JPS60125853A - Production of developer carrying body - Google Patents
Production of developer carrying bodyInfo
- Publication number
- JPS60125853A JPS60125853A JP58233488A JP23348883A JPS60125853A JP S60125853 A JPS60125853 A JP S60125853A JP 58233488 A JP58233488 A JP 58233488A JP 23348883 A JP23348883 A JP 23348883A JP S60125853 A JPS60125853 A JP S60125853A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- particles
- electrode
- dielectric
- electrode layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B13/00—Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
- B05B13/02—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
- B05B13/04—Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/10—Developers with toner particles characterised by carrier particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/08—Plant for applying liquids or other fluent materials to objects
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Brush Developing In Electrophotography (AREA)
- Dry Development In Electrophotography (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は現像剤担持体の製造方法に関し、より詳細には
、−成分高抵抗磁性トナーを使用する現像装置に好適な
現像剤担持体の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for manufacturing a developer carrier, and more particularly, to a method for manufacturing a developer carrier suitable for a developing device using -component high resistance magnetic toner. be.
従来技術
電子写真複写機やファクシミリ又はプリンタ等の静電記
録装置に於いては、原稿が線画像である場合とベタ画像
である場合とでは現像装置に要求される現像特性が異な
る。第1図は、その好適な現像特性を示したグラフ図で
あり、横軸に原稿画像濃度をとり縦軸に複写画像濃度を
とっである。BACKGROUND ART In electrostatic recording devices such as electrophotographic copying machines, facsimile machines, and printers, the development characteristics required of the development device are different depending on whether the document is a line image or a solid image. FIG. 1 is a graph showing the preferred development characteristics, with the horizontal axis representing original image density and the vertical axis representing copy image density.
図中、実線Aはベタ画像に要求される現像特性、破線B
は線画像に要求される現像特性を示している。これによ
れば、線画像の場合(破線B)の方がベタ画像(実線A
)の場合に比べて立上がり勾配が急峻である。この理由
は、原稿が線画像である場合は原稿画像濃度が低いと画
像の鮮明度が劣るので複写画像濃度を高めてこれを補う
必要があるが、原稿かへ夕画像の場合は原稿画像濃度に
応じた複写画像濃度が得られれば十分鮮明であるからで
ある。In the figure, the solid line A is the development characteristic required for a solid image, and the broken line B
indicates the development characteristics required for line images. According to this, in the case of a line image (broken line B), a solid image (solid line A) is better than a solid image (solid line A).
) The rising slope is steeper than in the case of ). The reason for this is that if the original is a line image, the clarity of the image will be poor if the original image density is low, so it is necessary to compensate for this by increasing the copy image density. This is because if a copy image density corresponding to the image density is obtained, the image will be sufficiently clear.
ところで、この線画像の複写画像濃度を高める為に、所
謂エツジ効果が従来から利用されている。By the way, the so-called edge effect has been conventionally used to increase the density of the copied image of this line image.
即ち、静電潜像の画像縁部に於ける電界の強度が画像中
央領域に於ける電界の強度よりも強まる結果画像縁部に
より多量のトナーが付着してエツジ効果が起きる。従っ
て、画像面積の小さい線画像の場合は、潜像形成域の大
部分が縁部に該当してエツジ効果を受け、複写画像濃度
が高値となる。That is, the strength of the electric field at the edges of the electrostatic latent image is stronger than the strength of the electric field at the center of the image, resulting in a larger amount of toner adhering to the edges of the image, resulting in an edge effect. Therefore, in the case of a line image with a small image area, most of the latent image forming area corresponds to the edge and is subject to the edge effect, resulting in a high value of the density of the copied image.
然るに、このエツジ効果は、現像剤としてトナーとキャ
リアとを含む二成分系のものを使用する場合には十分な
効果が得られるのであるが、キャリアを含まない一成分
系現像剤を使用する場合には有効なエツジ効果が得られ
ないという難点があった。However, this edge effect is sufficiently effective when using a two-component developer containing toner and carrier, but when using a one-component developer that does not contain carrier. had the disadvantage that an effective edge effect could not be obtained.
そこで、本願出願人は、−成分系現像剤を用いた場合で
も上述した好適な現像特性を得ることが可能となる独特
な構成の現像剤担持体を具備する現像装置を提案した(
特願昭55−185726号)。この提案に係る現像剤
担持体は、第2図に示される如く、円筒状の導電性支持
体1の外周面に導電性物質からなる半球状の多数の微小
な電極粒子28をその周方向及び幅方向に一様に点在さ
せてなる電極層2が形成されて構成されており、これら
個々の電極粒子2aは相互に絶縁状態にあって電気的に
フロート状態に保持されている。尚、磁性現像剤を使用
する場合には、支持体1の内部3に磁石ローラ(不図示
)が配設される。Therefore, the applicant of the present application has proposed a developing device equipped with a developer carrier having a unique configuration that makes it possible to obtain the above-mentioned suitable development characteristics even when using a -component type developer (
(Japanese Patent Application No. 185726/1982). As shown in FIG. 2, the developer carrier according to this proposal has a large number of hemispherical minute electrode particles 28 made of a conductive material on the outer peripheral surface of a cylindrical conductive support 1 in the circumferential direction and The electrode layer 2 is formed so as to be uniformly scattered in the width direction, and the individual electrode particles 2a are insulated from each other and held in an electrically floating state. Note that when a magnetic developer is used, a magnetic roller (not shown) is provided inside the support 1 3.
この様な現像剤担持体を製造するのに好適な方法として
、導電性支持体1上に接着剤2bを塗布してその上から
導電性粒子2aを散布し、この後外径加工を旋盤等によ
って施し電極層2表面を円滑化すると共に電極粒子を半
球状に削ってその一部を表面に露出させる方法が提案さ
れている。この場合、所望のエツジ効果を得る為には、
電極粒子2aの表面に露出した面積の電極層2全表面積
に対する割合(面積率)を、所定値以上の例えば45%
以上確保することが要求される。又、電極粒子2aの脱
離を防止する為に各粒子の体積の半分以上を切除するこ
とを回避する必要もある。以上の条件を満たす為には、
例えば個々の電極粒子の粒径が74乃至104μ程度の
場合はその電極厚みが52乃至62μmとなる様に、電
極層2を形成すれば良い。尚、電極厚みとは、第2図に
示す如く、切除された粒子2Aの電極層厚t2方向の厚
みt2Aを指す。その理由は、次の通りである。A suitable method for manufacturing such a developer carrier is to apply the adhesive 2b onto the conductive support 1, sprinkle the conductive particles 2a on top of it, and then perform the outer diameter machining using a lathe or the like. A method has been proposed in which the surface of the electrode layer 2 is made smooth and the electrode particles are shaved into a hemispherical shape to expose a portion thereof on the surface. In this case, in order to obtain the desired edge effect,
The ratio (area ratio) of the area exposed on the surface of the electrode particles 2a to the total surface area of the electrode layer 2 is set to a predetermined value or more, for example, 45%.
It is required to secure the above. Furthermore, in order to prevent the electrode particles 2a from detaching, it is also necessary to avoid removing more than half of the volume of each particle. In order to meet the above conditions,
For example, when the particle size of each electrode particle is about 74 to 104 μm, the electrode layer 2 may be formed so that the electrode thickness is 52 to 62 μm. Note that the electrode thickness refers to the thickness t2A of the excised particle 2A in the electrode layer thickness t2 direction, as shown in FIG. The reason is as follows.
第3図は、電極粒子2aの厚みt2Aとその面積率AR
との関係を示したグラフ図である。第3図に於いて、曲
線α1曲線β及び曲線γは、夫々、粒径が104μmの
最大電極粒子、平均的な粒径の電極粒子及び粒径が74
戸の最小電極粒子に於ける各間係を示している。これに
よれば、好適な現像特性を得る為に必要とされる45%
以上の面積率ARを確保する為には、最小粒子(曲線γ
)で面積率A’Rが45%以上となる様に電極厚みt2
Aの最大値を62μmに設定すれば良い。又、アンカー
効果により粒子の脱離を防止する為、最大粒子(曲線α
)の半分である52p−以上の厚みt2Aを確保する必
要がある。従って、電極粒子2aの厚みt2Aの許容範
囲は52乃至62絢となる。Figure 3 shows the thickness t2A of the electrode particle 2a and its area ratio AR.
It is a graph diagram showing the relationship between. In FIG. 3, the curve α1 curve β and the curve γ correspond to the maximum electrode particle with a particle size of 104 μm, the electrode particle with an average particle size, and the particle size of 74 μm, respectively.
It shows each interval in the minimum electrode particle of the door. According to this, 45% is required to obtain suitable development characteristics.
In order to ensure the above area ratio AR, the minimum particle (curve γ
), the electrode thickness t2 is adjusted so that the area ratio A'R is 45% or more.
The maximum value of A may be set to 62 μm. In addition, in order to prevent particle detachment due to the anchor effect, the largest particle (curve α
) It is necessary to ensure a thickness t2A of 52p- or more, which is half of 52p-. Therefore, the permissible range of the thickness t2A of the electrode particles 2a is 52 to 62 threads.
然るに、旋盤等の加工物を支持する軸(加工軸)を基準
とする旋削加工法により電極層の外径加工を施す場合、
電極層2の層厚t2の変動幅を電極厚みt2Aの許容範
囲幅の10JIm以下に抑えることが難しく、従って電
極厚みt2Aも上記許容範囲内に収めることが困難にな
るという不都合が生じる(第2図参照)。即ち、第4図
に示されている如く、導電性支持体1は薄肉に形成され
る必要がある為その両端のインロ一部1aを高精度で加
工することが難しく、従って旋盤の支持具Tとの間にク
リアランスPが生じ易い。クリアランスPが発生すると
、支持体1の中心軸Goと支持具Tの中心軸C+ (加
工軸)を一致させることが難しくなる。その結果、中心
軸Goと加工軸c1との間にΔdの偏心が生じた場合、
これにより発生する電極層厚t2の変動幅VRは、層厚
t2の最大。However, when machining the outer diameter of the electrode layer using a turning method based on a shaft (processing axis) that supports the workpiece, such as a lathe,
It is difficult to suppress the fluctuation width of the layer thickness t2 of the electrode layer 2 to 10JIm or less, which is the allowable range width of the electrode thickness t2A, and therefore, it becomes difficult to keep the electrode thickness t2A within the above-mentioned allowable range. (see figure). That is, as shown in FIG. 4, since the conductive support 1 needs to be formed with a thin wall, it is difficult to process the spigot parts 1a at both ends with high precision. A clearance P is likely to occur between the two. When the clearance P occurs, it becomes difficult to align the central axis Go of the support 1 with the central axis C+ (processing axis) of the support T. As a result, if an eccentricity of Δd occurs between the central axis Go and the processing axis c1,
The fluctuation width VR of the electrode layer thickness t2 that occurs due to this is the maximum of the layer thickness t2.
最小値を夫々jMAx、tM+Nとすれば、VR−tM
Ax−tM+N は 2・Δdとなる。従って、電極厚
みt2Aを幅10μmの許容範囲内に収める為には、各
電極粒子2aがその底面を同一レベルH(第2図参照)
に揃えて位置されるという前提条件の下で、加工軸C1
の偏心量Δdをその半分の5 pt*以下に抑えること
が要求される。この様な厳しい加工条件を満足させるこ
とは極めて難しく、これは工数増加や延いてはコストア
ップの原因となる。If the minimum values are jMAX and tM+N, respectively, VR-tM
Ax-tM+N becomes 2·Δd. Therefore, in order to keep the electrode thickness t2A within the allowable width range of 10 μm, each electrode particle 2a must have its bottom surface at the same level H (see Figure 2).
Under the precondition that the machining axis C1 is aligned with
It is required to suppress the eccentricity Δd to less than half of that, 5 pt*. It is extremely difficult to satisfy such strict processing conditions, which increases the number of man-hours and ultimately increases costs.
目 的
本発明は以上の点に鑑みてなされたものであって、所望
のエツジ効果を発揮させ一成分現像剤によっても高度な
画像品質を安定して得ることが可能な現像剤担持体を容
易に製造できる製造方法を提供することを目的とする。Purpose The present invention has been made in view of the above points, and it is possible to easily create a developer carrier capable of exhibiting a desired edge effect and stably obtaining high image quality even with a one-component developer. The purpose is to provide a manufacturing method that allows for manufacturing.
構 成
以下、本発明の構成について具体的な実施例に基づき詳
細に説明する。本例の製造方法により製造される現像剤
担持体は、第16(a)図、第16(b)図に示される
如く、導電性支持体1上に誘電層4を被着形成した後電
極層2が積層され構成された現像剤担持体11である。Configuration Hereinafter, the configuration of the present invention will be explained in detail based on specific examples. As shown in FIGS. 16(a) and 16(b), the developer carrier manufactured by the manufacturing method of this example is produced by forming a dielectric layer 4 on a conductive support 1, and then forming an electrode. This is a developer carrier 11 configured by laminating layers 2.
尚、誘電層4は、エツジ効果対策から導電性支持体1上
に必要な誘電体領域を〈誘電厚み)を確保する為に設け
られている。Note that the dielectric layer 4 is provided to ensure a necessary dielectric area (dielectric thickness) on the conductive support 1 to prevent edge effects.
先ず、第5図に示される如く、導電性支持体1を円筒状
に形成する。この場合、現像剤として磁性現像剤を用い
磁力でこれを担持する形式の規像装置に適用される場合
は、導電性支持体1を非磁性の例えばステンレス等で薄
肉に形成する。First, as shown in FIG. 5, the conductive support 1 is formed into a cylindrical shape. In this case, if the present invention is applied to an imaging device that uses a magnetic developer as a developer and supports it by magnetic force, the conductive support 1 is made of a thin non-magnetic material such as stainless steel.
次に、支持体1の外周面を脱脂処理した後、この外周面
全体に亘って均一に誘電性材料からなる誘電体塗膜を被
着する。具体的には、例えば第5図に示す如く、内部に
ヒータ5が装着された円柱状のシーズヒータ6を水平に
回転可能に設け、これに上述の如く形成した支持体1を
外挿し、支持体1を180℃近傍に加熱すると共に所定
の速度で両者を略一体に回転させつつ、静11m1ガン
7で誘電性パウダー4−を゛静電塗装法により支持体1
外周面上に均一に吹き付ける。この場合、誘電性パウダ
ー4′としては熱硬化性樹脂粉末の例えばエポキシ樹脂
粉末等が好適である。そして、塗装ガン7をシーズヒー
タ6に平行に等速度で往復移動可能な保持台(不図示)
等にセットして目的とする例えば約500 pmの層厚
に達するまで吹き付は作業を繰り返し実施すれば良い。Next, after degreasing the outer peripheral surface of the support 1, a dielectric coating made of a dielectric material is uniformly applied over the entire outer peripheral surface. Specifically, as shown in FIG. 5, for example, a cylindrical sheathed heater 6 with a heater 5 mounted therein is horizontally rotatably provided, and the support 1 formed as described above is fitted onto the sheathed heater 6 for support. While heating the support body 1 to around 180°C and rotating both substantially integrally at a predetermined speed, dielectric powder 4- is applied to the support body 1 using an electrostatic coating method using a static 11m1 gun 7.
Spray evenly on the outer surface. In this case, thermosetting resin powder such as epoxy resin powder is suitable as the dielectric powder 4'. A holding table (not shown) that can move the coating gun 7 back and forth at a constant speed parallel to the sheathed heater 6
etc., and the spraying operation can be repeated until the desired layer thickness of, for example, about 500 pm is reached.
吹き付は塗!I終了後はシーズヒータ6で加熱したまま
支持体1の回転を適長時間継続し、第6図に示される如
く誘電体塗膜4を硬化させる。これにより、誘電体塗膜
4−の膜厚t4−が、幅方向だけでなく周方向に於いて
も大略均一となる。尚、支持体1の加熱方法としては、
遠赤外線ヒータ等により外部から加熱する方法でも良い
。Paint the spray! After completion of I, the support 1 is continued to be rotated for an appropriate period of time while being heated by the sheathed heater 6, and the dielectric coating film 4 is cured as shown in FIG. Thereby, the film thickness t4- of the dielectric coating film 4- becomes approximately uniform not only in the width direction but also in the circumferential direction. Note that the heating method for the support 1 is as follows:
A method of heating from the outside using a far-infrared heater or the like may also be used.
被着形成された誘電体塗膜4−の表面には通常多数の凹
凸が形成されているが、前述した許容範囲内に電極粒子
の厚みを収める為にはこの表面がある程度円滑であるこ
とが要求される。従って、被着された誘電体塗II!4
表面に例えば旋盤等により外径加工を施して表面を円
滑化し、第7図に示される如く層厚t4が400ハ程度
の誘電層4を形成する。尚、本外径加工を他の例えば円
筒研削盤等により実施することも可能である。The surface of the deposited dielectric coating film 4- usually has many irregularities, but in order to keep the thickness of the electrode particles within the above-mentioned tolerance range, this surface must be smooth to some extent. required. Therefore, the applied dielectric coating II! 4
The surface is smoothed by machining the outer diameter using a lathe or the like, and a dielectric layer 4 having a layer thickness t4 of about 400 mm is formed as shown in FIG. Incidentally, it is also possible to carry out the main outer diameter machining using other tools such as a cylindrical grinder.
外径加工により誘電層4を形成した後は、誘電層4表面
を清浄し、次いで、第8図に示す如く、例えば圧送式エ
アスプレィ8によって、誘電層4の表面に誘電性で例え
ば常温硬化型のアクリルウレタン等の接着剤を一様に吹
き付は塗布する。これにより第9図に示す如き接着剤1
1!2bが被着されるが、その膜厚t2Bは、次順の工
程(第10図参照)で散布される電極粒子2aが例えば
粒径が74乃至104μmの銅粒子である場合には、散
布した粒子を誘電層4表面に確実に付着させ得る3乃至
15μ情程度が好適である。尚、本工程に於いても、被
加工物(以下ワークWと表わす)である支持体1上に誘
電層4が被着形成された中間製品を、誘電体塗膜形成時
と同様に適切な速度で回転させつつ水平に支持し、これ
に沿って上述の接着剤の塗布を反復して行な゛えば、略
均−な膜厚を有する接着剤膜2bを容易に被着形成する
ことかできる。After forming the dielectric layer 4 by outer diameter processing, the surface of the dielectric layer 4 is cleaned, and then, as shown in FIG. Spray adhesive such as acrylic urethane evenly. As a result, adhesive 1 as shown in FIG.
1!2b is deposited, but its film thickness t2B is as follows: When the electrode particles 2a to be dispersed in the next step (see FIG. 10) are copper particles with a particle size of 74 to 104 μm, for example, A thickness of about 3 to 15 μm is suitable to ensure that the dispersed particles adhere to the surface of the dielectric layer 4. In this step as well, the intermediate product in which the dielectric layer 4 is adhered and formed on the support 1, which is the workpiece (hereinafter referred to as work W), is coated with an appropriate coating as in the case of forming the dielectric coating film. If the adhesive film 2b is supported horizontally while being rotated at a high speed, and the above-described adhesive is repeatedly applied along this direction, the adhesive film 2b having a substantially uniform thickness can be easily formed. can.
接着剤を被着したら、これが硬化する前に多数の電極粒
子を誘電層表面に略均−に付着させる。Once the adhesive has been applied, and before it hardens, a large number of electrode particles are deposited substantially evenly on the surface of the dielectric layer.
この付着方法としては、例えば、第10図に示す如く散
布口9aを備えたトレイ9内に電極粒子2aとして粒径
が74乃至104 pmの銅粒子を多」に収容しておき
、水平に支持され回転されるワークWに沿ってトレイ9
を適正な速度で往復移動させつつ適度に傾け、散布口9
aから電極粒子2aを少量ずつ落下させて接着剤膜2b
上にふりかけ均一に分布させれば良い。これにより、第
11図に示す如く各電極粒子2aが誘電層4表面に当接
した状態で略均−に付着する。本例に於いては、付着さ
せる各電極粒子2aが予め例えばスチレンブチルアクリ
レート等の誘電性物質で被覆されでいるので、自然落下
により無作為に散布しても個々の電極粒子2aを確実に
周囲に対して絶縁状態(フロート状態)で付着させるこ
とができる。又、接着剤膜2bの膜厚が3乃至15μ…
と薄い為に、散布された粒径が74乃至104μmの銅
粒子2aを浮遊さ′t!得る浮力が生じず、自然に各粒
子2aは誘電層4表面に沈下した状態となる。従って、
第11図に示す如く、個々の電極粒子2aを自然落下さ
せるだけでその底面を誘電R4表面に容易且つ確実に揃
えることができる。尚、本例では、電極粒子2aとして
銅粒子を用いたが、これに限らず他の導電性の例えば黄
銅やリン青銅若しくはステンレス等の粒子も使用できる
。For this attachment method, for example, as shown in FIG. 10, a large number of copper particles having a particle size of 74 to 104 pm are stored as electrode particles 2a in a tray 9 equipped with a dispersion port 9a, and then supported horizontally. The tray 9 is placed along the workpiece W that is rotated.
While reciprocating at an appropriate speed, tilt the
Electrode particles 2a are dropped little by little from a to form an adhesive film 2b.
Just sprinkle it on top and distribute it evenly. As a result, as shown in FIG. 11, each electrode particle 2a is attached substantially uniformly to the surface of the dielectric layer 4 while being in contact with the surface. In this example, each electrode particle 2a to be attached is coated in advance with a dielectric material such as styrene butyl acrylate, so even if it is scattered randomly by gravity, the individual electrode particles 2a can be reliably covered with the surrounding area. It can be attached in an insulating state (floating state) to the surface of the substrate. Further, the thickness of the adhesive film 2b is 3 to 15 μm...
Because it is so thin, the dispersed copper particles 2a with particle diameters of 74 to 104 μm are suspended! The resulting buoyancy is not generated, and each particle 2a naturally sinks to the surface of the dielectric layer 4. Therefore,
As shown in FIG. 11, the bottom surface of each electrode particle 2a can be easily and reliably aligned with the surface of the dielectric R4 simply by allowing the individual electrode particles 2a to fall naturally. In this example, copper particles are used as the electrode particles 2a, but the electrode particles 2a are not limited to this, and particles of other conductive materials such as brass, phosphor bronze, or stainless steel can also be used.
次に、接着剤2bを略完全に乾燥硬化させた後、第12
図に示す如く再度誘電性接着剤2b−を前回と同様な方
法で電極粒子2a及び接着剤2b上に厚塗り(オーバー
コート)する。この場合、前回と同一物質の接着剤を用
いれば、両者が確実に接着しあって電極粒子2aを誘電
層4表面に当接させた状態でより強固に固定でき耐久性
の面等で有利である。然るに、互いに接着し合い粒子2
aを確実に固定できるならば、互いに異なる物質の誘電
性接着剤の組合せも十分可能である。この様に接着剤を
乾燥工程を挾んで2度に分けて被着することにより、先
に被着した接着剤2bの再溶解が回避される為、各電極
粒子2aを浮遊させず誘電N4表面に沈下させた状態で
強固に固定でき、前述した各粒子2aの底面を同一レベ
ルに揃えて位置させるという電極厚みを所定の許容範囲
内に収める為の前提条件を容易に達成する事ができる。Next, after drying and curing the adhesive 2b almost completely,
As shown in the figure, the dielectric adhesive 2b- is again thickly coated (overcoated) on the electrode particles 2a and adhesive 2b in the same manner as the previous time. In this case, if the same adhesive as the previous one is used, the two will surely adhere to each other and the electrode particles 2a will be more firmly fixed in contact with the surface of the dielectric layer 4, which is advantageous in terms of durability. be. However, particles 2 adhere to each other
As long as a can be reliably fixed, combinations of dielectric adhesives made of different materials are also possible. In this way, by applying the adhesive in two steps with a drying process in between, re-melting of the previously applied adhesive 2b is avoided, so each electrode particle 2a is not suspended and the dielectric N4 surface is The particles 2a can be firmly fixed in a submerged state, and the prerequisite for keeping the electrode thickness within a predetermined tolerance range, which is to arrange the bottom surfaces of each particle 2a at the same level, can be easily achieved.
接着剤の厚塗りが終了したらこれを乾燥硬化させる。こ
の場合、第13図に示す如く、M電層形成時と同様にワ
ークWをシーズヒータ6に外挿し水平に支持して回転さ
せると共に加熱しつつ乾燥させれば、厚塗りした接着剤
2b=が垂れる事なく誘電層4上に積層される接着剤2
b、電極粒子2a及び厚塗り接着剤2b−を合せた電極
層2−(各粒子2aの一部が表面に露出される前の状態
)の層厚t2−が均一となる。この様にして、例えば層
厚t2−が150 pm程度の電極層2−が形成される
。After applying a thick coat of adhesive, let it dry and harden. In this case, as shown in FIG. 13, if the workpiece W is inserted into the sheathed heater 6 and horizontally supported and rotated as well as heated and dried as in the case of forming the M electric layer, the thickly applied adhesive 2b= The adhesive 2 is laminated on the dielectric layer 4 without dripping.
b. The layer thickness t2- of the electrode layer 2- (a state before a part of each particle 2a is exposed to the surface), which is a combination of the electrode particles 2a and the thickly coated adhesive 2b-, becomes uniform. In this way, for example, the electrode layer 2- with a layer thickness t2- of about 150 pm is formed.
而して、この後、第14図に示される如く、電極層2′
の表面に外径加工を施して表面を円滑化すると共に各電
極粒子2aの一部を表面に露出させ、電極層2に仕上げ
る。ところで、本発明方法に於いては、誘電層4表面に
各電極粒子2aを当接させた状態で固定しである為仕上
げた後の電極層2の層厚t2と電極厚みt2Aが等しい
。従って、電極層2の層厚℃2を電極厚みt2Aの許容
範囲である52乃至62μm内に収めれば、電極粒子2
aの露出面積率ARが45%以上を確保され且つ粒子2
aが12離し難い所望の電極層2を得ることができる。Then, as shown in FIG. 14, the electrode layer 2'
The surface of the electrode layer 2 is finished by processing the outer diameter of the electrode layer 2 to make the surface smooth and to expose a portion of each electrode particle 2a to the surface. By the way, in the method of the present invention, since each electrode particle 2a is fixed in contact with the surface of the dielectric layer 4, the layer thickness t2 of the finished electrode layer 2 is equal to the electrode thickness t2A. Therefore, if the layer thickness °C2 of the electrode layer 2 is kept within the allowable range of the electrode thickness t2A of 52 to 62 μm, the electrode particles 2
The exposed area ratio AR of a is ensured to be 45% or more, and the particle 2
A desired electrode layer 2 in which a is difficult to separate from 12 can be obtained.
この為、本発明方法に於いては、本外径加工工程を、ワ
ークWの外周面S(電極層2′表面)を基準とする表面
加工法により実施する。Therefore, in the method of the present invention, the main outer diameter machining step is carried out by a surface machining method using the outer circumferential surface S of the workpiece W (the surface of the electrode layer 2') as a reference.
本例に於いては、第15(a)図に示す如く、支持体1
0aに軸10bを介してこの周りに回転自在に支承され
たバー10cの先端に表面加工工具としての砥石10d
が設けられた研削装置10を使用する。砥石10dは、
第15(b)図に示される如く、椀状に形成され、これ
を逆転させた状態でワークWの回転軸Cwに垂直な軸C
eを中心として回転させ、その側部端面10dlを所定
の速度で回転軸Cwを中心として回転されるワークWの
周表面に当接させて研削する。砥石10dの回転軸CB
の他端はベルト10eを介して駆動モータ10fに連続
されている。又、バー10cの他端には重錘10oが付
設されると共にバー100の長手方向に沿って移動自在
に調整用重錘10hが設けられており、調整用型&11
0hを適宜移動することにより、砥石10dをワークW
表面に当接させる圧力を調整することができる。更に、
砥石10dをワークWの軸方向に沿って移動させる為に
、研削装置10全体がワークWの軸方向に平行に移動可
能に構成されている。そして、第15 (c )図に示
される如く、支持体10aを旋盤の刃物台(不図示)に
取付け、ワークWを旋盤の主軸Aにセットして長手軸を
中心として回転させると共にこの周表面に砥石10dを
回転軸CBを中心として回転させて押し当てつつ刃物台
と一体に矢印の長手軸方向に移動させ、全周面を均一に
研削する。In this example, as shown in FIG. 15(a), the support 1
A grindstone 10d as a surface processing tool is attached to the tip of a bar 10c rotatably supported on the shaft 10b via a shaft 10b.
A grinding device 10 is used. The whetstone 10d is
As shown in FIG. 15(b), it is formed into a bowl shape, and when it is reversed, it has an axis C perpendicular to the rotation axis Cw of the workpiece W.
e, and the side end surface 10dl is brought into contact with the circumferential surface of the workpiece W, which is rotated at a predetermined speed and centered around the rotation axis Cw, for grinding. Rotation axis CB of grindstone 10d
The other end is connected to a drive motor 10f via a belt 10e. Further, a weight 10o is attached to the other end of the bar 10c, and an adjustment weight 10h is provided so as to be movable along the longitudinal direction of the bar 100.
By moving 0h appropriately, the grindstone 10d is moved to the workpiece W.
The pressure applied to the surface can be adjusted. Furthermore,
In order to move the grindstone 10d along the axial direction of the workpiece W, the entire grinding device 10 is configured to be movable in parallel to the axial direction of the workpiece W. Then, as shown in FIG. 15(c), the support 10a is attached to the tool post (not shown) of the lathe, and the workpiece W is set on the main shaft A of the lathe and rotated about the longitudinal axis, and the circumferential surface The grindstone 10d is rotated around the rotation axis CB and moved together with the tool rest in the longitudinal axis direction of the arrow while pressing against it, thereby uniformly grinding the entire circumferential surface.
かくの如くして研削加工を実施すれば、主軸△の支持具
合で決まるワークWの加工軸の位置に拘わらず、安定し
て第16 (a )図、 116 (b )図に示す如
き所望の52乃至62IImの層厚し、を有した電極層
2が形成される。即ち、第17(a)図、第17(b)
図に示す如く、旋盤の主軸がワークWを支持する支持軸
CAがワークWの中心軸Cw (本例の場合は厳密には
誘電層4の外径加工時の加工軸)からΔdだけ偏心して
いると、支持軸OAを中心として回転されるワークWの
砥石10dと接する外周面レベルHの変動幅は2倍の2
・Δdとなる。然るに、回転可能に支承されたバー10
0がこの変動に応じて回転し、第17 (a )図に示
した砥石10dに対する外周面レベルHが最低の場合も
、第17(11)図に示した外周面レベルHが最高の場
合も、砥石10dのワークWの外周面に接する圧力は略
一定となる。従って、第14図に於いて、ワークWの初
期の電極層2′表面S(研削する前の表面)を基準とし
てこれから研削される分の厚みt2Rが全周面に亘って
均一化される。本例では、電極層2−を層厚t2″が1
50μmで略均−となる様に形成しであるので、全周面
に亘って研削厚みt2Rが88乃至98μmとなる様に
研削加工すれば良い。この場合、第18図に示す如く誘
電層4形成時に於ける外径加工の加工軸C4が支持体1
の中心軸COからずれた為誘電層4の層厚が不均一とな
っても、本研削加工の精度は影響されず層厚t2が均一
な電極層2を安定的に高精度で形成することができる。If the grinding process is carried out in this way, the desired grinding process as shown in FIGS. An electrode layer 2 having a layer thickness of 52 to 62 IIm is formed. That is, FIG. 17(a), FIG. 17(b)
As shown in the figure, the support axis CA on which the main axis of the lathe supports the workpiece W is eccentric by Δd from the central axis Cw of the workpiece W (in this example, strictly speaking, the machining axis when machining the outer diameter of the dielectric layer 4). Then, the fluctuation range of the level H of the outer circumferential surface of the workpiece W rotated around the support shaft OA in contact with the grinding wheel 10d is twice as large as 2.
・It becomes Δd. However, the rotatably supported bar 10
0 rotates according to this variation, and whether the outer peripheral surface level H with respect to the grinding wheel 10d shown in FIG. 17(a) is the lowest, or the outer peripheral surface level H shown in FIG. 17(11) is the highest. , the pressure of the grindstone 10d in contact with the outer circumferential surface of the workpiece W is approximately constant. Therefore, in FIG. 14, the thickness t2R of the portion to be ground is made uniform over the entire circumferential surface, with the initial surface S of the electrode layer 2' of the workpiece W (the surface before grinding) being used as a reference. In this example, the electrode layer 2- has a layer thickness t2'' of 1
Since it is formed to have a substantially uniform thickness of 50 μm, the grinding process may be performed so that the grinding thickness t2R is 88 to 98 μm over the entire circumferential surface. In this case, as shown in FIG. 18, the machining axis C4 of the outer diameter machining when forming the dielectric layer 4 is
Even if the layer thickness of the dielectric layer 4 becomes uneven due to deviation from the central axis CO of Can be done.
又、砥石10dの加工面(端面10d1)とワークW周
面とが当接する部分の面積が小さく研削に供した加工面
が短時間でワーク周面から離隔する為、研削クズが速や
かに加工部から排出され砥石10dの加工面の目詰りが
防止される。従って、加工面の目詰りによるワークW周
面のキズの発生が解消される。In addition, since the area where the processed surface (end surface 10d1) of the grinding wheel 10d and the circumferential surface of the workpiece W come into contact is small, the processed surface used for grinding separates from the circumferential surface of the workpiece in a short period of time, so that the grinding debris is quickly transferred to the processed part. This prevents clogging of the processing surface of the grindstone 10d. Therefore, the occurrence of scratches on the circumferential surface of the workpiece W due to clogging of the machined surface is eliminated.
上述の如く外周面を基準として電極層表面の外径加工を
施すことにより、第16(a)図、第16(11)図に
示す如く層厚t2、即ち電極厚みt2Aが52乃至62
pmの許容範囲内に確実に収められた電極層2が全周面
に亘って均一に形成される。この後、表面の研摩材等の
汚れを洗浄すれば、最終的な製品としての現像剤担持体
11が完成する。By processing the outer diameter of the electrode layer surface using the outer peripheral surface as a reference as described above, the layer thickness t2, that is, the electrode thickness t2A, is 52 to 62 mm as shown in FIGS. 16(a) and 16(11).
The electrode layer 2 whose pm is reliably kept within the permissible range is uniformly formed over the entire circumferential surface. Thereafter, by cleaning the surface of the dirt from the abrasive material, etc., the developer carrier 11 as a final product is completed.
尚、上記実施例に於いては、接着剤の被着工程を2工程
に分割したが、これは必要に応じて1工程又は3工程以
上に分割しても良い。又、誘電層4の材料と接着剤2b
とを同−又は同種類の誘電性材料とすることも可能であ
る。更に、誘電層4の材料としては、熱硬化性樹脂に限
らず熱可塑性の例えばポリイミドやABS等の樹脂も使
用可能である。In the above embodiment, the process of applying the adhesive is divided into two processes, but it may be divided into one process or three or more processes as necessary. In addition, the material of the dielectric layer 4 and the adhesive 2b
It is also possible to use the same or the same type of dielectric material. Furthermore, the material for the dielectric layer 4 is not limited to thermosetting resins, but also thermoplastic resins such as polyimide and ABS can be used.
効 果
以上詳述した如く、本発明によれば、電極厚みを決定す
る電極層を仕上げる表面加工を電極層表面基準で実施す
ることにより、緻密さが要求される電極層形成時に於け
る加工軸の設定が不要となる。従って、所望の電極厚み
を有し、第1図に示される如く好適な現像特性を安定的
に発揮可能な現像剤担持体をより短い工数で安価に製造
できる。Effects As detailed above, according to the present invention, the surface processing for finishing the electrode layer, which determines the electrode thickness, is performed based on the surface of the electrode layer, thereby improving the processing axis when forming the electrode layer, which requires precision. settings are not required. Therefore, a developer carrier having a desired electrode thickness and capable of stably exhibiting suitable development characteristics as shown in FIG. 1 can be manufactured with a shorter number of man-hours and at a lower cost.
又、表面加工工具を加工対象物の回転軸に垂直な軸を中
心として回転させつつ加工対象物局面に当接させて加工
することにより、加工クズを円滑に排出しつつ加工する
ことができる。従って、加工工具として砥石を用いる場
合は、その加工面の目詰りが防止され、キズのない滑か
な周面の現像剤担持体を安定して製造することができる
。尚、本発明は上記の特定の実施例に限定されるべきも
のではなく、本発明の技術的範囲に於いて種々の変形が
可能であることは勿論である。例えば、接着剤を被着さ
せる場合に他の浸漬成形法(ディップ成形法)等による
ことも可能であり、又、電極粒子を付着させる工程は接
着剤が被着されたワークを電極粒子が敷き詰められた粒
子床上をローリングさせることによっても実施可能であ
る。更に、誘電層4を形成する表面加工も電極層2の表
面加工と同様の外表面基準の研削加工法により実施して
も良い。Further, by rotating the surface processing tool around an axis perpendicular to the rotation axis of the workpiece and bringing it into contact with the surface of the workpiece, processing can be performed while smoothly discharging machining debris. Therefore, when a grindstone is used as a processing tool, clogging of the processing surface thereof is prevented, and a developer carrier having a smooth peripheral surface without scratches can be stably manufactured. It should be noted that the present invention should not be limited to the specific embodiments described above, and it goes without saying that various modifications can be made within the technical scope of the present invention. For example, when applying adhesive, it is also possible to use other immersion molding methods (dip molding), and in the process of applying electrode particles, the workpiece coated with adhesive is covered with electrode particles. It can also be carried out by rolling over a bed of particles. Furthermore, the surface processing for forming the dielectric layer 4 may also be carried out by the same method of grinding based on the outer surface as the surface processing of the electrode layer 2.
第1図は好適な現像特性を示したグラフ図、第2図は従
来の現像剤担持体を示した模式的断面図、第3図は電極
厚みt2Aと露出面積率ARとの関係を示したグラフ図
、第4図は従来の製造方法を示した説明図、第5図は本
発明の1実施例に於ける誘電層吹付は工程を示した斜視
図、第6図、第7図は夫々同じく誘電体塗Ill 4−
と誘電層4の形成態様を示した各模式的断面図、第8図
、第9図は夫々同じく接着剤2b被着工程とその形成量
を示した各模式的断面図、第10図、第11図は夫々同
じく電極粒子付着工程とその形成量を示した各模式的断
面図、第12図は同じく接着剤厚塗工程を示した模式的
断面図、第13図は同じく接着剤乾燥工程を示した模式
的断面図、第14図は同じく電極層形成工程を示した模
式的断面図、第15(a)図乃至第15(c)図は夫々
研削加工による電極層表面加工工程を示した各説明図、
第16(a)図、第16(b)図は夫々同じく完成した
現像剤担持体11を示した模式的側断面図と正断面図、
第17 (a )図、第17 <11 )図は夫々同じ
く研削加工法による動作を示した各説明図、第18図は
同じく完成した現像剤担持体の変形例を示した模式的側
断面図である。
(符号の説明)
1: 導電性支持体
2′二N極層(仕上前)
2: 電極層(仕上後)
2a: 電極粒子
4: 誘電層
10: 研削装置
特許出願人 株式会社 リ コ −
第1図
と0
第5図
第6図
第7図
第10図
第11図
第12図Fig. 1 is a graph showing suitable development characteristics, Fig. 2 is a schematic cross-sectional view showing a conventional developer carrier, and Fig. 3 shows the relationship between electrode thickness t2A and exposed area ratio AR. Graph diagram, FIG. 4 is an explanatory diagram showing the conventional manufacturing method, FIG. 5 is a perspective view showing the dielectric layer spraying process in one embodiment of the present invention, and FIGS. 6 and 7 are respectively Also dielectric coating Ill 4-
FIGS. 8 and 9 are schematic cross-sectional views showing the formation mode of the dielectric layer 4, and FIGS. Fig. 11 is a schematic cross-sectional view showing the electrode particle adhesion process and the amount of the electrode particles formed, Fig. 12 is a schematic cross-sectional view showing the thick adhesive coating process, and Fig. 13 is a schematic cross-sectional view showing the adhesive drying process. The schematic cross-sectional view shown in FIG. 14 is a schematic cross-sectional view showing the electrode layer forming process, and FIGS. 15(a) to 15(c) respectively show the electrode layer surface processing process by grinding. Each explanatory diagram,
FIG. 16(a) and FIG. 16(b) are a schematic side sectional view and a front sectional view showing the same completed developer carrier 11, respectively;
Figures 17(a) and 17<11) are explanatory diagrams showing the operation by the same grinding method, and Figure 18 is a schematic side sectional view showing a modified example of the completed developer carrier. It is. (Explanation of symbols) 1: Conductive support 2' two N-pole layers (before finishing) 2: Electrode layer (after finishing) 2a: Electrode particles 4: Dielectric layer 10: Grinding device patent applicant Rico Co., Ltd. - Chapter Figures 1 and 0 Figure 5 Figure 6 Figure 7 Figure 10 Figure 11 Figure 12
Claims (1)
性粒子を夫々の一部を表面に露出させると共に相互に電
気的絶縁状態に保持してなる現像剤担持体の製造方法に
於いて、前記導電性支持体上に誘電体からなる誘電層を
形成する工程と、前記誘電層上に誘電性接着剤を被着さ
せると共に前記導電性粒子を前記誘電層表面に付着させ
て電極層を被着形成する電極層形成工程と、前記導電性
支持体の回転軸に垂直な軸を中心として回転される表面
加工工具の端面の一部を前記電極層表面に当接させて前
記電極層表面を基準として該表面に表面加工を施し各前
記導電性粒子の一部を表面に露出させる表面加工工程と
を有することを特徴とする現像剤担持体の製造方法。 2、上記第1項に於いて、前記表面加工工具は砥石であ
り、該砥石を回転させつつ前記導電性支持体の回転軸方
向に治って移動させることを特徴とする現像剤担持体の
製造方法。[Scope of Claims] 1. A developer supported by a cylindrical conductive support, in which a number of conductive particles as electrodes are partially exposed on the surface and held in an electrically insulated state from each other. The method for manufacturing a body includes the steps of: forming a dielectric layer made of a dielectric material on the conductive support; depositing a dielectric adhesive on the dielectric layer; and applying the conductive particles to the surface of the dielectric layer. an electrode layer forming step in which an electrode layer is deposited on the conductive support; and a part of the end surface of a surface processing tool rotated about an axis perpendicular to the rotation axis of the conductive support is brought into contact with the surface of the electrode layer. A method for manufacturing a developer carrier, comprising the step of surface processing the surface of the electrode layer in contact with the surface of the electrode layer to expose a portion of each of the conductive particles on the surface. 2. Manufacturing a developer carrier according to item 1 above, wherein the surface processing tool is a grindstone, and the grindstone is rotated and moved in the direction of the rotation axis of the conductive support. Method.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58233488A JPH0656521B2 (en) | 1983-12-13 | 1983-12-13 | Method for manufacturing developer carrier |
US06/654,257 US4707382A (en) | 1983-09-28 | 1984-09-25 | Developer carrier and a method for manufacturing the same |
GB08424272A GB2150045B (en) | 1983-09-28 | 1984-09-26 | Developer carrier and a method for manufacturing the same |
DE19843435731 DE3435731A1 (en) | 1983-09-28 | 1984-09-28 | DEVELOPER CARRIER AND METHOD FOR PRODUCING A DEVELOPER CARRIER |
FR8415010A FR2552564B1 (en) | 1983-09-28 | 1984-09-28 | DEVELOPER SUPPORT FOR ELECTROPHOTOGRAPHIC MACHINE AND MANUFACTURING METHOD THEREOF |
US07/098,392 US4860417A (en) | 1983-09-28 | 1987-09-18 | Developer carrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58233488A JPH0656521B2 (en) | 1983-12-13 | 1983-12-13 | Method for manufacturing developer carrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60125853A true JPS60125853A (en) | 1985-07-05 |
JPH0656521B2 JPH0656521B2 (en) | 1994-07-27 |
Family
ID=16955791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58233488A Expired - Lifetime JPH0656521B2 (en) | 1983-09-28 | 1983-12-13 | Method for manufacturing developer carrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0656521B2 (en) |
-
1983
- 1983-12-13 JP JP58233488A patent/JPH0656521B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0656521B2 (en) | 1994-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4425382A (en) | Developer carrier | |
US4860417A (en) | Developer carrier | |
WO2004079455A1 (en) | Basic material for electrophotographic photosensitive body, process for producing the same and electrophotographic photosensitive body employing it | |
US4587699A (en) | Elastic developer carrier | |
JPS60125853A (en) | Production of developer carrying body | |
JP2001074039A (en) | Roller, developing roller and electrophotograp printing device | |
JP3143574B2 (en) | Developer regulating member and developing device | |
JPH10314658A (en) | Powder coating method and armature core manufacturing method | |
JPS60136775A (en) | Developer carrying body and its manufacture | |
JPS59189374A (en) | Developing method | |
JPS6078460A (en) | Manufacture of developer carrier | |
JPH06258855A (en) | Preparation of photosensitive image formation member | |
JPH0568695B2 (en) | ||
JP2000141225A (en) | Working method for surface of work piece | |
JPS6080859A (en) | Developer carrying body and its production | |
JPH0568696B2 (en) | ||
JPS6070457A (en) | Production of developer carrying body | |
JPS6079367A (en) | Developer carrier and its manufacture | |
JPS6080858A (en) | Production of developer carrying body | |
JP2000056558A (en) | Manufacture of developing sleeve | |
JP2004287419A (en) | Electrophotographic photoreceptor substrate, method of manufacturing the substrate, electrophotographic photoreceptor using the substrate, electrophotographic photoreceptor cartridge and image forming apparatus using the electrophotographic photoreceptor | |
JPH08314159A (en) | Electrophotographic organic photoreceptor and method for producing the same | |
JP2001287845A (en) | Surface coating layer forming method for sheet feed roller and sheet feed roller | |
JPS6070455A (en) | Production of developer carrying body | |
JPS59198461A (en) | Manufacture of cylindrical electrophotographic sensitive body |