturing method thereof |
JP4534085B2 (en) * | 2004-03-24 | 2010-09-01 | Dowaエレクトロニクス株式会社 | Magnetic powder for coating type magnetic recording medium corresponding to high density and manufacturing method thereof |
JP2014231624A (en) * | 2013-05-29 | 2014-12-11 | 株式会社デンソー | METHOD FOR PRODUCING Fe-Ni ALLOY POWDER, Fe-Ni ALLOY POWDER AND MAGNET |
US9949898B2 (en) | 2015-10-05 | 2018-04-24 | M. Technique Co., Ltd. | Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide |
US10182975B2 (en) | 2015-10-05 | 2019-01-22 | M. Technique Co., Ltd. | Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide |
US10400107B2 (en) | 2016-02-02 | 2019-09-03 | M. Technique Co., Ltd. | Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same |
US11084936B2 (en) | 2016-02-02 | 2021-08-10 | M. Technique Co., Ltd. | Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same |
JP6273632B1 (en) * | 2016-06-02 | 2018-02-07 | エム・テクニック株式会社 | Method for producing silicon compound-coated metal fine particles |
JP6273633B1 (en) * | 2016-06-02 | 2018-02-07 | エム・テクニック株式会社 | Silicon compound-coated metal fine particles, composition containing silicon compound-coated metal fine particles, and method for producing silicon compound-coated metal fine particles |
JP2018009183A (en) * | 2016-06-02 | 2018-01-18 | エム・テクニック株式会社 | Silicon compound coated-metal fine particle |
CN109195915A (en) * | 2016-06-02 | 2019-01-11 | M技术株式会社 | The metal particle and its manufacturing method for being covered with the metal particle of silicon, being covered with silicon compound |
WO2017209288A1 (en) * | 2016-06-02 | 2017-12-07 | エム・テクニック株式会社 | Silicon-coated metal particles, silicon compound-coated metal particles, and production method therefor |
WO2017209256A1 (en) * | 2016-06-02 | 2017-12-07 | エム・テクニック株式会社 | Silicon compound-coated metal particles |
US10882109B2 (en) | 2016-06-02 | 2021-01-05 | M. Techinque Co., Ltd. | Silicon compound-coated metal particles |
US11052461B2 (en) | 2016-06-02 | 2021-07-06 | M. Technique Co., Ltd. | Method of producing silicon compound coated oxide particles, silicon compound coated oxide particles, and silicon compound coated oxide composition containing the same |
CN109195915B (en) * | 2016-06-02 | 2022-09-13 | M技术株式会社 | Silicon-coated metal particle, silicon compound-coated metal particle, and method for producing same |
CN115464137A (en) * | 2016-06-02 | 2022-12-13 | M技术株式会社 | Silicon-coated metal microparticles, silicon compound-coated metal microparticles, and manufacturing method thereof |
CN115464137B (en) * | 2016-06-02 | 2024-06-25 | M技术株式会社 | Metal particles covered with silicon, metal particles covered with silicon compound, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JPH0368923B2 (en) | 1991-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60135506A (en) | Production of ferromagnetic metallic powder | |
JPS5919163B2 (en) | Method for producing magnetic metal powder | |
JPH10226520A (en) | Hydrate iron oxide and production of ferromagnetic iron oxide | |
JPH0420241B2 (en) | ||
JPS6135135B2 (en) | ||
JPS6122604A (en) | Magnetic metal powder and manufacture thereof | |
JPS58161725A (en) | Production of magnetic metallic iron powder | |
JPS6118323B2 (en) | ||
JPH02175806A (en) | Manufacture of metal magnetic powder for magnetic recorder | |
JPS58161708A (en) | Production of magnetic metallic iron powder | |
JPS5919162B2 (en) | Method for producing iron-cobalt alloy ferromagnetic powder | |
JPH0343325B2 (en) | ||
JPS6313940B2 (en) | ||
JPS6349722B2 (en) | ||
JP2740922B2 (en) | Method for producing metal magnetic powder for magnetic recording material | |
JPS63140005A (en) | Production of fine ferromagnetic metal particle powder | |
JPS59172209A (en) | Metal magnetic powder and manufacture thereof | |
JPS6350842B2 (en) | ||
JPS58167432A (en) | Production of needle-like crystalline iron oxide particle powder | |
JPS58161723A (en) | Production of magnetic metallic powder | |
JPH0518766B2 (en) | ||
JPH05152114A (en) | Method of stabilizing acicular ferromagnetic metallic powder intrinsically composed of iron | |
JPH0616426A (en) | Production of spindle-shaped goethite granular powder | |
JPS619504A (en) | Manufacture of magnetic metallic powder | |
JPS5919167B2 (en) | Manufacturing method of metal magnetic powder |