[go: up one dir, main page]

JPS60124943A - Formation of silicon oxide film - Google Patents

Formation of silicon oxide film

Info

Publication number
JPS60124943A
JPS60124943A JP58232755A JP23275583A JPS60124943A JP S60124943 A JPS60124943 A JP S60124943A JP 58232755 A JP58232755 A JP 58232755A JP 23275583 A JP23275583 A JP 23275583A JP S60124943 A JPS60124943 A JP S60124943A
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide film
film
formation
silicone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58232755A
Other languages
Japanese (ja)
Inventor
Kota Nishii
耕太 西井
Yasuhiro Yoneda
泰博 米田
Masashi Miyagawa
昌士 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58232755A priority Critical patent/JPS60124943A/en
Publication of JPS60124943A publication Critical patent/JPS60124943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Silicon Polymers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 イ)発明の技術分野 本発明の層間絶縁膜用の酸化珪素膜形成方法に関し、更
に詳しくは特定のシリコーン樹脂溶液を用いた、半導体
装置の層間絶縁用酸化珪素膜の形成方法に関する。
Detailed Description of the Invention A) Technical Field of the Invention The present invention relates to a method for forming a silicon oxide film for an interlayer insulation film, and more specifically, a method for forming a silicon oxide film for an interlayer insulation film of a semiconductor device using a specific silicone resin solution. Regarding the forming method.

口)技術の背景 LSIの素子間分離や、 LSI、バブルメモリ等微細
パターンを有する半導体装置の層間絶縁は、■シリコン
基板の熱酸化による酸化珪素膜、■シラン系がスを用い
た気相成長による二酸化珪素系絶縁材料、又は■ポリイ
ミド、シリコーン樹脂など有機系絶縁材料などを用いて
行なわれている。しかるに、いずれの材料を用いても微
細化、信頼性等に一長一短が存する。すなわち、LSI
の素子間分離において、熱酸化の方法が、微細化の点か
ら限界に達しつつある。一方、層間絶縁では平坦化機能
と耐熱性と信頼性(すなわち、密着性、耐電食性および
厚膜形成性など)の全てについて満足できる材料が存し
ない。
(1) Background of the technology The isolation between elements of LSI and the interlayer insulation of semiconductor devices with fine patterns such as LSI and bubble memory are achieved by: ■silicon oxide film formed by thermal oxidation of a silicon substrate, and ■vapor phase growth using silane-based gas. This is done using silicon dioxide-based insulating materials such as (2) or organic insulating materials such as polyimide and silicone resin. However, no matter which material is used, there are advantages and disadvantages in terms of miniaturization, reliability, etc. That is, LSI
In isolation between devices, thermal oxidation methods are reaching their limits in terms of miniaturization. On the other hand, for interlayer insulation, there is no material that satisfies all of the flattening function, heat resistance, and reliability (ie, adhesion, electrolytic corrosion resistance, thick film formability, etc.).

7つ 従来技術と問題点 上記月料の内、シリコーン樹脂は平坦化機能及び耐熱性
の点で優れており、かがるシリコーン樹脂としてポリノ
アルコキシシラy RO−E−(RO)2s to+、
R(式中、Rは一価の炭化水素、例えばメチル基、エチ
ル基、又は水素である)を用い塗布し次いで熱分解し5
i02にする方法が知られている。しかるにこのポリソ
アルコキシシランを塗布後、熱分解すると、アルコキシ
基が飛散する際、体積減少に伴ない塗膜に歪とピンホー
ルを残すので、0.2〜0.5μ?n以上の膜厚に塗布
した場合、塗膜にクラックが入ってし貰う。このような
塗膜をデバイスを層間絶縁膜として用いた場合、平坦化
機能と信頼性に好ましくない影響を与える。また、0.
20μm以下の膜厚に塗布した場合、クラックは発生し
ないが′電食不良の原因となる。
7. Prior art and problems Among the above materials, silicone resin is excellent in terms of flattening function and heat resistance, and polynoalkoxysilicone resin RO-E-(RO)2s to+,
R (wherein R is a monovalent hydrocarbon, such as methyl, ethyl, or hydrogen) and then pyrolyzed.
There is a known method to set the value to i02. However, when this polysoalkoxysilane is thermally decomposed after being applied, when the alkoxy groups scatter, it leaves distortions and pinholes in the coating film as the volume decreases, resulting in 0.2 to 0.5μ? If it is applied to a film thickness greater than n, the film will crack. When such a coating film is used as an interlayer insulating film in a device, it has an unfavorable effect on the planarization function and reliability. Also, 0.
When applied to a film thickness of 20 μm or less, no cracks will occur, but it will cause electrolytic corrosion defects.

二)発明の目的および構成 本発明はかかる従来の問題点を解消し、平坦化fl&能
、耐熱性に加えて信頼性のある優れた絶縁膜を提供する
ことをその目的とするものでおり1半ため、次式I: (式中、R1、R,、およびR3は独立に水素又はR1
〜4アルキルを表わす) で表わされるシリコン樹脂の浴液を塗布し、カ[」熱処
理することを*aとする。
2) Object and Structure of the Invention The object of the present invention is to solve such conventional problems and provide an excellent insulating film that has excellent planarization ability, heat resistance, and reliability. Therefore, the following formula I: (wherein R1, R, and R3 are independently hydrogen or R1
*a means applying a bath liquid of a silicone resin represented by ~4 alkyl) and heat-treating it.

すなわち、本発明は熱処理時に飛散する原子又は原子団
が極めて小さいシリコーン樹脂を層間絶縁膜用の材料に
用いた場合、飛散の酸の体積減少が小であるので熱処理
後、平坦化機能、耐熱性に優れた絶縁膜を得ることがで
きるとの知見のもとに完成されたものである。かかる知
見のもとに本発明においては、珪素原子に水素原子が結
合したポリシロキサン型化合物を採用したのでおる。
In other words, in the present invention, when a silicone resin with very small atoms or atomic groups scattered during heat treatment is used as a material for an interlayer insulating film, the volume reduction of the scattered acid is small. It was completed based on the knowledge that it was possible to obtain an insulating film with excellent properties. Based on this knowledge, the present invention employs a polysiloxane type compound in which a hydrogen atom is bonded to a silicon atom.

本発明の特徴を更に説明するならば次の如くである。前
記式Iから成るシリコーン樹脂を用いて5IOx膜を形
成すれば、熱分解時に水素は容易に分解されるので5I
Ox膜中の不純物量は少なく、ピンホールも微細であり
、かりSiOの酸化による体積増加が歪を緩和し、ピン
ホールを埋めるので最終的に歪が小さくかつ緻密で純粋
なSIO(x=1〜2)膜が得られるということにある
。末端が水酸基の1つでは不安定であるが、末端をシリ
ル化すると安定であり、これによって本発明は有効なも
のとなっている。本発明において、前記式I中R1+ 
R2r R3が全て水素である化合物が好ましいが、そ
の一部がメチルやエチル基であっても初期の効果は達成
できる。。
The features of the present invention will be further explained as follows. If a 5IOx film is formed using the silicone resin of formula I, hydrogen is easily decomposed during thermal decomposition, so 5I
The amount of impurities in the Ox film is small and the pinholes are minute, and the increase in volume due to oxidation of SiO alleviates the strain and fills the pinholes, resulting in a dense and pure SIO with small strain (x = 1 ~2) A film can be obtained. Although it is unstable when the terminal has one hydroxyl group, it becomes stable when the terminal is silylated, which makes the present invention effective. In the present invention, R1+ in the formula I
Compounds in which R2r and R3 are all hydrogen are preferred, but even if some of them are methyl or ethyl groups, the initial effect can be achieved. .

本発明で用いるシリコーン(θ(脂自体は公知である(
 ■11dustrial and Engineer
ing ChemistryVol 44 $2 P3
21〜(1952) )。しがしががるシリコーン樹脂
を半導体装置の層間絶縁用として使用する技術について
は未だ知られていない。このようなシリコーン樹脂は粉
末であり、例えば回転塗布で基板に塗布する場合などK
はトルエン等の有機溶剤に溶解して塗布する。回転塗布
する場合、膜厚調整は分子量、溶剤の種類、樹脂濃度、
回転数等によって行う。本発明で用いるシリコーン樹脂
は回転塗布、スグレなどの方法によるコーティングが可
能であるので、凹凸のある基板に塗布し、その表面を平
坦化する機能を有する。従って穴あけされたシリコン基
板に塗布し、約100℃で予備加熱後350℃以上で熱
処理して5IO2化し、穴部を埋め込む方式における半
導体装置の素子間分離に適している。又、微細配線を設
けた半導体装置あるいはパズルメモリなどの配線層間絶
縁材料として好まし使用できる。
The silicone used in the present invention (θ (the fat itself is known (
■11 Industrial and Engineer
ing Chemistry Vol 44 $2 P3
21-(1952)). There is still no known technology for using sticky silicone resin for interlayer insulation of semiconductor devices. Such silicone resin is a powder, and when applied to a substrate by spin coating, for example, K
is applied by dissolving it in an organic solvent such as toluene. When using spin coating, the film thickness can be adjusted by adjusting the molecular weight, type of solvent, resin concentration,
This is done depending on the number of rotations, etc. Since the silicone resin used in the present invention can be coated by a method such as spin coating or smearing, it has the function of coating an uneven substrate and flattening the surface. Therefore, it is suitable for isolation between elements of a semiconductor device in which the method is applied to a silicon substrate with holes, preheated at about 100° C., and then heat-treated at 350° C. or higher to form 5IO2 and fill the holes. Furthermore, it can be preferably used as an interlayer insulation material for wiring in semiconductor devices provided with fine wiring, puzzle memories, and the like.

以下、更に本発明を実施例により説明する。The present invention will be further explained below with reference to Examples.

ホ)発明の実施例 1、実施FJ1(ポリハイドロシルセスキオキサンの製
造)還流管、撹拌棒、温度計およびロートを備えた四ツ
目フラスコにトリエトキシシラン(沸点131〜132
℃)16.4 & (0,1モル)、メチルインズチル
ケトン(MIBK) 200 Fを装入し、氷水で冷却
しつつ水6gを滴下した。滴下後、水浴35℃に加熱し
90分間攪拌を続けた。次にロートを取り、ドライアイ
スで冷却したエタノールを入れたデユワ−ビンをトラッ
プとする減圧系に接続した5 0 mmHgに減圧した
まま13.5時間重合させた。
e) Example 1 of the invention, implementation FJ1 (Production of polyhydrosilsesquioxane) Triethoxysilane (boiling point 131-132
℃) 16.4 & (0.1 mol), methyl induzyl ketone (MIBK) 200 F was charged, and 6 g of water was added dropwise while cooling with ice water. After the dropwise addition, the mixture was heated in a water bath at 35° C. and stirring was continued for 90 minutes. Next, the funnel was taken out, and the mixture was polymerized for 13.5 hours under reduced pressure of 50 mmHg connected to a reduced pressure system using a dewar bottle containing ethanol cooled with dry ice as a trap.

その後、リークさせ1気圧に戻した。重合液に30gの
ジメチルクロルシランを加えてシリル化した。仄いて水
を50g滴下し過剰のシリル化剤を分解させ、はらに水
洗を行った後、1.5mmHρ栄件でm液が粘稠になる
まで減圧濃縮した。次いでアセトニトリルおよびトルエ
ンを用いて精製し、粉末状のポリハイドロシルセスキオ
キサン(分子量95000)6.0gを得た。
After that, the pressure was returned to 1 atm by leaking it. 30 g of dimethylchlorosilane was added to the polymerization solution for silylation. Then, 50 g of water was added dropwise to decompose the excess silylating agent, and after thoroughly washing with water, the mixture was concentrated under reduced pressure at 1.5 mm Hp until the solution became viscous. The product was then purified using acetonitrile and toluene to obtain 6.0 g of powdered polyhydrosilsesquioxane (molecular weight 95,000).

実施例2 実施例1で得られたポリハイドロシルセスキオキサン5
gをトルエン9gに溶解し35重量%の樹脂液を作成し
た。次にシリコン基板内にバイポーラ素子を形成し、そ
の上に1層目のアルミニウム配線を行った。アルミ配線
の厚さは0.9μm1最小線間隔は2μmである。上記
樹脂液を300Orpm30秒の条件で回転塗布100
℃−C30分m]溶剤乾燥、および空気中450℃、6
0分1司の熱処理を行った。同一条件で平板上に塗布し
て?尋られる膜厚は1.0μmであったが、上記アルミ
自己線上では0.4μm1スペ一ス部では1.1μmで
あり、段差は9.2μmであった。次に1.08mのP
SGを公知ノ方法で形成しスルーホールのJi成、2J
−目のアルミ配線の形成、さらに1,3μmのPSG層
を形成し電極取出し用窓あけを行なってiZイ号?−ラ
素子装置を得た。この装置について空気中500℃1時
間の加熱試験、−65℃と150℃の10回の往復によ
る熱衝撃試験、85℃90SRH下での6v印加1oo
o時間の試験及びこれらの試験の組み合わせ試験を行っ
た。その結果、試験装置には何らの異常や不良も観察さ
れなかった。
Example 2 Polyhydrosilsesquioxane 5 obtained in Example 1
g was dissolved in 9 g of toluene to prepare a 35% by weight resin liquid. Next, a bipolar element was formed in the silicon substrate, and a first layer of aluminum wiring was formed thereon. The thickness of the aluminum wiring is 0.9 μm, and the minimum line spacing is 2 μm. Spin coat the above resin solution for 100 seconds at 300 rpm for 30 seconds.
°C-C 30 minutes m] Solvent drying and 450 °C in air, 6
Heat treatment was performed for 0 minutes and 1 hour. Apply it on a flat plate under the same conditions? The measured film thickness was 1.0 μm, but on the aluminum self-line, it was 1.1 μm in one 0.4 μm space, and the step difference was 9.2 μm. Next, 1.08m P
SG is formed by a known method to form a through hole, 2J.
- Formation of aluminum wiring, further formation of 1.3 μm PSG layer, and opening of window for electrode extraction. - An element device was obtained. Regarding this device, heating test in air at 500℃ for 1 hour, thermal shock test by reciprocating between -65℃ and 150℃ 10 times, 6V applied 1oo at 85℃ and 90SRH
o hour tests and combination tests of these tests were conducted. As a result, no abnormality or defect was observed in the test device.

尚、本例においては、450℃、60分1tJ1熱処理
を行ったが、350℃〜500℃の加熱1品度、30分
〜90分の加熱時間を適宜採用できる。
In this example, 1tJ1 heat treatment was performed at 450°C for 60 minutes, but heating time of 30 minutes to 90 minutes at 350°C to 500°C for 1 grade can be adopted as appropriate.

へ)発明の詳細 な説明したように、本発明は半導体装置のIPr間絶縁
用酸化珪素膜の材料eこ41ツノ・イト90シルセスキ
オキサンを用いるようにしたものである力)ら、平坦化
機能を持つ5tOx膜のコーティングにおいて、緻密で
かつ歪の少ない信中貞性の高い絶斧東膜を得ることが可
能となると同時にMJIをJi<塗布した場合でもクラ
ックの発生を伴わない効果を奏する。
f) As described in detail, the present invention uses silsesquioxane as the material of the silicon oxide film for inter-IPr insulation of semiconductor devices. In the coating of the 5tOx film, which has the function of play.

特許出願人 富士通株式会社 、特許出願代理人 弁理士 青 木 朗 弁理士 西 卸 和 之 弁理士 内 1)幸 男 弁理士 山 口 昭 之patent applicant Fujitsu Limited , patent application agent Patent Attorney Akira Aoki Patent attorney Kazuyuki Nishi Patent attorney 1) Yukio Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】 1、一般式: (式中、R1,R,、およびR3は独立に水素又はR1
〜4アルキルを表わす) で表わされるシリコン樹脂の溶液を塗布し、加熱処理す
ることを特徴とする、眉間絶縁膜用酸化珪素膜の形成方
法。 2、前記加熱処理を350℃以上で行う、特許請求の範
囲第1項記載の層間絶縁膜用酸化珪素膜の形成方法。
[Claims] 1. General formula: (wherein R1, R, and R3 are independently hydrogen or R1
A method for forming a silicon oxide film for an insulating film between the eyebrows, the method comprising applying a solution of a silicone resin represented by the following formula (representing ~4 alkyl) and heat-treating the solution. 2. The method for forming a silicon oxide film for an interlayer insulating film according to claim 1, wherein the heat treatment is performed at a temperature of 350° C. or higher.
JP58232755A 1983-12-12 1983-12-12 Formation of silicon oxide film Pending JPS60124943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58232755A JPS60124943A (en) 1983-12-12 1983-12-12 Formation of silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232755A JPS60124943A (en) 1983-12-12 1983-12-12 Formation of silicon oxide film

Publications (1)

Publication Number Publication Date
JPS60124943A true JPS60124943A (en) 1985-07-04

Family

ID=16944245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232755A Pending JPS60124943A (en) 1983-12-12 1983-12-12 Formation of silicon oxide film

Country Status (1)

Country Link
JP (1) JPS60124943A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230335A (en) * 1985-07-31 1987-02-09 Fujitsu Ltd Manufacture of semiconductor device
JPH01130535A (en) * 1987-11-17 1989-05-23 Tokyo Ohka Kogyo Co Ltd Method of forming silicone film
EP0610899A2 (en) * 1993-02-09 1994-08-17 Dow Corning Toray Silicone Company, Limited Methods for the formation of a silicon oxide film
US5370903A (en) * 1992-12-11 1994-12-06 Dow Corning Toray Silicon Co., Ltd. Method for the formation of a silicon oxide film
US5372842A (en) * 1992-12-14 1994-12-13 Dow Corning Toray Silicone Co., Ltd Method for the formation of a silicon oxide film
US5859162A (en) * 1995-03-10 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Silicone ladder polymer and process for producing the same
US6399733B1 (en) 2000-04-04 2002-06-04 Mitsubishi Denki Kabushiki Kaisha Process for preparing a highly pure silicone ladder polymer
US20140154441A1 (en) * 2011-07-29 2014-06-05 SiOx ApS Reactive Silicon Oxide Precursor Facilitated Anti-Corrosion Treatment
JP2016052979A (en) * 2014-09-04 2016-04-14 国立研究開発法人産業技術総合研究所 Method for joining ceramic member and aluminum member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230335A (en) * 1985-07-31 1987-02-09 Fujitsu Ltd Manufacture of semiconductor device
JPH01130535A (en) * 1987-11-17 1989-05-23 Tokyo Ohka Kogyo Co Ltd Method of forming silicone film
US5370903A (en) * 1992-12-11 1994-12-06 Dow Corning Toray Silicon Co., Ltd. Method for the formation of a silicon oxide film
US5372842A (en) * 1992-12-14 1994-12-13 Dow Corning Toray Silicone Co., Ltd Method for the formation of a silicon oxide film
EP0610899A2 (en) * 1993-02-09 1994-08-17 Dow Corning Toray Silicone Company, Limited Methods for the formation of a silicon oxide film
EP0610899A3 (en) * 1993-02-09 1996-05-15 Dow Corning Toray Silicone Method for forming a layer of silicon oxide.
US5859162A (en) * 1995-03-10 1999-01-12 Mitsubishi Denki Kabushiki Kaisha Silicone ladder polymer and process for producing the same
US6399733B1 (en) 2000-04-04 2002-06-04 Mitsubishi Denki Kabushiki Kaisha Process for preparing a highly pure silicone ladder polymer
US20140154441A1 (en) * 2011-07-29 2014-06-05 SiOx ApS Reactive Silicon Oxide Precursor Facilitated Anti-Corrosion Treatment
EP2736981A4 (en) * 2011-07-29 2015-03-25 SiOx ApS Reactive silicon oxide precursor facilitated anti-corrosion treatment
JP2016052979A (en) * 2014-09-04 2016-04-14 国立研究開発法人産業技術総合研究所 Method for joining ceramic member and aluminum member

Similar Documents

Publication Publication Date Title
JPS59178749A (en) wiring structure
EP0517475B1 (en) Process for coating a substrate with a silica precursor
US6806161B2 (en) Process for preparing insulating material having low dielectric constant
JPS63107122A (en) Method for flattening uneven substrate
JPH0922903A (en) Method for coating electronic substrate and coating composition
JPS589791B2 (en) Method for reducing porosity and surface roughness of ceramic substrates
JP2002231715A (en) Method of forming semiconductor interlayer insulating film
JPS5898367A (en) Silicone film forming composition and production thereof
JPH0627354B2 (en) Aluminum nitride-containing layer and method of forming multilayer including the same
US6149966A (en) Composition and process for forming electrically insulating thin films
JPS62230828A (en) Insulating film forming coating liquid for semiconductors
JPS60124943A (en) Formation of silicon oxide film
TW442546B (en) Method for producing low dielectric coatings from hydrogen silsequioxane resin
JPH06145599A (en) Coating composition
JPS6288327A (en) Cyclosilazane as a dielectric film in IC manufacturing technology
EP0994158B1 (en) Process for forming fired film using an organopolysiloxane composition
JP2001247819A (en) Organic resin composition capable of forming electrically insulating crosslinked thin film and method of forming electrically insulating crosslinked thin film
JPH11145130A (en) Electronic coat of low permittivity
JP3982073B2 (en) Low dielectric constant insulating film forming method
JP2002201416A (en) Coating liquid for forming semiconductor silica coating film, semiconductor silica coating film, and semiconductor device
JP2574403B2 (en) Organosilicon polymer, method for producing the same, and semiconductor device using the same
KR20010094928A (en) Electrically insulating thin-film-forming resin composition and method for forming thin film therefrom
JPS6366418B2 (en)
JPH0578939B2 (en)
JP2958466B2 (en) Method for manufacturing silicon oxide film