[go: up one dir, main page]

JPS60130878A - Superlattice semiconductor laser - Google Patents

Superlattice semiconductor laser

Info

Publication number
JPS60130878A
JPS60130878A JP23930183A JP23930183A JPS60130878A JP S60130878 A JPS60130878 A JP S60130878A JP 23930183 A JP23930183 A JP 23930183A JP 23930183 A JP23930183 A JP 23930183A JP S60130878 A JPS60130878 A JP S60130878A
Authority
JP
Japan
Prior art keywords
superlattice
layer
gaas
active layer
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23930183A
Other languages
Japanese (ja)
Inventor
Tomoo Yanase
柳瀬 知夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP23930183A priority Critical patent/JPS60130878A/en
Publication of JPS60130878A publication Critical patent/JPS60130878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3216Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities quantum well or superlattice cladding layers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the luminous efficiency and the life by forming the clad layer being in close contact with an active layer of double hetero junction semiconductor formed on a GaAs substrate out of superlattice in which thin films of AlAsP and GaAs are multi-laminated. CONSTITUTION:Clad layers 22 and 24 holding a GaAs active layer 23 from both sides are formed of superlattice on a GaAs substrate 21. A P-side superlattice clad layer 24 is formed of superlattice in which an AlAsP layer including P type impurity and a non-doped GaAs layer are laminated and an N-side superlattice clad layer 22 is formed of the superlattice in which an AlAs layer including N type impurity and a non-dooped GaAs layer. In such superlattice, the impurity which determines a conductive type is separated from Ga atoms spatially so that the non-luminous recombination center composed of a composite structure of Ga and the impurity is substantially reduced and the carriers exuded from the active layer 23 are also luminous-recombined thereby improving the luminous efficiency.

Description

【発明の詳細な説明】 本発明は波長が0.65ミクロンから0.88ミクロン
の間で発振するGaとAI!とAsTh主成分とする半
導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses Ga and AI which oscillate at wavelengths between 0.65 microns and 0.88 microns! This relates to a semiconductor laser whose main component is AsTh.

Gaklks / GaAs半導体レーザは、特性が優
れていることと信頼性が高いことからすでに実用化が始
まっておシ、光デイスク用の光源やレーザプリンタの光
源として利用されている0 この(iaA/As / GaAs半導体レーザの特性
や信頼性は、かなり改善されたが、さらに改善するため
には次の2つの点が問題になるO第1の問題は、発光効
率が低いことである0この原因として、GaA/Asク
ラッド層の非発光再結合中心が多く、活性層に注入され
るべきキャリヤがGp、A/Asクラッド層で非発光再
結合していることがあげられる0第2の問題は、半導体
レーザの光出力が時間とともに減少する劣化の問題であ
る。この原因と[7て、活性層に転位が増加することが
知られているOそこで、本発明の目的は、発光効率が改
善された、かつ寿命が改善されたダブルへテロ接合半導
体レーザを提供することにある〇 本発明によれば、QaAs基板上に形成されるダブルへ
テロ接合半導体の活性層に近接するり2ラド層が薄膜の
klA s PとGaAsが多層V1層された超格子で
形成されていることを特徴とする超格子半導体レーザが
得られる。
Gaklks / GaAs semiconductor lasers have already begun to be put into practical use due to their excellent characteristics and high reliability, and are used as light sources for optical disks and laser printers. / The characteristics and reliability of GaAs semiconductor lasers have been considerably improved, but in order to further improve them, the following two points need to be addressed.The first problem is that the luminous efficiency is low. The second problem is that there are many non-radiative recombination centers in the GaA/As cladding layer, and carriers that should be injected into the active layer are non-radiatively recombined in the Gp, A/As cladding layer. This is a problem of deterioration in which the optical output of a semiconductor laser decreases over time.It is known that the cause of this is an increase in dislocations in the active layer.Therefore, the purpose of the present invention is to improve the luminous efficiency. It is an object of the present invention to provide a double heterojunction semiconductor laser having an improved lifetime.According to the present invention, a double heterojunction semiconductor laser formed on a QaAs substrate has a double heterojunction semiconductor laser in close proximity to the active layer. A superlattice semiconductor laser is obtained, which is characterized in that it is formed of a superlattice in which thin films of klA s P and GaAs are stacked in multiple V1 layers.

次に図面を用いて本発明を説明する。第1図は従来のG
aA/AM / GaAsダブルへテa#−導体レーザ
の基本的な部分、すなわち、ダブルへテロ接合の部分を
示す図であり、GaAs基板11の上に、N−(] a
 AlA sクララドM12.0aAs活性層13、P
”GaAl!A、sクラッド層14が積層している@実
際の半導体レーザはこの上にキャップ層を設け、さらに
、ストジイプ状に電流を注入する構造を有しているが、
ここの議論では本質的でないの刃省略した◎また、後述
する本発明についても同様の扱いをした。
Next, the present invention will be explained using the drawings. Figure 1 shows the conventional G
aA/AM/GaAs double heterojunction a#-conductor laser, that is, a double heterojunction part;
AlAs Clarad M12.0aAs active layer 13, P
``GaAl!A, s cladding layer 14 is laminated in an actual semiconductor laser, which has a cap layer on top of it and has a structure in which current is injected in a linear shape.
In this discussion, we have omitted the non-essential aspects. Also, the present invention, which will be described later, was treated in the same way.

活性層13でキャリアは再給合し発光するが、−音1s
分のキャリアはP−GaAlAsクラッド層14とN−
(]aAl!A≦り2ラド層12において排発光再結合
することが詳細な実験で明らかになった。これは、活性
層13に注入されたキャリアが一部クラッド層にしみ出
し、さらにGaAl!As層に含まれる不純物が03と
複合体を形成し、この複合体が非発光再結合中心として
働き、しみ出したキャリアを非発光(’]’ #1’r
合中心が捕獲するためである〇第21社本発明の一実施
例を示す図である。この実施例は、第2図に示すように
、GaAs基板21上に、(3a A 8活性層23を
はさむり2ツド〜が超格子で形成されている。P側の超
格子クラッド層24は、P型不純物を含むAJAsP層
とノンドープ° のGaAs層が積層された超格子で形
成され、n (fillの超格子クラ、ド層22社、n
型不純物を含む1LlksP層とノンドープのGaAs
層が積層された超格子で形成されている0このような超
格子では、等電型を決める不純物とOa原子が空間的に
分離されているため、Gaと不純物の複合体からなる非
発光再結合中心が大幅に減少する口このため、活性層2
3からしみ出したキャリアも発光再結合し、発光効率が
改善される。
Carriers are resupplied in the active layer 13 and light is emitted, but - sound 1s
The carriers in the P-GaAlAs cladding layer 14 and the N-
(]aAl!A≦2) Detailed experiments have revealed that emission recombination occurs in the Rad layer 12. This is because some of the carriers injected into the active layer 13 seep into the cladding layer, and the GaAl !The impurity contained in the As layer forms a complex with 03, and this complex acts as a non-radiative recombination center, converting the seeped carriers into non-luminescent (']'#1'r
It is a diagram showing an embodiment of the present invention. In this embodiment, as shown in FIG. 2, on a GaAs substrate 21, (3a) A8 active layer 23 is sandwiched between 2 and 2 layers are formed in a superlattice. It is formed of a superlattice in which an AJAsP layer containing P-type impurities and a non-doped GaAs layer are laminated, and
1LlksP layer containing type impurities and undoped GaAs
In such a superlattice, which is formed by a superlattice with stacked layers, the impurity that determines the isoelectric type and the Oa atom are spatially separated. Because of this, the number of bonding centers is greatly reduced, the active layer 2
The carriers seeped out from 3 are also radiatively recombined, and the luminous efficiency is improved.

尚、上記実施例では、光尋波領域=活性層であったが、
光導波領域=活性層」−光導波層として、この2層構造
をクラッド層で挾んだ構造として上記実施例と同様の効
果が得られる。
In addition, in the above example, the optical subwave region = active layer, but
The same effect as the above embodiment can be obtained by using a structure in which this two-layer structure is sandwiched between cladding layers as an optical waveguide layer (optical waveguide region=active layer).

次に、クラッド胎に、AJAsP層と()aAsの超格
子を用いることによって信頼性が改善される理由を説明
する。 0ahlksと0aAsでは、厳密には格子定
数に差がちシ、その差は常温ではAlの濃度が50%の
時0.07%にも達する0この値は、長い14 (51
時間を必要とする半導体レーザでは問題となシ、この格
子定数の差が歪を発生し、活性JF!I13に転位を増
殖させる原因となる◎ととろが、AlAsPと0aAs
の超格子を用いて、P濃度を4%にすると室温で完全に
格子定数は一致し、転位を増殖させる原因が消失する。
Next, the reason why the reliability is improved by using the AJAsP layer and the aAs superlattice in the cladding will be explained. Strictly speaking, there is a difference in lattice constant between 0ahlks and 0aAs, and the difference reaches 0.07% at room temperature when the Al concentration is 50%.
This difference in lattice constant causes distortion, which is not a problem with semiconductor lasers that require time, and active JF! ◎ and toro, which cause dislocations to proliferate in I13, are AlAsP and 0aAs.
When using a superlattice of 4% and setting the P concentration to 4%, the lattice constants match completely at room temperature, and the cause of dislocation proliferation disappears.

このようにして、活性層を挾むクラッド層がAlAsP
と(1aAsが多層積層された超格子で形成されている
と、発光効率が改善され、かつ寿命が改善された半導体
レーザが得られる。
In this way, the cladding layer sandwiching the active layer is made of AlAsP.
When (1aAs is formed in a superlattice in which multiple layers are stacked), a semiconductor laser with improved luminous efficiency and improved lifetime can be obtained.

次に、上記実施例をよシ具体的に説明する。Next, the above embodiment will be explained in detail.

(4aAs基板21は、8n (すず)ドープ(、)a
As基板を用いたo (’JaAs基板21の上に、S
e(セレン)ドープ(JaAsバッファ層を3ミクロン
エピタキシャル成長した0この層の上に、2oXの厚み
の)yドープ(taAs Mと、2oλのBeドープA
lAsPJi’l’jt繰り返し500)f1*tt層
しN型りラッドRを得た。次に、ノンドープOaA、s
 活性7123 t 1000 XMf)III シf
i’。
(The 4aAs substrate 21 is 8n (tin) doped (,)a
o using an As substrate ('On top of the JaAs substrate 21, S
e (selenium) doped (a 3 micron JaAs buffer layer was epitaxially grown on top of this layer with a thickness of 2oX), y doped (taAs M) and Be doped A of 2oλ.
lAsPJi'l'jt was repeated 500 times) f1*tt layer to obtain an N-shaped rad R. Next, non-doped OaA,s
Activity 7123 t 1000 XMf) III Sif
i'.

さらに、2(1XのZn (亜鉛)ドープA/AsP層
と、20X(D)7ド一プO*As7%4を繰り返し5
00層積層した◎この時の成長は有機金属気相成長法に
ょった。成長条件は、通常のGaAs / 0aA/A
s成長の時と同様で、成長温度750℃、成長速度5X
/秒にした0このようにして得られたダブルへテロ接合
レーザは、邦゛子効率が改善されかつ寿命も改善され、
本発明の効果が確認された。
Furthermore, 2(1X Zn (zinc) doped A/AsP layer and 20X(D)7 doped O*As7%4 were repeated 5
00 layers were laminated.◎The growth at this time was by metal organic vapor phase epitaxy. Growth conditions are normal GaAs/0aA/A
Same as s growth, growth temperature 750℃, growth rate 5X
The double heterojunction laser thus obtained has an improved laser efficiency and an improved lifetime.
The effects of the present invention were confirmed.

上記実施例では、活性層がGaAsであったが、0aA
JAs を用いても良く、又より格子定数の差を減少さ
せるためにGaAlAsPを用いて良いのは明らかであ
る〇 上記実施例でれ活性層が均一組成であったが、AI!A
 s PとGaAsの超格子を用いても良い。
In the above embodiment, the active layer was made of GaAs, but 0aA
It is clear that JAs may be used, and GaAlAsP may also be used to further reduce the difference in lattice constants. In the above embodiment, the active layer had a uniform composition, but AI! A
A superlattice of sP and GaAs may also be used.

上記実施例では、P型不純物としてZnを用いたが、M
g (マグネシウム)、Be(ベリリウム) 、8i(
シリコン)等を用いても良く、又n型不純物としてSe
 (セレン)を用いたが、8n (すず)、Si(シリ
コン)を用いても良い。
In the above embodiment, Zn was used as the P-type impurity, but M
g (magnesium), Be (beryllium), 8i (
silicon) etc. may be used, and Se as an n-type impurity may also be used.
(Selenium) was used, but 8n (tin) or Si (silicon) may also be used.

上記実施例の超格子の周期や活性層等の寸法は特に制限
されるべきでないのは、本発明の趣旨から明らかである
It is clear from the spirit of the present invention that the period of the superlattice and the dimensions of the active layer, etc. in the above embodiments should not be particularly limited.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のGaAs基板 / GaAsダブルへテ
ロ接合半導体レーザを説明する図であシ、第2図は本発
明の一実施例を紛、明する図である。図中11と21は
GaAs基板、】2はN fli UaA/Asクラッ
ド層、13と23は活性層、14はP型Ga A/A 
sり2ラド層、2ZFiN型A/AsP/ GaAs超
格子を示し、24はN 2J!! A/ASP/ (1
aAs超格子を示している。 1”;tt” ’、 ”” 代斑人弁理士 内片 \、!1... 、 、 、、、
)\−1
FIG. 1 is a diagram illustrating a conventional GaAs substrate/GaAs double heterojunction semiconductor laser, and FIG. 2 is a diagram illustrating an embodiment of the present invention. In the figure, 11 and 21 are GaAs substrates, ] 2 is an N fli UaA/As cladding layer, 13 and 23 are active layers, and 14 is a P-type Ga A/A
s 2 Rad layers, 2ZFiN type A/AsP/GaAs superlattice, 24 is N 2J! ! A/ASP/ (1
The aAs superlattice is shown. 1”;tt” ', ”” Patent Attorney Uchikata \,! 1. .. .. , , ,,,,
)\-1

Claims (1)

【特許請求の範囲】[Claims] Ga Aa基板上に、光導波領域をクラッド層で挾み込
んだダブルへテロ接合構造を備えている半導体レーザに
おいて、前記り2ラド層が、薄膜のA/AsPと0aA
sが多層積層された超格子で形成されていることを特徴
とする超格子半導体レーザ。
In a semiconductor laser having a double heterojunction structure in which an optical waveguide region is sandwiched between cladding layers on a GaAa substrate, the two Rad layers are made of thin films of A/AsP and OaA.
1. A superlattice semiconductor laser, characterized in that s is formed of a multilayered superlattice.
JP23930183A 1983-12-19 1983-12-19 Superlattice semiconductor laser Pending JPS60130878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23930183A JPS60130878A (en) 1983-12-19 1983-12-19 Superlattice semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23930183A JPS60130878A (en) 1983-12-19 1983-12-19 Superlattice semiconductor laser

Publications (1)

Publication Number Publication Date
JPS60130878A true JPS60130878A (en) 1985-07-12

Family

ID=17042687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23930183A Pending JPS60130878A (en) 1983-12-19 1983-12-19 Superlattice semiconductor laser

Country Status (1)

Country Link
JP (1) JPS60130878A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251283A (en) * 1985-08-30 1987-03-05 Sony Corp Semiconductor light emitting device
JPS6251282A (en) * 1985-08-30 1987-03-05 Sony Corp Semiconductor laser
US4759024A (en) * 1985-04-22 1988-07-19 Sharp Kabushiki Kaisha Semiconductor laser device having an oscillation wavelength in the visible short-wavelength region
JPH0334593A (en) * 1989-06-30 1991-02-14 Toshiba Corp Semiconductor optical light emitting device
US5107306A (en) * 1988-09-28 1992-04-21 U.S. Philips Corp. Semiconductor device having a waveguide structure
US5577061A (en) * 1994-12-16 1996-11-19 Hughes Aircraft Company Superlattice cladding layers for mid-infrared lasers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4759024A (en) * 1985-04-22 1988-07-19 Sharp Kabushiki Kaisha Semiconductor laser device having an oscillation wavelength in the visible short-wavelength region
JPS6251283A (en) * 1985-08-30 1987-03-05 Sony Corp Semiconductor light emitting device
JPS6251282A (en) * 1985-08-30 1987-03-05 Sony Corp Semiconductor laser
US5107306A (en) * 1988-09-28 1992-04-21 U.S. Philips Corp. Semiconductor device having a waveguide structure
JPH0334593A (en) * 1989-06-30 1991-02-14 Toshiba Corp Semiconductor optical light emitting device
US5577061A (en) * 1994-12-16 1996-11-19 Hughes Aircraft Company Superlattice cladding layers for mid-infrared lasers

Similar Documents

Publication Publication Date Title
JP3683669B2 (en) Semiconductor light emitting device
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
US7485902B2 (en) Nitride-based semiconductor light-emitting device
JP2900990B2 (en) Nitride semiconductor light emitting device
KR20040053794A (en) Semiconductor laser device
JPH0864910A (en) Semiconductor light emitting element
JP2011238852A (en) Surface-emitting laser element and method of manufacturing the same
JPH09116225A (en) Semiconductor light emitting device
JPH10145006A (en) Compound semiconductor device
JP2891348B2 (en) Nitride semiconductor laser device
JPS60130878A (en) Superlattice semiconductor laser
JPH1117248A (en) Highly reflective film structure for semiconductor laser and semiconductor laser
JP4423969B2 (en) Nitride semiconductor multilayer substrate and nitride semiconductor device and nitride semiconductor laser device using the same
JP4084506B2 (en) Manufacturing method of semiconductor light emitting device
JP3371830B2 (en) Nitride semiconductor light emitting device
JP3235440B2 (en) Nitride semiconductor laser device and method of manufacturing the same
US5734671A (en) Semiconductor laser diode
JP2003188414A (en) Method for manufacturing semiconductor light emitting device
KR20020077194A (en) Nitride semiconductor device
JP3192560B2 (en) Semiconductor light emitting device
JP3219231B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JP2006165453A (en) Nitride semiconductor device
JP3347633B2 (en) Semiconductor device and method of manufacturing the same
JP3233958B2 (en) Manufacturing method of semiconductor laminated structure
JP2000277862A (en) Nitride semiconductor device