[go: up one dir, main page]

JP2778405B2 - Gallium nitride based compound semiconductor light emitting device - Google Patents

Gallium nitride based compound semiconductor light emitting device

Info

Publication number
JP2778405B2
JP2778405B2 JP7904693A JP7904693A JP2778405B2 JP 2778405 B2 JP2778405 B2 JP 2778405B2 JP 7904693 A JP7904693 A JP 7904693A JP 7904693 A JP7904693 A JP 7904693A JP 2778405 B2 JP2778405 B2 JP 2778405B2
Authority
JP
Japan
Prior art keywords
type
layer
gallium nitride
compound semiconductor
based compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7904693A
Other languages
Japanese (ja)
Other versions
JPH06268259A (en
Inventor
修二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13678969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2778405(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP7904693A priority Critical patent/JP2778405B2/en
Publication of JPH06268259A publication Critical patent/JPH06268259A/en
Application granted granted Critical
Publication of JP2778405B2 publication Critical patent/JP2778405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒化ガリウム系化合物半
導体を用いた発光素子に係り、特に順方向電圧(Vf)
が低く、さらに発光出力が高い窒化ガリウム系化合物半
導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device using a gallium nitride compound semiconductor, and more particularly to a forward voltage (Vf).
The present invention relates to a gallium nitride-based compound semiconductor light emitting device having a low light emission and high light emission output.

【0002】[0002]

【従来の技術】GaN、GaAlN、InGaN、In
AlGaN等の窒化ガリウム系化合物半導体は直接遷移
を有し、バンドギャップが1.95eV〜6eVまで変
化するため、発光ダイオード、レーザダイオード等、発
光素子の材料として有望視されている。現在、この材料
を用いた発光素子には、n型窒化ガリウム系化合物半導
体の上に、p型ドーパントをドープした高抵抗なi型の
窒化ガリウム系化合物半導体を積層したいわゆるMIS
構造の青色発光ダイオードが知られている。
2. Description of the Related Art GaN, GaAlN, InGaN, In
Gallium nitride-based compound semiconductors such as AlGaN have direct transitions and change in band gap from 1.95 eV to 6 eV. Therefore, they are promising as materials for light-emitting elements such as light-emitting diodes and laser diodes. At present, a light-emitting element using this material includes a so-called MIS in which a high-resistance i-type gallium nitride-based compound semiconductor doped with a p-type dopant is laminated on an n-type gallium nitride-based compound semiconductor.
A blue light emitting diode having a structure is known.

【0003】MIS構造の発光素子は、一般に発光出力
が非常に低く、実用化するには未だ不十分であった。高
抵抗なi型を低抵抗なp型とし、発光出力を向上させた
p−n接合の発光素子を実現するための技術として、例
えば特開平3−218325号公報において、i型窒化
ガリウム系化合物半導体層に電子線照射する技術が開示
されている。また、我々は、特願平3−357046号
でi型窒化ガリウム系化合物半導体層を400℃以上で
アニーリングすることにより低抵抗なp型とする技術を
提案した。
[0003] Light emitting devices of the MIS structure generally have a very low light emission output, and are still insufficient for practical use. As a technique for realizing a pn junction light-emitting element in which a high-resistance i-type is changed to a low-resistance p-type and an emission output is improved, for example, Japanese Patent Application Laid-Open No. 3-218325 discloses an i-type gallium nitride compound. A technique of irradiating a semiconductor layer with an electron beam has been disclosed. In addition, in Japanese Patent Application No. 3-357046, we have proposed a technique of forming a low-resistance p-type by annealing an i-type gallium nitride-based compound semiconductor layer at 400 ° C. or higher.

【0004】p−n接合の窒化ガリウム系化合物半導体
を利用した発光素子として、例えば特開平4−2429
85号公報において、ダブルへテロ構造のレーザー素子
が提案されており、また特開平4−209577号公報
ではInGaAlNを発光層とするダブルへテロ構造の
発光ダイオードが提案されている。
A light emitting device using a gallium nitride-based compound semiconductor having a pn junction is disclosed in, for example, Japanese Patent Laid-Open No. 4-2429.
No. 85 proposes a laser element having a double hetero structure, and Japanese Patent Application Laid-Open No. 4-209577 proposes a light emitting diode having a double hetero structure using InGaAlN as a light emitting layer.

【0005】[0005]

【発明が解決しようとする課題】p−n接合の半導体発
光素子は、ホモ構造よりもダブルへテロ構造の方が発光
出力が大きく、またレーザー素子は少なくともへテロ構
造でなければ実現できないことは知られている。しかし
ながら、ダブルヘテロ構造の窒化ガリウム系化合物半導
体発光素子を実現した場合、用いられる窒化ガリウム系
化合物半導体の種類、組成比等の要因により、窒化ガリ
ウム系化合物半導体の結晶性が著しく異なってくるので
発光出力に大きな差が現れる。極端な場合には全く発光
を示さない素子ができてしまうのが現実である。しか
も、実際に電極を設けて素子構造とした場合、窒化ガリ
ウム系化合物半導体のp型結晶と、そのp型結晶に形成
する電極とがオーミック接触していないため、定められ
た順方向電流に対し、順方向電圧(Vf)が高くなり、
発光効率が低下するという問題がある。このため、未だ
窒化ガリウム系化合物半導体発光素子では、ヘテロ構造
の発光ダイオードは製品化されておらず、レーザー素子
に至っては発振さえしていないのが実状である。
As for a semiconductor light emitting device having a pn junction, a double hetero structure has a larger light emission output than a homo structure, and a laser element cannot be realized unless it has at least a hetero structure. Are known. However, when a gallium nitride-based compound semiconductor light emitting device having a double hetero structure is realized, the crystallinity of the gallium nitride-based compound semiconductor is significantly different depending on factors such as the type and composition ratio of the gallium nitride-based compound semiconductor used. A large difference appears in the output. In an extreme case, an element that does not emit light at all is actually produced. In addition, when an electrode is actually provided to form an element structure, the p-type crystal of the gallium nitride-based compound semiconductor does not have ohmic contact with the electrode formed on the p-type crystal, so that a predetermined forward current cannot be obtained. , The forward voltage (Vf) increases,
There is a problem that luminous efficiency is reduced. For this reason, in the gallium nitride-based compound semiconductor light emitting device, a light emitting diode having a hetero structure has not yet been commercialized, and the laser device has not even oscillated.

【0006】従って、本発明の第1の目的は、p型結晶
とオーミック接触が得られる窒化ガリウム系化合物半導
体の構造を提供することによりVfを低下させ、発光効
率を向上させることにある。また、第2の目的はその窒
化ガリウム系化合物半導体を用いて、新規なダブルヘテ
ロ構造の発光素子の構造を提供することにより、発光素
子の発光出力を向上させることにある。
Accordingly, a first object of the present invention is to provide a structure of a gallium nitride-based compound semiconductor capable of obtaining ohmic contact with a p-type crystal, thereby lowering Vf and improving luminous efficiency. A second object is to provide a novel double heterostructure light emitting device using the gallium nitride-based compound semiconductor, thereby improving the light emitting output of the light emitting device.

【0007】[0007]

【課題を解決するための手段】我々は、特定のp型窒化
ガリウム系化合物半導体の上に積層したp型窒化ガリウ
ムに電極を形成することにより、電極とp型窒化ガリウ
ム層とのオーミック接触が得られ、発光効率が向上する
ことを新たに見いだした。さらにそのp型窒化ガリウム
系化合物半導体層を用いた発光素子を特定のダブルヘテ
ロ構造とし、ダブルヘテロ構造を構成する窒化ガリウム
系化合物半導体の種類を限定することにより、最も結晶
性に優れた窒化ガリウム系化合物半導体を積層した素子
が得られ、発光出力が向上することを見いだした。即
ち、本発明の窒化ガリウム系化合物半導体発光素子は、
p−n接合を有するダブルヘテロ構造の窒化ガリウム系
化合物半導体発光素子において、Mgがドープされたp
型Ga1-XAlXN(但し、Xは0<X<0.5)クラッド
層の上に、電極が形成されるべき層として、Mgがドー
プされたp型GaNコンタクト層を具備することを特徴
とし、さらに特定のダブルヘテロ構造の発光素子は、n
型窒化ガリウム系化合物半導体層の上に、n型Ga1-Y
AlYNクラッド層(但し、Yは0<Y<1)と、n型I
ZGa1-ZN活性層(但し、Zは0<Z<1)と、前記p
型Ga1-XAlXNクラッド層と、前記p型GaNコンタ
クト層とが積層されていることを特徴とする。
Means for Solving the Problems By forming an electrode on p-type gallium nitride laminated on a specific p-type gallium nitride compound semiconductor, the ohmic contact between the electrode and the p-type gallium nitride layer can be reduced. It was newly found that the luminous efficiency was improved. Further, the light-emitting element using the p-type gallium nitride-based compound semiconductor layer has a specific double heterostructure, and the type of gallium nitride-based compound semiconductor constituting the double heterostructure is limited, so that gallium nitride having the most excellent crystallinity can be obtained. It has been found that an element in which a series compound semiconductor is laminated is obtained, and the light emission output is improved. That is, the gallium nitride based compound semiconductor light emitting device of the present invention,
In a gallium nitride-based compound semiconductor light emitting device having a double hetero structure having a pn junction, Mg-doped p
A p-type GaN contact layer doped with Mg as a layer on which an electrode is to be formed on a cladding layer of the type Ga 1-x Al x N (where x is 0 <x <0.5) Wherein the specific double heterostructure light emitting element is n
N-type Ga 1-Y on the gallium nitride-based compound semiconductor layer
Al Y N cladding layer (where Y is 0 <Y <1) and n-type I
n Z Ga 1-Z N active layer (where, Z is 0 <Z <1) and the p
And a p-type GaN contact layer laminated with a p - type Ga 1-x Al x N cladding layer.

【0008】本発明の窒化ガリウム系化合物半導体発光
素子の構造を示す断面図を図1に示す。下から順に、基
板1の上に、バッファ層2と、n型窒化ガリウム系化合
物半導体層3と、n型Ga1-YAlYNクラッド層4(0
<Y<1)と、n型InZGa 1-ZN(0<Z<1)活性層
5と、Mgドープp型Ga1-XAlXN(0<X<0.
5)クラッド層6と、Mgドープp型GaNコンタクト
層7とが順に積層された構造を有する。なお、8はMg
ドープp型GaNコンタクト層7に設けられた電極、9
はn型窒化ガリウム系化合物半導体層3に設けられた電
極である。基板1にはサファイア、ZnO、SiC、S
i等が使用される。バッファ層2にはAlN、GaN、
GaAlN等が使用される。
The gallium nitride compound semiconductor light emission of the present invention
FIG. 1 is a sectional view showing the structure of the element. From the bottom,
A buffer layer 2 and an n-type gallium nitride-based compound
Semiconductor layer 3 and n-type Ga1-YAlYN cladding layer 4 (0
<Y <1) and n-type InZGa 1-ZN (0 <Z <1) active layer
5 and Mg-doped p-type Ga1-XAlXN (0 <X <0.
5) Cladding layer 6 and Mg-doped p-type GaN contact
It has a structure in which the layers 7 are sequentially stacked. 8 is Mg
An electrode provided on the doped p-type GaN contact layer 7;
Represents an electric current provided on the n-type gallium nitride-based compound semiconductor layer 3.
It is a pole. Sapphire, ZnO, SiC, S
i and the like are used. AlN, GaN,
GaAlN or the like is used.

【0009】前記、窒化ガリウム系化合物半導体発光素
子において、n型窒化ガリウム系化合物半導体層3の種
類は特に限定するものなく、GaN、GaAlN、In
GaN、InAlGaN等、ノンドープ(無添加)の窒
化ガリウム系化合物半導体、またはノンドープの窒化ガ
リウム系化合物半導体に、例えばSi、Ge、Te、S
e等のn型ドーパントをドープしてn型特性を示すよう
に成長した層を用いることができる。
In the gallium nitride-based compound semiconductor light emitting device, the type of the n-type gallium nitride-based compound semiconductor layer 3 is not particularly limited.
Non-doped gallium nitride-based compound semiconductors such as GaN and InAlGaN or non-doped gallium nitride-based compound semiconductors include, for example, Si, Ge, Te, and S.
A layer doped with an n-type dopant such as e and grown so as to exhibit n-type characteristics can be used.

【0010】次に、n型Ga1-YAlYNクラッド層4
は、その組成をInを含まない三元混晶の窒化ガリウム
アルミニウムとする必要がある。なぜなら、n型Ga
1-YAlYNクラッド層4に新たにインジウムを含有させ
ると、クラッド層4の結晶性が悪くなり、発光出力が低
下するからである。また、n型Ga1-YAlYNクラッド
層のY値を0<Y<1の範囲とすることにより、n型クラ
ッド層として作用し好ましいダブルヘテロ構造とするこ
とができる。さらに好ましくは、Y値を0.5以下とす
ることにより格子欠陥が少なく結晶性のよいn型クラッ
ド層4が得られる。n型Ga1-YAlYNクラッド層4に
は、前記したように、ノンドープのGa1-YAlYN、ま
たはn型ドーパントをドープしてn型特性を示すように
成長したGa1-YAlYNを用いることができる。
Next, the n-type Ga 1-Y Al Y N cladding layer 4
Must have a ternary mixed crystal gallium aluminum nitride containing no In. Because n-type Ga
This is because if indium is newly added to the 1-Y Al Y N cladding layer 4, the crystallinity of the cladding layer 4 deteriorates, and the light emission output decreases. Further, by setting the Y value of the n-type Ga 1-Y Al Y N clad layer in the range of 0 <Y <1, it is possible to function as an n-type clad layer and obtain a preferable double hetero structure. More preferably, by setting the Y value to 0.5 or less, the n-type cladding layer 4 having few lattice defects and good crystallinity can be obtained. As described above, the n-type Ga 1-Y Al Y N cladding layer 4 is doped with non-doped Ga 1-Y Al Y N or Ga 1- grown by doping with an n-type dopant to exhibit n-type characteristics. Y Al Y N can be used.

【0011】次に、n型InZGa1-ZN活性層5は、そ
の組成をAlを含まない三元混晶の窒化インジウムガリ
ウムとする必要がある。なぜなら、活性層は発光層であ
り、この発光層にAlを含有させると深い準位の発光が
現れ、InGaNのバンド間発光を阻害する傾向にある
ため、活性層として使用することは好ましくない。n型
InZGa1-ZN活性層5は、そのZ値を0<Z<1の範囲
にすることにより、発光波長を紫色から赤色にまで変換
させることができるため、非常に有利である。n型In
ZGa1-ZN活性層は、前記したように、ノンドープのI
ZGa1-ZN層、またはn型ドーパントをドープしてn
型特性を示すように成長したInZGa1-Z層が使用でき
る。また、発光中心としてMg、Zn、Cd、Be、C
a等のp型ドーパントをドープしてn型特性を示すよう
に成長したInZGa1-ZN層を使用することもできる。
さらにn型ドーパント、およびp型ドーパントをドープ
してn型特性を示すように成長したInZGa1-Z層も使
用できる。これらのドーパントをドープしてn型とする
ことにより、発光色の色純度をよくし、発光出力を向上
させることができる。
[0011] Then, n-type In Z Ga 1-Z N active layer 5, it is necessary to its composition and indium gallium nitride ternary mixed crystal containing no Al. This is because the active layer is a light-emitting layer, and when Al is contained in the light-emitting layer, deep-level light emission appears, which tends to inhibit inter-band light emission of InGaN. Therefore, it is not preferable to use the active layer as the active layer. n-type In Z Ga 1-Z N active layer 5, by the range and the Z value 0 <Z <1, and for the emission wavelengths can be converted from purple to red is highly advantageous . n-type In
As described above, the Z Ga 1 -Z N active layer is made of a non-doped I
n Z Ga 1 -Z N layer or n-type dopant doped with n
In Z Ga 1-Z layer grown as indicating the type characteristic may be used. In addition, Mg, Zn, Cd, Be, C
It is also possible to use In Z Ga 1-Z N layer grown as an n-type characteristics by doping p-type dopant in a like.
Further n-type dopant, and In Z Ga 1-Z layer grown as a p-type dopant by doping an n-type characteristics can be used. By doping these dopants to make them n-type, the color purity of the emission color can be improved and the emission output can be improved.

【0012】次に、Mgドープp型Ga1-XAlXNクラ
ッド層6は、n型Ga1-YAlYNクラッド層4と同じ
く、その組成をInを含まない三元混晶の窒化ガリウム
アルミニウムとする必要がある。なぜなら、前記したよ
うにインジウムを含有させることにより、p型クラッド
層6の結晶性が悪くなり、p型特性を示しにくくなるか
らである。また、p型Ga1-XAlXNクラッド層6のX
値は0<X<0.5の範囲にする必要がある。0より大
きくすることにより、p型クラッド層として作用し好ま
しいダブルヘテロ構造とすることができ、0.5より小
さくすることにより格子欠陥が少なく結晶性のよいp型
クラッド層6が得られる。逆に0.5以上であると、p
型クラッド層6の上に積層するp型GaNコンタクト層
7の結晶性が悪くなり、コンタクト層7と電極8とのオ
ーミック接触が得られないため、0.5未満を限定値と
した。またさらに、このMgドープp型Ga1-XAlX
クラッド層6の膜厚は、10オングストローム以上、
0.2μm以下の範囲にすることが好ましい。10オン
グストロームより薄いと、その下に積層するn型InZ
Ga1-ZN活性層5と電気的に短絡しやすくなり、クラ
ッド層として作用しにくい。逆に0.2μmよりも厚い
と結晶にクラックが入りやすくなり結晶性が悪くなる傾
向にある。さらに、このp型Ga1-XAlXNクラッド層
において、重要なことはp型ドーパントをMgとして、
このMgによりp型特性を得ていることである。このM
gのかわりに他のp型ドーパント、例えばZn、Cd、
Be、Ca等のp型ドーパントをドープするとp型特性
が得られにくくなり、発光出力が低下する傾向にある。
Next, similarly to the n-type Ga 1-Y Al Y N cladding layer 4, the Mg-doped p-type Ga 1-x Al x N cladding layer 6 has a ternary mixed crystal nitride containing no In. It must be gallium aluminum. This is because the inclusion of indium as described above deteriorates the crystallinity of the p-type cladding layer 6 and makes it difficult to exhibit p-type characteristics. The X of the p-type Ga 1-x Al x N cladding layer 6
The value must be in the range 0 <X <0.5. By setting it to be larger than 0, it can function as a p-type cladding layer and obtain a preferable double hetero structure, and by making it smaller than 0.5, a p-type cladding layer 6 having few lattice defects and good crystallinity can be obtained. Conversely, if it is 0.5 or more, p
Since the crystallinity of the p-type GaN contact layer 7 laminated on the mold clad layer 6 deteriorates and ohmic contact between the contact layer 7 and the electrode 8 cannot be obtained, the limit value is set to less than 0.5. Further, the Mg-doped p-type Ga 1-x Al x N
The thickness of the cladding layer 6 is 10 Å or more,
It is preferable that the thickness be 0.2 μm or less. If it is thinner than 10 Å, the n-type In Z
An electrical short-circuit easily occurs with the Ga 1 -ZN active layer 5, and it is difficult to function as a cladding layer. Conversely, if the thickness is more than 0.2 μm, the crystal tends to crack, and the crystallinity tends to deteriorate. Further, in this p-type Ga 1-x Al x N cladding layer, what is important is that the p-type dopant is Mg,
The p-type characteristic is obtained by this Mg. This M
Instead of g, other p-type dopants such as Zn, Cd,
If a p-type dopant such as Be or Ca is doped, it becomes difficult to obtain p-type characteristics, and the light emission output tends to decrease.

【0013】次に、Mgドープp型GaNコンタクト層
7は、その組成をIn、Alを含まない二元混晶の窒化
ガリウムとする必要がある。なぜなら、インジウム、ア
ルミニウムを含有させることにより、電極8とオーミッ
ク接触が得られにくくなり、発光効率が低下するからで
ある。特に、そのp型GaNコンタクト層の膜厚は10
オングストローム以上、0.5μm以下に調整すること
が好ましい。10オングストロームよりも薄いと、p型
GaAlNクラッド層6と電気的に短絡しやすくなり、
コンタクト層として作用しにくい。また、三元混晶のG
aAlNクラッド層6の上に、組成の異なる二元混晶の
GaNコンタクト層を積層するため、逆にその膜厚を
0.5μmよりも厚くすると、結晶間のミスフィットに
よる格子欠陥がGaNコンタクト層7中に発生しやす
く、結晶性が低下する傾向にある。なお、コンタクト層
7の膜厚は薄いほどVfを低下させ発光効率を向上させ
ることができる。また、このp型GaNコンタクト層7
のp型ドーパントはMgである必要がある。Mgのかわ
りに他のp型ドーパントをドープするとp型特性が得ら
れにくくなる傾向にあり、またオーミック接触が得られ
にくい傾向にある。
Next, it is necessary that the Mg-doped p-type GaN contact layer 7 has a composition of binary mixed crystal gallium nitride containing no In and Al. This is because the inclusion of indium and aluminum makes it difficult to obtain ohmic contact with the electrode 8 and lowers the luminous efficiency. In particular, the thickness of the p-type GaN contact layer is 10
It is preferable to adjust the thickness to angstrom or more and 0.5 μm or less. If the thickness is less than 10 angstroms, electrical short-circuit with the p-type GaAlN cladding layer 6 is likely to occur,
Difficult to act as a contact layer. The ternary mixed crystal G
Since a binary mixed crystal GaN contact layer having a different composition is laminated on the aAlN cladding layer 6, if the thickness of the GaN contact layer is made larger than 0.5 μm, lattice defects due to misfit between the crystals may occur. 7 tends to occur, and the crystallinity tends to decrease. The thinner the thickness of the contact layer 7, the lower the Vf and the higher the luminous efficiency. Further, the p-type GaN contact layer 7
Need to be Mg. Doping with another p-type dopant instead of Mg tends to make it difficult to obtain p-type characteristics, and also tends to make it difficult to obtain ohmic contact.

【0014】また、p型Ga1-XAlXNクラッド層6、
p型GaN層をさらに低抵抗化する手段として、上記し
た特願平3−357046号に開示する400℃以上の
アニーリング処理を行ってもよい。アニーリングを行う
とp型クラッド層、およびp型コンタクト層、両方が抵
抗化し、発光出力をより向上させることができる。
Further, a p-type Ga 1 -x Al x N cladding layer 6,
As means for further reducing the resistance of the p-type GaN layer, an annealing treatment at 400 ° C. or higher disclosed in Japanese Patent Application No. 3-357046 may be performed. When the annealing is performed, both the p-type cladding layer and the p-type contact layer become resistant, and the light emission output can be further improved.

【0015】[0015]

【作用】p−n接合を用いたダブルへテロ構造の窒化ガ
リウム系化合物半導体発光素子において、Mgドープp
型Ga1-XAlXNクラッド層6の上に、Mgドープp型
GaNコンタクト層7を形成し、そのGaNコンタクト
層の上に電極8を形成することによりオーミック接触が
得られ、発光効率が向上する。詳しい原理は不明である
が、我々がそれらの層のホールキャリア濃度を測定した
結果、p型Ga1- XAlXN層はおよそ1016/cm3であ
り、p型GaN層はおよそ1017/cm3と一桁高かっ
た。つまり、ホールキャリア濃度の大きい層の方に電極
を形成する方がオーミック接触が得られやすいのではな
いかと推察する。また、p型GaAlNクラッド層6の
上に組成の異なるp型GaNコンタクト層7を形成する
ことにより、p型GaN層にミスフィットによる格子欠
陥が生じやすくなり、結晶性が低下する。ミスフィット
を少なくするには、p型GaAlNクラッド層6のAl
混晶比は少ない方がよい。従って、p型GaNコンタク
ト層7の結晶性がよく、電極8とオーミックコンタクト
が得られる限界値、即ち、X値0.5未満を限定値とし
た。
The double-heterostructure nitride gas using a pn junction is provided.
In a lithium-based compound semiconductor light emitting device, Mg-doped p
Type Ga1-XAlXMg-doped p-type on N cladding layer 6
A GaN contact layer 7 is formed and the GaN contact
By forming the electrode 8 on the layer, the ohmic contact
As a result, the luminous efficiency is improved. The detailed principle is unknown
But we measured the hole carrier concentration in those layers
As a result, p-type Ga1- XAlXN layer is about 1016/cmThreeIn
The p-type GaN layer is about 1017/cmThreeAnd one digit higher
Was. In other words, the electrode with the higher hole carrier concentration
Ohmic contact is easier to obtain by forming
I guess. The p-type GaAlN cladding layer 6
A p-type GaN contact layer 7 having a different composition is formed thereon.
As a result, lattice mismatch due to misfit in the p-type GaN layer
Depression is likely to occur, and crystallinity decreases. Misfit
Can be reduced by reducing the Al content of the p-type GaAlN cladding layer 6.
A smaller mixed crystal ratio is better. Therefore, the p-type GaN contact
Layer 7 has good crystallinity and is in ohmic contact with electrode 8
Limit value, that is, the X value less than 0.5 is the limit value
Was.

【0016】[0016]

【実施例】以下有機金属気相成長法により、本発明の窒
化ガリウム系化合物半導体発光素子を製造する方法を述
べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a gallium nitride-based compound semiconductor light emitting device of the present invention by metal organic chemical vapor deposition will be described.

【0017】[実施例1]サファイア基板1を反応容器
内に配置し、サファイア基板1のクリーニングを行った
後、成長温度を510℃にセットし、キャリアガスとし
て水素、原料ガスとしてアンモニアとTMG(トリメチ
ルガリウム)とを用い、サファイア基板上にGaNバッ
ファ層2を約200オングストロームの膜厚で成長させ
る。
Example 1 After the sapphire substrate 1 was placed in a reaction vessel and the sapphire substrate 1 was cleaned, the growth temperature was set to 510 ° C., hydrogen was used as a carrier gas, and ammonia and TMG ( GaN buffer layer 2 is grown on a sapphire substrate to a thickness of about 200 Å using trimethylgallium).

【0018】バッファ層2成長後、TMGのみ止めて、
温度を1030℃まで上昇させる。1030℃になった
ら、同じく原料ガスにTMGとアンモニアガス、ドーパ
ントガスにシランガスを用い、Siをドープしたn型G
aN層3を4μm成長させる。
After growing the buffer layer 2, only TMG is stopped,
Raise the temperature to 1030 ° C. When the temperature reaches 1030 ° C., n-type G doped with Si using TMG and ammonia gas as the source gas and silane gas as the dopant gas.
The aN layer 3 is grown to 4 μm.

【0019】n型GaN層3成長後、原料ガス、ドーパ
ントガスを止め、温度を800℃にして、原料ガスとし
てTMGとTMA(トリメチルアルミニウム)とアンモ
ニア、ドーパントガスとしてシランガスを用い、n型ク
ラッド層4としてSiドープGa0.86Al0.14N層を
0.15μm成長させる。
After the growth of the n-type GaN layer 3, the raw material gas and the dopant gas are stopped, the temperature is set to 800 ° C., and TMG, TMA (trimethylaluminum) and ammonia are used as the raw material gas, and silane gas is used as the dopant gas. As No. 4, a Si-doped Ga 0.86 Al 0.14 N layer is grown to a thickness of 0.15 μm.

【0020】次に、原料ガス、ドーパントガスを止め、
温度を800℃にして、キャリアガスを窒素に切り替
え、原料ガスとしてTMGとTMI(トリメチルインジ
ウム)とアンモニア、ドーパントガスとしてシランガス
を用い、n型活性層5としてSiドープIn0.01Ga0.
99N層を100オングストローム成長させる。
Next, the source gas and the dopant gas are stopped,
The temperature was set to 800 ° C., the carrier gas was switched to nitrogen, TMG, TMI (trimethyl indium) and ammonia were used as source gases, silane gas was used as dopant gas, and Si-doped In 0.01 Ga 0.
A 99N layer is grown for 100 Å.

【0021】次に、原料ガス、ドーパントガスを止め、
再び温度を1020℃まで上昇させ、原料ガスとしてT
MGと、TMAと、アンモニア、ドーパントガスとして
Cp2Mg(シクロペンタジエニルマグネシウム)とを
用い、p型クラッド層6として、Mgをドープしたp型
Ga0.86Al0.14N層を0.15μm成長させる。
Next, the source gas and the dopant gas are stopped,
The temperature was raised again to 1020 ° C. and T
Using Mg, TMA, ammonia, and Cp2Mg (cyclopentadienylmagnesium) as a dopant gas, a p-type Ga0.86Al0.14N layer doped with Mg is grown as the p-type cladding layer 6 by 0.15 .mu.m.

【0022】次に、TMAのみ止めて、p型コンタクト
層7として、Mgドープp型GaN層を0.4μm成長
させる。
Next, only TMA is stopped, and a Mg-doped p-type GaN layer is grown as the p-type contact layer 7 by 0.4 μm.

【0023】成長後、基板を反応容器から取り出し、ア
ニーリング装置にて窒素雰囲気中、700℃で20分間
アニーリングを行い、p型Ga0.86Al0.14N層、p型
GaNコンタクト層をさらに低抵抗化する。
After the growth, the substrate is taken out of the reaction vessel and annealed in a nitrogen atmosphere at 700 ° C. for 20 minutes to further reduce the resistance of the p-type Ga 0.86 Al 0.14 N layer and the p-type GaN contact layer. .

【0024】以上のようにして得られたウエハーを図1
に示すようにエッチングして、n型GaN層3を露出さ
せ、p型GaNコンタクト層7にはAuよりなる電極
8、n型GaN層3にはAlよりなる電極9を設け、5
00℃で再度アニーリングを行い電極と窒化ガリウム系
化合物半導体とをなじませる。後は、常法に従い500
μm角のチップにカットした後、発光ダイオードとした
ところ、順方向電流20mAにおいて、Vfは5V、発
光波長370nmで発光出力は700μW、発光効率
0.7%と優れた特性を示した。
The wafer obtained as described above is shown in FIG.
The n-type GaN layer 3 is exposed by etching as shown in (1), an electrode 8 made of Au is provided on the p-type GaN contact layer 7, and an electrode 9 made of Al is provided on the n-type GaN layer 3.
Annealing is again performed at 00 ° C., so that the electrode and the gallium nitride-based compound semiconductor are adapted. After that, 500
After cutting into chips of μm square, a light emitting diode was obtained. At a forward current of 20 mA, Vf was 5 V, the light emission output was 700 μW at a light emission wavelength of 370 nm, and the light emission efficiency was 0.7%, showing excellent characteristics.

【0025】[実施例2]実施例1において、Mgドー
プp型GaNコンタクト層の膜厚を0.1μmにする他
は実施例1と同様にして発光ダイオードを得たところ、
順方向電流20mAにおいて、発光波長、発光出力は同
一であったが、Vfが4Vにまで下がり、発光効率が
0.88%と向上した。
Example 2 A light emitting diode was obtained in the same manner as in Example 1 except that the thickness of the Mg-doped p-type GaN contact layer was changed to 0.1 μm.
At a forward current of 20 mA, the emission wavelength and the emission output were the same, but Vf was reduced to 4 V, and the emission efficiency was improved to 0.88%.

【0026】[実施例2]実施例1において、p型Mg
ドープp型GaNコンタクト層の膜厚を0.1μmにす
る他は実施例1と同様にして発光ダイオードを得たとこ
ろ、順方向電流20mAにおいて、発光波長、発光出力
は同一であったが、Vfが4Vにまで下がり、発光効率
が0.88%と向上した。
Example 2 In Example 1, p-type Mg was used.
A light-emitting diode was obtained in the same manner as in Example 1 except that the thickness of the doped p-type GaN contact layer was changed to 0.1 μm. At a forward current of 20 mA, the light-emitting wavelength and light-emitting output were the same. Decreased to 4 V, and the luminous efficiency improved to 0.88%.

【0027】[実施例3]実施例1において、TMAの
流量を多くして、p型クラッド層6のAl混晶比をGa
0.55Al0.45Nとする他は、同様にして発光ダイオード
を得たところ、順方向電流20mAにおいて、Vfは6
Vとオーミック接触が得られているほぼ限界値を示し、
発光波長は同一で、発光出力は400μW、発光効率
0.2%であった。
Example 3 In Example 1, the flow rate of TMA was increased and the Al mixed crystal ratio of the p-type cladding layer 6 was changed to Ga.
A light-emitting diode was obtained in the same manner except that 0.55 Al0.45 N was used, and Vf was 6 at a forward current of 20 mA.
It shows almost the limit value where ohmic contact with V is obtained,
The emission wavelength was the same, the emission output was 400 μW, and the emission efficiency was 0.2%.

【0028】[実施例4]実施例1において、n型クラ
ッド層4を成長しない他は実施例1と同様にして発光ダ
イオードを得たところ、順方向電流20mAにおいて、
Vfは5Vであったが、発光出力は200μW、発光効
率0.2%であった。
Example 4 A light-emitting diode was obtained in the same manner as in Example 1 except that the n-type cladding layer 4 was not grown. At a forward current of 20 mA, a light-emitting diode was obtained.
Although Vf was 5 V, the light emission output was 200 μW and the light emission efficiency was 0.2%.

【0029】[比較例1]実施例1において、TMAの
流量を多くして、p型クラッド層6のAl混晶比をGa
0.5Al0.5Nとする他は、同様にして発光ダイオードを
得たところ、順方向電流20mAにおいて、Vfは30
Vにまで上昇しオーミック接触は得られていないことが
確認された。なお、この素子はVfが大きいため、すぐ
に発光しなくなった。
[Comparative Example 1] In Example 1, the flow rate of TMA was increased and the Al mixed crystal ratio of the p-type cladding layer 6 was changed to Ga.
A light emitting diode was obtained in the same manner except that 0.5 Al 0.5 N was used. At a forward current of 20 mA, Vf was 30
V, and it was confirmed that ohmic contact was not obtained. Since this device had a large Vf, the device stopped emitting light immediately.

【0030】[比較例2]実施例1において、p型コン
タクト層7を形成せず、p型クラッド層6に直接電極を
形成する他は、同様にして発光ダイオードを得たとこ
ろ、順方向電流20mAにおいて、Vfは30Vにまで
上昇し、オーミック接触が得られていないため、比較例
1と同様にすぐに発光しなくなった。
Comparative Example 2 A light-emitting diode was obtained in the same manner as in Example 1 except that the p-type contact layer 7 was not formed and the electrode was formed directly on the p-type cladding layer 6. At 20 mA, Vf increased to 30 V, and no ohmic contact was obtained, so that light emission stopped immediately as in Comparative Example 1.

【0031】[比較例3]実施例1において、p型クラ
ッド層6を成長する際、原料ガスに新たにTMIを加
え、キャリアガスを窒素に切り替え、成長温度を800
℃にしてMgドープp型In0.01Al0.14Ga0.85Nク
ラッド層を成長させる他は、同様にして発光ダイオード
を得たところ、順方向電流20mA流すとすぐに発光し
なくなった。
COMPARATIVE EXAMPLE 3 In Example 1, when growing the p-type cladding layer 6, TMI was newly added to the raw material gas, the carrier gas was changed to nitrogen, and the growth temperature was set to 800.
A light-emitting diode was obtained in the same manner except that a Mg-doped p-type In0.01Al0.14Ga0.85N cladding layer was grown at a temperature of ° C. When a forward current of 20 mA was passed, light emission stopped immediately.

【0032】[0032]

【発明の効果】以上説明したように、本発明の窒化ガリ
ウム系化合物半導体発光素子は、p型GaAlNクラッ
ド層の上に、コンタクト層としてp型GaN層を具備し
ているため、Vfが低く発光効率に優れた素子とするこ
とができる。しかもp型GaAlN層のAl混晶比を限
定することにより結晶性に優れた前記p型クラッド層、
前記p型コンタクト層を得ることができ、Vf低下に大
きく寄与している。
As described above, the gallium nitride-based compound semiconductor light-emitting device of the present invention has a low Vf because it has a p-type GaN layer as a contact layer on a p-type GaAlN cladding layer. An element with excellent efficiency can be obtained. Moreover, the p-type clad layer excellent in crystallinity by limiting the Al mixed crystal ratio of the p-type GaAlN layer,
The p-type contact layer can be obtained, which greatly contributes to a decrease in Vf.

【0033】さらに、n型窒化ガリウム系化合物半導体
層、n型GaAlNクラッド層、n型InGaN層を積
層し、前記p型GaAlNクラッド層、前記p型GaN
コンタクト層を積層することにより発光出力、発光効率
に優れた発光素子を実現でき、るため、未だ実現されて
いないレーザー素子の構造のヒントとして、その産業上
の利用価値は大きい。
Further, an n-type gallium nitride compound semiconductor layer, an n-type GaAlN cladding layer, and an n-type InGaN layer are laminated, and the p-type GaAlN cladding layer, the p-type GaN
By laminating the contact layers, a light emitting device having excellent light emitting output and light emitting efficiency can be realized. Therefore, as a hint of the structure of a laser device which has not been realized, its industrial utility value is great.

【0034】[0034]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る発光素子の構造を示
す模式断面図。
FIG. 1 is a schematic sectional view showing the structure of a light emitting device according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ・・・・・サファイア基板 2 ・・・・・GaNバッファ層 3 ・・・・・n型窒化ガリウム系化合物半導体層 4 ・・・・・n型Ga1-YAlYNクラッド層 5 ・・・・・n型InZGa1-ZN活性層 6 ・・・・・p型Ga1-XAlXNクラッド層 7 ・・・・・p型GaNコンタクト層 8、9 ・・・電極1 sapphire substrate 2 GaN buffer layer 3 n-type gallium nitride compound semiconductor layer 4 n-type Ga 1-Y Al Y N clad layer 5 ····· n-type In Z Ga 1 -Z N active layer 6 ···· p-type Ga 1-x Al x N cladding layer 7 ····· p-type GaN contact layer 8, 9 ··· electrode

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01L 33/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01L 33/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 p−n接合を有するダブルヘテロ構造の
窒化ガリウム系化合物半導体発光素子において、Mgが
ドープされたp型Ga1-XAlXN(但し、Xは0<X<
0.5)クラッド層の上に、電極が形成されるべき層と
して、Mgがドープされたp型GaNコンタクト層を具
備することを特徴とする窒化ガリウム系化合物半導体発
光素子。
In a gallium nitride-based compound semiconductor light emitting device having a double heterostructure having a pn junction, Mg-doped p-type Ga 1-x Al x N (where X is 0 <X <
0.5) A gallium nitride-based compound semiconductor light emitting device comprising a Mg-doped p-type GaN contact layer as a layer on which an electrode is to be formed, on a cladding layer.
【請求項2】 前記p型Ga1-XAlXNクラッド層の膜
厚は10オングストローム以上、0.2μm以下である
ことを特徴とする請求項1に記載の窒化ガリウム系化合
物半導体発光素子。
2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein the thickness of the p-type Ga 1-x Al x N cladding layer is not less than 10 Å and not more than 0.2 μm.
【請求項3】 前記p型GaNコンタクト層の膜厚は1
0オングストローム以上、0.5μm以下であることを
特徴とする請求項1に記載の窒化ガリウム系化合物半導
体発光素子。
3. The p-type GaN contact layer has a thickness of 1
2. The gallium nitride-based compound semiconductor light emitting device according to claim 1, wherein said gallium nitride based compound semiconductor light emitting device has a thickness of not less than 0 Å and not more than 0.5 μm.
【請求項4】 n型窒化ガリウム系化合物半導体層の上
に、n型Ga1-YAlYNクラッド層(但し、Yは0<Y<
1)と、n型InZGa1-ZN活性層(但し、Zは0<Z<
1)とが順に積層されており、そのn型InZGa1-Z
活性層の上に、前記p型Ga1-XAlXNクラッド層が積
層されていることを特徴とする請求項1に記載の窒化ガ
リウム系化合物半導体発光素子。
4. An n-type Ga 1-Y Al Y N cladding layer (where Y is 0 <Y <) on the n-type gallium nitride-based compound semiconductor layer.
And 1), n-type In Z Ga 1-Z N active layer (where, Z is 0 <Z <
1) and are layered in this order, the n-type In Z Ga 1-Z N
On the active layer, the p-type Ga 1-X Al X N gallium nitride compound semiconductor light-emitting device according to claim 1, the cladding layer is characterized in that it is laminated.
JP7904693A 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device Expired - Lifetime JP2778405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7904693A JP2778405B2 (en) 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7904693A JP2778405B2 (en) 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH06268259A JPH06268259A (en) 1994-09-22
JP2778405B2 true JP2778405B2 (en) 1998-07-23

Family

ID=13678969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7904693A Expired - Lifetime JP2778405B2 (en) 1993-03-12 1993-03-12 Gallium nitride based compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2778405B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296314A2 (en) 2001-09-20 2003-03-26 Victor Company Of Japan, Ltd. Information recording carrier
US7012860B2 (en) 2001-10-15 2006-03-14 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7133331B2 (en) 2000-12-28 2006-11-07 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7177262B2 (en) 2002-04-19 2007-02-13 Victor Company Of Japan, Ltd. Reproducing system and corresponding information recording medium having wobbled land portions
WO2007138658A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light-emitting device
WO2007138656A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light emitting element
EP2267194A2 (en) 2003-02-24 2010-12-29 Waseda University Thin-film single crystal growing method
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005258A (en) 1994-03-22 1999-12-21 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III Nitrogen compound having emission layer doped with donor and acceptor impurities
DE69503299T2 (en) * 1994-04-20 1999-01-21 Akasaki, Isamu, Nagoya, Aichi Gallium nitride diode laser and process for its manufacture
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
EP1473781A3 (en) * 1994-07-21 2007-02-21 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US6996150B1 (en) 1994-09-14 2006-02-07 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2666237B2 (en) * 1994-09-20 1997-10-22 豊田合成株式会社 Group III nitride semiconductor light emitting device
JP3254931B2 (en) * 1994-10-17 2002-02-12 松下電器産業株式会社 Method for producing p-type gallium nitride-based compound semiconductor
JP2890392B2 (en) * 1994-11-02 1999-05-10 日亜化学工業株式会社 III-V nitride semiconductor light emitting device
US5777350A (en) 1994-12-02 1998-07-07 Nichia Chemical Industries, Ltd. Nitride semiconductor light-emitting device
US6900465B2 (en) 1994-12-02 2005-05-31 Nichia Corporation Nitride semiconductor light-emitting device
JPH08167735A (en) * 1994-12-12 1996-06-25 Hitachi Cable Ltd Light emitting element
EP0742622A3 (en) * 1995-03-27 1997-02-19 Mitsubishi Cable Ind Ltd Laser diode
JP3561057B2 (en) * 1995-10-27 2004-09-02 豊田合成株式会社 Light emitting device manufacturing method
KR100267839B1 (en) 1995-11-06 2000-10-16 오가와 에이지 Nitride semiconductor devices
US6165812A (en) * 1996-01-19 2000-12-26 Matsushita Electric Industrial Co., Ltd. Gallium nitride compound semiconductor light emitting device and process for producing gallium nitride compound semiconductor
WO1998031055A1 (en) * 1997-01-09 1998-07-16 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
US6069021A (en) * 1997-05-14 2000-05-30 Showa Denko K.K. Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
US6841800B2 (en) 1997-12-26 2005-01-11 Matsushita Electric Industrial Co., Ltd. Light-emitting device comprising a gallium-nitride-group compound-semiconductor
JP3589000B2 (en) 1997-12-26 2004-11-17 松下電器産業株式会社 Gallium nitride based compound semiconductor light emitting device
US6194744B1 (en) 1998-03-17 2001-02-27 Showa Denko Kabushiki Kaisha Method of growing group III nitride semiconductor crystal layer and semiconductor device incorporating group III nitride semiconductor crystal layer
JPH11340505A (en) 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Gallium nitride based compound semiconductor light emitting device
JP2000036616A (en) * 1998-07-21 2000-02-02 Toshiba Corp Semiconductor light emitting element and its manufacture
US6410942B1 (en) * 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
EP1234344B1 (en) * 1999-12-03 2020-12-02 Cree, Inc. Enhanced light extraction in leds through the use of internal and external optical elements
JP3726252B2 (en) * 2000-02-23 2005-12-14 独立行政法人理化学研究所 Ultraviolet light emitting device and method for producing InAlGaN light emitting layer
JP3618076B2 (en) * 2000-07-27 2005-02-09 士郎 酒井 Gallium nitride compound semiconductor device and electrode forming method
JP2002100803A (en) * 2000-09-22 2002-04-05 Shiro Sakai Gallium nitride-based compound semiconductor device and method for forming electrode
JP2003173543A (en) 2001-09-26 2003-06-20 Victor Co Of Japan Ltd Information recording carrier, and method and device for reproducing the same
JP3758562B2 (en) * 2001-11-27 2006-03-22 日亜化学工業株式会社 Nitride semiconductor multicolor light emitting device
US6881983B2 (en) 2002-02-25 2005-04-19 Kopin Corporation Efficient light emitting diodes and lasers
US6911079B2 (en) 2002-04-19 2005-06-28 Kopin Corporation Method for reducing the resistivity of p-type II-VI and III-V semiconductors
US6734091B2 (en) 2002-06-28 2004-05-11 Kopin Corporation Electrode for p-type gallium nitride-based semiconductors
US7002180B2 (en) 2002-06-28 2006-02-21 Kopin Corporation Bonding pad for gallium nitride-based light-emitting device
TW200401462A (en) 2002-06-17 2004-01-16 Kopin Corp Light-emitting diode device geometry
US6955985B2 (en) 2002-06-28 2005-10-18 Kopin Corporation Domain epitaxy for thin film growth
US7122841B2 (en) 2003-06-04 2006-10-17 Kopin Corporation Bonding pad for gallium nitride-based light-emitting devices
JP2004006970A (en) * 2003-07-31 2004-01-08 Toyoda Gosei Co Ltd Group iii nitride semiconductor light emitting element
WO2005043635A1 (en) 2003-10-31 2005-05-12 Showa Denko K.K. Compound semiconductor light-emitting device having pn-junction type hetero structure and forming method thereof
JP2009021424A (en) 2007-07-12 2009-01-29 Opnext Japan Inc Nitride semiconductor light emitting device and manufacturing method thereof
JP2009177219A (en) * 2009-05-15 2009-08-06 Mitsubishi Chemicals Corp METHOD FOR MANUFACTURING GaN-BASED SEMICONDUCTOR DEVICE
CN105655456B (en) * 2016-04-08 2017-12-08 湘能华磊光电股份有限公司 A kind of bottom roughening growing method of extension increase LED light extraction efficiency

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235999B2 (en) * 1974-08-26 1977-09-12
JPS609355B2 (en) * 1975-08-30 1985-03-09 富士通株式会社 Manufacturing method of semiconductor light emitting device
JPS5493380A (en) * 1977-12-30 1979-07-24 Fujitsu Ltd Semiconductor light emitting device
JPH06101587B2 (en) 1989-03-01 1994-12-12 日本電信電話株式会社 Semiconductor light emitting element
JP3193981B2 (en) 1990-02-28 2001-07-30 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JP2681094B2 (en) 1990-02-28 1997-11-19 豊田合成株式会社 Gallium nitride based compound semiconductor light emitting device
JP3160914B2 (en) 1990-12-26 2001-04-25 豊田合成株式会社 Gallium nitride based compound semiconductor laser diode
JP2791448B2 (en) 1991-04-19 1998-08-27 日亜化学工業 株式会社 Light emitting diode
JPH0529653A (en) 1991-07-19 1993-02-05 Toshiba Corp Semiconductor device
JP3251046B2 (en) 1992-03-03 2002-01-28 シャープ株式会社 Method for growing compound semiconductor, compound semiconductor light emitting device and method for manufacturing the same
JP2681733B2 (en) 1992-10-29 1997-11-26 豊田合成株式会社 Nitrogen-3 group element compound semiconductor light emitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAN.J.APPL.PHYS,VOL.32 (1993),PP.L8−L11,PART2

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411873B2 (en) 2000-12-28 2008-08-12 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7729211B2 (en) 2000-12-28 2010-06-01 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7133331B2 (en) 2000-12-28 2006-11-07 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US8238205B2 (en) 2000-12-28 2012-08-07 JVC Kenwood Corporation Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7729210B2 (en) 2000-12-28 2010-06-01 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US8228767B2 (en) 2000-12-28 2012-07-24 JVC Kenwood Corporation Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7961564B2 (en) 2000-12-28 2011-06-14 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7903509B2 (en) 2000-12-28 2011-03-08 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7457207B2 (en) 2000-12-28 2008-11-25 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
EP1296314A2 (en) 2001-09-20 2003-03-26 Victor Company Of Japan, Ltd. Information recording carrier
EP2117000A1 (en) 2001-09-20 2009-11-11 Victor Company of Japan Limited Information recording carrier
US7193938B2 (en) 2001-10-15 2007-03-20 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7391678B2 (en) 2001-10-15 2008-06-24 Victor Company Of Japan, Ltd. Information recording medium having a wobbling groove structure
US7400559B2 (en) 2001-10-15 2008-07-15 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7391681B2 (en) 2001-10-15 2008-06-24 Victor Company Of Japan, Ltd. Information recording medium having a wobbling groove structure
US7391679B2 (en) 2001-10-15 2008-06-24 Victor Company Of Japan Ltd. Information recording medium having a wobbling groove structure
US7957230B2 (en) 2001-10-15 2011-06-07 Victor Company Of Japan, Ltd Information recording medium having a wobbling groove structure
US7170830B2 (en) 2001-10-15 2007-01-30 Victor Company Of Japan, Ltd. Information recording medium having a wobbling groove structure
US7012860B2 (en) 2001-10-15 2006-03-14 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7675839B2 (en) 2001-10-15 2010-03-09 Victor Compay of Japan, Limited Information recording medium having a wobbling groove structure
US7688707B2 (en) 2001-10-15 2010-03-30 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7688688B2 (en) 2001-10-15 2010-03-30 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7706232B2 (en) 2001-10-15 2010-04-27 Victor Company Of Japan, Limited Information recording medium having a wobbling groove structure
US7656781B2 (en) 2002-04-19 2010-02-02 Victor Company Of Japan, Limited Reproducing system and corresponding information recording medium having wobbled land portions
US8189451B2 (en) 2002-04-19 2012-05-29 JVC Kenwood Corporation Optical recording medium having auxiliary information and reference clock
US7349324B2 (en) 2002-04-19 2008-03-25 Victor Company Of Japan, Limited Reproducing system and corresponding information recording medium having wobbled land portions
US7907504B2 (en) 2002-04-19 2011-03-15 Victor Company Of Japan Limited Optical recording medium having auxiliary information and reference clock
US7336595B2 (en) 2002-04-19 2008-02-26 Victor Company Of Japan, Ltd. Reproducing system and corresponding information recording medium having wobbled land portions
US7177262B2 (en) 2002-04-19 2007-02-13 Victor Company Of Japan, Ltd. Reproducing system and corresponding information recording medium having wobbled land portions
US7668072B2 (en) 2002-04-19 2010-02-23 Victor Company Of Japan, Limited Producing system and corresponding information recording medium having wobbled land portions
US8179773B2 (en) 2002-04-19 2012-05-15 JVC Kenwood Corporation Optical recording medium having auxiliary information and reference clock
EP2267194A2 (en) 2003-02-24 2010-12-29 Waseda University Thin-film single crystal growing method
EP2273569A2 (en) 2003-02-24 2011-01-12 Waseda University Beta-Ga203 light-emitting device and its manufacturing method
WO2007138658A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light-emitting device
US8053756B2 (en) 2006-05-26 2011-11-08 Rohm Co., Ltd. Nitride semiconductor light emitting element
WO2007138656A1 (en) 2006-05-26 2007-12-06 Rohm Co., Ltd. Nitride semiconductor light emitting element
US8536601B2 (en) 2009-06-10 2013-09-17 Toshiba Techno Center, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
US9142742B2 (en) 2009-06-10 2015-09-22 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8871539B2 (en) 2009-06-10 2014-10-28 Kabushiki Kaisha Toshiba Thin-film LED with P and N contacts electrically isolated from the substrate
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US9012953B2 (en) 2009-11-25 2015-04-21 Kabushiki Kaisha Toshiba LED with improved injection efficiency
US8684749B2 (en) 2009-11-25 2014-04-01 Toshiba Techno Center Inc. LED with improved injection efficiency
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US10174439B2 (en) 2011-07-25 2019-01-08 Samsung Electronics Co., Ltd. Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US9617656B2 (en) 2011-07-25 2017-04-11 Toshiba Corporation Nucleation of aluminum nitride on a silicon substrate using an ammonia preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9159869B2 (en) 2011-08-03 2015-10-13 Kabushiki Kaisha Toshiba LED on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US9070833B2 (en) 2011-08-04 2015-06-30 Kabushiki Kaisha Toshiba Distributed current blocking structures for light emitting diodes
US8981410B1 (en) 2011-09-01 2015-03-17 Kabushiki Kaisha Toshiba Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US8994064B2 (en) 2011-09-03 2015-03-31 Kabushiki Kaisha Toshiba Led that has bounding silicon-doped regions on either side of a strain release layer
US9018643B2 (en) 2011-09-06 2015-04-28 Kabushiki Kaisha Toshiba GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US9130068B2 (en) 2011-09-29 2015-09-08 Manutius Ip, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US9299881B2 (en) 2011-09-29 2016-03-29 Kabishiki Kaisha Toshiba Light emitting devices having light coupling layers
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9490392B2 (en) 2011-09-29 2016-11-08 Toshiba Corporation P-type doping layers for use with light emitting devices
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9123853B2 (en) 2011-11-09 2015-09-01 Manutius Ip, Inc. Series connected segmented LED
US9391234B2 (en) 2011-11-09 2016-07-12 Toshiba Corporation Series connected segmented LED
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED

Also Published As

Publication number Publication date
JPH06268259A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
JP2778405B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2890396B2 (en) Nitride semiconductor light emitting device
JP2932467B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3250438B2 (en) Nitride semiconductor light emitting device
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2917742B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP3890930B2 (en) Nitride semiconductor light emitting device
JP3744211B2 (en) Nitride semiconductor device
JP2890390B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2006108585A (en) Group III nitride compound semiconductor light emitting device
JPH11340509A (en) Nitride semiconductor element
JPH06260680A (en) Gallium nitride compound semiconductor light emitting element
JP3620292B2 (en) Nitride semiconductor device
JP3658892B2 (en) Method for growing p-type nitride semiconductor and nitride semiconductor device
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
JP2918139B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH09219556A (en) Nitride semiconductor laser element
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor element
JP3484997B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH11224972A (en) Nitride semiconductor light-emitting element
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2560964B2 (en) Gallium nitride compound semiconductor light emitting device
JP3267250B2 (en) Nitride semiconductor light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080508

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090508

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100508

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110508

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120508

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130508

Year of fee payment: 15

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

EXPY Cancellation because of completion of term