JP2574403B2 - Organosilicon polymer, method for producing the same, and semiconductor device using the same - Google Patents
Organosilicon polymer, method for producing the same, and semiconductor device using the sameInfo
- Publication number
- JP2574403B2 JP2574403B2 JP14354688A JP14354688A JP2574403B2 JP 2574403 B2 JP2574403 B2 JP 2574403B2 JP 14354688 A JP14354688 A JP 14354688A JP 14354688 A JP14354688 A JP 14354688A JP 2574403 B2 JP2574403 B2 JP 2574403B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- same
- organosilicon polymer
- semiconductor device
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920001558 organosilicon polymer Polymers 0.000 title claims description 29
- 239000004065 semiconductor Substances 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000010410 layer Substances 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000011229 interlayer Substances 0.000 claims description 12
- 125000003545 alkoxy group Chemical group 0.000 claims description 10
- 125000002947 alkylene group Chemical group 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 238000012643 polycondensation polymerization Methods 0.000 claims description 3
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 3
- 238000000034 method Methods 0.000 description 18
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
- 229920005989 resin Polymers 0.000 description 12
- 239000011347 resin Substances 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- XLLIQLLCWZCATF-UHFFFAOYSA-N 2-methoxyethyl acetate Chemical compound COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 150000003961 organosilicon compounds Chemical class 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 4
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 229940117955 isoamyl acetate Drugs 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- RDRJOHWRPPUUNI-UHFFFAOYSA-N 1-[dimethoxy(methyl)silyl]ethyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)C(C)[Si](C)(OC)OC RDRJOHWRPPUUNI-UHFFFAOYSA-N 0.000 description 1
- KFGSXJLKKLOVNP-UHFFFAOYSA-N 2-[dimethoxy(methyl)silyl]ethyl-dimethoxy-methylsilane Chemical compound CO[Si](C)(OC)CC[Si](C)(OC)OC KFGSXJLKKLOVNP-UHFFFAOYSA-N 0.000 description 1
- -1 Bis (methyldichlorosilyl) methane Bis (methyldimethoxysilyl) methane 1,2-bis (methyldichlorosilyl) ethane 1,2-bis (methyldichlorosilyl) ethane 1,1-bis (methyldichlorosilyl) ethane Chemical compound 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- VFURVLVRHAMJKG-UHFFFAOYSA-N dichloro-[2-[dichloro(methyl)silyl]ethyl]-methylsilane Chemical compound C[Si](Cl)(Cl)CC[Si](C)(Cl)Cl VFURVLVRHAMJKG-UHFFFAOYSA-N 0.000 description 1
- HNYRAGHKTXOSFE-UHFFFAOYSA-N dichloro-[[dichloro(methyl)silyl]methyl]-methylsilane Chemical compound C[Si](Cl)(Cl)C[Si](C)(Cl)Cl HNYRAGHKTXOSFE-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Landscapes
- Silicon Polymers (AREA)
- Formation Of Insulating Films (AREA)
Description
【発明の詳細な説明】 〔概 要〕 有機ケイ素重合体に関し、 半導体装置等の分野において有用な新規な有機ケイ素
重合体を提供することを目的とし、 次の一般式(I): 〔R1SiO2/2(R2)1/2〕n ……(1) (上式において、R1は、水素、ヒドロキシル基、低級ア
ルキル基又は低級アルコキシ基を表わし、R2はアルキレ
ン基を表わし、そしてnは10〜50,000の整数を表わす)
により表わされ、かつ5,000〜5,000,000の重量平均分子
量を有する有機ケイ素重合体によって構成する。DETAILED DESCRIPTION OF THE INVENTION [Summary] With respect to an organosilicon polymer, an object of the present invention is to provide a novel organosilicon polymer useful in the field of semiconductor devices and the like, and has the following general formula (I): [R 1 SiO 2/2 (R 2 ) 1/2 ] n (1) (in the above formula, R 1 represents hydrogen, a hydroxyl group, a lower alkyl group or a lower alkoxy group, R 2 represents an alkylene group, And n represents an integer of 10 to 50,000)
And comprising an organosilicon polymer having a weight average molecular weight of 5,000 to 5,000,000.
本発明は、新規な有機ケイ素重合体、該有機ケイ素重
合体の製造方法、及び該有機ケイ素重合体を層間絶縁膜
として使用した半導体装置に関する。本発明の有機ケイ
素重合体は、各種集積回路等の半導体装置の製造のうち
の多層配線形成工程において有利に使用することができ
る。すなわち、本発明の有機ケイ素重合体は、IC,LSI等
の集積密度の高い半導体装置の多層配線を形成するに際
して、下地段差を平坦化しつつ優れた絶縁性を有する膜
を形成し、よって、装置の信頼性を高めることができ
る。The present invention relates to a novel organosilicon polymer, a method for producing the organosilicon polymer, and a semiconductor device using the organosilicon polymer as an interlayer insulating film. The organosilicon polymer of the present invention can be advantageously used in a multilayer wiring forming step in the production of semiconductor devices such as various integrated circuits. That is, the organosilicon polymer of the present invention forms a film having excellent insulating properties while flattening the underlying steps when forming a multilayer wiring of a semiconductor device having a high integration density such as IC and LSI. Reliability can be improved.
半導体集積回路では、集積度が向上するとともに、配
線の容易さ、動作速度の向上を目的として配線を立体化
することが要求された、したがって、多層配線構造が開
発された。多層配線を形成する場合には、第一層配線を
施した後、絶縁膜を介して第二層配線を施し、順次この
工程を繰り返すことが一般的であった。ここで、層間絶
縁膜として用いる材料としては、従来、二酸化珪素、窒
化珪素、りんガラス(PSG)などの無機膜をシラン系ガ
ス用いたCVDの気相成長法により形成したSiOx系材料、
あるいはポリイミド、シリコーン樹脂などの高分子絶縁
材料、または、これらの積層体を用いれ行われている
が、配線パターンの微細化に伴い信頼性という点でより
特性の優れた材料が要求されてきた。2. Description of the Related Art In a semiconductor integrated circuit, a three-dimensional wiring has been required to improve the degree of integration and to facilitate the wiring and to improve the operation speed. Therefore, a multilayer wiring structure has been developed. In the case of forming a multi-layer wiring, it has been general that a first-layer wiring is provided, a second-layer wiring is provided via an insulating film, and this process is sequentially repeated. Here, as a material used as an interlayer insulating film, conventionally, an SiOx-based material formed by CVD of an inorganic film such as silicon dioxide, silicon nitride, and phosphorus glass (PSG) using a silane-based gas,
Alternatively, a polymer insulating material such as polyimide or silicone resin, or a laminate of these materials is used. However, as the wiring pattern becomes finer, a material having better characteristics in terms of reliability has been required.
多層配線を考える場合、第一配線を施した半導体基板
上は配線による凹凸を有するので、これを下地としてそ
の上に無機膜を形成すると層間絶縁膜の表面は下地の凹
凸をそのまま再現してしまう。このため、その上に形成
される上層配線の断線、絶縁不良等の原因となる。した
がって、凹凸を有する下地上に塗布したとき基板表面を
平坦になしうる層間絶縁材料の開発が望まれていた。When considering multilayer wiring, the semiconductor substrate on which the first wiring is provided has irregularities due to the wiring, so if this is used as a base and an inorganic film is formed thereon, the surface of the interlayer insulating film will reproduce the irregularities of the base as it is . This causes disconnection of the upper wiring formed thereon, insulation failure, and the like. Therefore, development of an interlayer insulating material capable of flattening the substrate surface when applied on a base having irregularities has been desired.
そこで、エッチバック法、バイアススパッタ法などの
絶縁膜製造プロセス上から平坦面を得る方法と、樹脂を
スピンコート法により成膜して平坦な絶縁膜を得る方法
が検討されている。これらの方法のなかでプロセス的に
簡単な樹脂塗布法は、樹脂を塗布した後に加熱効果させ
る必要があるが、従来から用いられているポリイミド、
シリコーン樹脂等の高分子材料は、400℃程度の温度で
酸化されたり熱分解したりして、膜の歪みによるクラッ
クの発生が見られるといる欠点を有している。そのた
め、硬化工程において、破損しない耐熱性樹脂の開発が
望まれていた。Therefore, a method of obtaining a flat surface from an insulating film manufacturing process such as an etch-back method and a bias sputtering method, and a method of obtaining a flat insulating film by forming a resin by spin coating have been studied. Among these methods, a resin application method that is simple in terms of process requires a heating effect after applying the resin, but conventionally used polyimide,
A polymer material such as a silicone resin has a defect that cracks due to film distortion are observed due to oxidation or thermal decomposition at a temperature of about 400 ° C. Therefore, development of a heat resistant resin which is not damaged in the curing step has been desired.
本発明者らは、先に、次の一般式: 〔R1SiO2/2(R2)1/2〕n (上式において、R1は、水素、ヒドロキシル基、低級ア
ルキル基又は低級アルコキシ基を表わし、R2はアリーレ
ン基を表わし、そしてnは10〜50,000の整数を表わす)
により表わされ、かつ10,000〜5,000,000の重量平均分
子量を有する有機ケイ素重合体が、多層構造をもった半
導体装置において層間絶縁膜として有用であるという知
見を得、特許出願した。この有機ケイ素重合体は、実
際、多層配線工程において生じる高段差を効果的に平坦
化することが可能であり、また、従来シリコーン樹脂に
みられていた高温でのクラックの発生もなかった。The present inventors have previously described the following general formula: [R 1 SiO 2/2 (R 2 ) 1/2 ] n (wherein R 1 is hydrogen, a hydroxyl group, a lower alkyl group or a lower alkoxy group) R 2 represents an arylene group and n represents an integer from 10 to 50,000)
And obtained a patent application by obtaining a finding that an organosilicon polymer having a weight average molecular weight of 10,000 to 5,000,000 is useful as an interlayer insulating film in a semiconductor device having a multilayer structure. The organosilicon polymer can effectively flatten a high step generated in a multilayer wiring process, and does not have a crack at a high temperature conventionally observed in a silicone resin.
本発明の第1の課題は、上記したような従来の技術の
欠点を解消することにかんがみて、半導体装置等の分野
において有用な、先に特許に出願した有機ケイ素重合体
と同等もしくはそれ以上の新規な有機ケイ素重合体を提
供することにある。A first object of the present invention is to solve the above-mentioned drawbacks of the prior art, and to be equal to or more than the organosilicon polymer previously applied for a patent, which is useful in the field of semiconductor devices and the like. To provide a novel organosilicon polymer.
本発明の第2の課題は、かかる新規な有機ケイ素重合
体を製造するための方法を提供することにある。A second object of the present invention is to provide a method for producing such a novel organosilicon polymer.
本発明の第3の課題は、かかる新規な有機ケイ素重合
体を使用した半導体装置を提供することにある。A third object of the present invention is to provide a semiconductor device using such a novel organosilicon polymer.
〔課題を解決するための手段) 上記した第1の課題は、本発明によれば、次の一般式
(1): 〔R1SiO2/2(R2)1/2〕n ……(1) (上式において、R1は、水素、ヒドロキシル基、例えば
メチル基、エチル基、n−プロピル基、i−プロピル基
等の低級アルキル基又は例えばメトキシ基、エトキシ
基、n−プロポキシ基、i−プロポキシ基等の低級アル
コキシ基を表わし、R2は例えばメチレン基、エチレン基
等のアルキレン基を表わし、そしてnは10〜50,000の整
数を表わす)により表わされ、かつ5,000〜5,000,000の
重量平均分子量を有する有機ケイ素重合体によって解決
することができる。式中のR1及びR2は、必要に応じて置
換されていてもよい。また、式中のO2/2及び(R2)1/2
は、それぞれ、当該有機ケイ素重合体の中心を構成する
Si原子1個に関して見た場合に、そのSi原子に対して、
2個のO1/2及び1個の(R2)1/2が結合していることを
意味する。[Means for Solving the Problems] According to the present invention, the above first problem is solved by the following general formula (1): [R 1 SiO 2/2 (R 2 ) 1/2 ] n. 1) (In the above formula, R 1 is hydrogen, a hydroxyl group, for example, a lower alkyl group such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, or a methoxy group, an ethoxy group, an n-propoxy group, represents a lower alkoxy group such as an i-propoxy group, R 2 represents an alkylene group such as a methylene group or an ethylene group, and n represents an integer of 10 to 50,000), and a weight of 5,000 to 5,000,000. The problem can be solved by an organosilicon polymer having an average molecular weight. R 1 and R 2 in the formula may be optionally substituted. In the formula, O 2/2 and (R 2 ) 1/2
Respectively constitute the center of the organosilicon polymer.
When looking at one Si atom, for that Si atom,
It means that two O 1/2 and one (R 2 ) 1/2 are bonded.
本発明による有機ケイ素重合体は、好ましくは、次の
構造式(I)又は(II)の重合体あるいはこれらの重合
体の混合物である。The organosilicon polymer according to the present invention is preferably a polymer of the following structural formula (I) or (II) or a mixture of these polymers.
(上式において、R1及びR2は同一もしくは異なっていて
もよく、前記定義に同じであり、そしてnは前記定義に
同じである)。 (Wherein R 1 and R 2 may be the same or different and are as defined above, and n is as defined above).
さらに、上記した第2の課題は、本発明によれば、前
記一般式(1)により表わされ、かつ5,000〜5,000,000
の重量平均分子量を有する有機ケイ素重合体を製造する
に当って、 次式(2)の有機ケイ素化合物: (上式において、R1は同一もしくは異なっていてもよ
く、前記定義に同じであり、R2は前記定義に同じであ
り、そしてR3は、同一もしくは異なっていてもよく、例
えば塩素等のハロゲンを表わすかもしくは低級アルコキ
シ基を表わす)を水と反応させて加水分解し、引き続い
て、得られた反応生成物を脱水縮重合させて前記一般式
(1)の有機ケイ素重合体を製造することを特徴とす
る、有機ケイ素重合体の製法によって解決することがで
きる。Further, according to the present invention, the second object described above is represented by the general formula (1), and is 5,000 to 5,000,000.
In producing an organosilicon polymer having a weight average molecular weight of the following, an organosilicon compound of the following formula (2): (Wherein R 1 may be the same or different and are as defined above, R 2 is as defined above, and R 3 may be the same or different, such as chlorine (Representing a halogen or a lower alkoxy group) with water to hydrolyze, followed by dehydration-condensation polymerization of the resulting reaction product to produce the organosilicon polymer of the general formula (1). The problem can be solved by a method for producing an organosilicon polymer.
本発明方法の実施において、前記一般式(2)の化合
物の加水分解は、好ましくは、急激な反応の発生を抑え
るために、低温でもって行われる。また、脱水縮重合に
より前記一般式(1)の重合体を得た後、さらに重合せ
しめて重量平均分子量を5,000〜5,000,000となすけれど
も、必要に応じて、反応系内より水を水酸基どうしの縮
合の結果として除去して分子量を高めてもよい。In the practice of the method of the present invention, the hydrolysis of the compound of the general formula (2) is preferably carried out at a low temperature in order to suppress the occurrence of a sudden reaction. Further, after the polymer of the general formula (1) is obtained by dehydration-condensation polymerization, it is further polymerized to have a weight average molecular weight of 5,000 to 5,000,000, but if necessary, water is condensed between hydroxyl groups from the reaction system. May be removed to increase the molecular weight.
本発明方法の加水分解及び脱水縮重合は、例えば、次
のような反応式に従って進行する: 及び/又は (上式において、R1及びR2は同一もしくは異なっていて
もよく、前記定義に同じであり、そしてnは前記泥義に
同じである)。上記から理解されるように、一般式
(I)及び(II)の重合体は、それぞれ、単独で生成す
ることもあれば、混合物として、あるいはここでは示さ
ないけれども結合体として生成することもある。The hydrolysis and dehydration polycondensation of the process of the present invention proceed, for example, according to the following reaction formula: And / or (Wherein R 1 and R 2 may be the same or different, are as defined above, and n is as defined above). As will be appreciated from the above, the polymers of general formulas (I) and (II) may each be formed alone, as a mixture, or as a conjugate not shown here. .
本発明方法において出発原料として用いられる有機ケ
イ素化合物は、構造式(2): で示され、式中のR1は前記した通りにC1〜C3の1価アル
キル基などを表わし、互いに同一であっても異なってい
てもかまわない。R2はアルキレン基であればいずれであ
ってもよいが、C1〜C5の低級アルキレン基が好ましく、
特に、−CH2、−C2H4−が実用的である。R3は、好まし
くは、塩素、あるいはC1〜C3の1価アルコキシ基より選
ばれる基を表わす。具体的に述べるならば、次のような
ものなどが有用な出発原料としてあげられる。The organosilicon compound used as a starting material in the method of the present invention has a structural formula (2): In the formula, R 1 represents a C 1 to C 3 monovalent alkyl group or the like as described above, and may be the same or different. R 2 may be any alkylene group, preferably a C 1 to C 5 lower alkylene group,
In particular, -CH 2, -C 2 H 4 - is practical. R 3 preferably represents chlorine or a group selected from C 1 to C 3 monovalent alkoxy groups. Specifically, the following are useful starting materials.
ビス(メチルジクロロシリル)メタン ビス(メチルジメトキシシリル)メタン 1,2−ビス(メチルジクロロシリル)エタン 1,2−ビス(メチルジクロロシリル)エタン 1,1−ビス(メチルジクロロシリル)エタン 1,1−ビス(メチルジメトキシシリル)エタン 本発明方法によって有機ケイ素重合体を製造するに
は、まず、前記有機ケイ素化合物の少なくとも1種を、
有機溶媒に溶解させ、次いで大気雰囲気下あるいは窒
素、アルゴンなどの不活性雰囲気下において、水、ある
いは、水と1種以上の有機溶媒の混合系中に前記有機ケ
イ素化合物の溶液を徐々に滴下し、加水分解せしめる。
あるいは、前記有機ケイ素化合の溶液中に、水、あるい
は、水と1種以上の有機溶媒の混合系を徐々に滴下し、
加水分解せしめる。この際、引き続き脱水縮合が併発す
るため、不規則な三次元的縮合によるゲル化を防ぎ適度
な低分子量重合体を得るため、滴下中の温度は該有機化
合物の性質によって最適化されねばならないが、R3が塩
素の場合は、−70〜10℃の低温で行うのが急速な三次元
的反応を制御するうえで好ましく、さらに好ましくは−
70〜−50℃の低温で行うのがよい。R3がアルコキシ基の
場合は前記の条件では加水分解が効率よく行われず、む
しろ50℃以上の高温で行うのがよい。なお、上記加水分
解過程においては、触媒として、ピリジン、トリエチル
アミンなどの有機アミン類あるいはその塩酸塩、さらに
は、塩酸、硫酸、酢酸などの酸を用いることができる。
次に、上記の反応により得られた低分子量重合体を含む
混合物をさらに脱水縮合させて高分子量重合体を得る。
この際、大気雰囲気下あるいは窒素、アルゴンなどの不
活性ガス雰囲気下において、80〜100℃の温度で、通常
0.5〜6時間反応させることにより、高分子量化は効率
よく行われ、重量平均分子量5,000〜5,000,000の重合体
が得られる。なお、触媒として、ピリジン、トリエチル
アミンなどの有機アミン類の塩酸塩を用いることが好ま
しい。Bis (methyldichlorosilyl) methane Bis (methyldimethoxysilyl) methane 1,2-bis (methyldichlorosilyl) ethane 1,2-bis (methyldichlorosilyl) ethane 1,1-bis (methyldichlorosilyl) ethane 1,1-bis (methyldimethoxysilyl) ethane In order to produce an organosilicon polymer by the method of the present invention, first, at least one of the organosilicon compounds is
Dissolve in an organic solvent, and then slowly drop the solution of the organosilicon compound into water or a mixed system of water and one or more organic solvents under an air atmosphere or an inert atmosphere such as nitrogen or argon. , Hydrolyze.
Alternatively, into the solution of the organosilicon compound, water, or a mixed system of water and at least one organic solvent is gradually dropped,
Let it hydrolyze. At this time, since dehydration condensation continues to occur, the temperature during dropping must be optimized according to the properties of the organic compound in order to prevent gelation due to irregular three-dimensional condensation and obtain an appropriate low molecular weight polymer, , When R 3 is chlorine, it is preferable to perform the reaction at a low temperature of −70 to 10 ° C. for controlling a rapid three-dimensional reaction, and more preferably −
It is good to carry out at a low temperature of 70 to -50 ° C. When R 3 is an alkoxy group, hydrolysis is not efficiently performed under the above-mentioned conditions, but rather it is preferably performed at a high temperature of 50 ° C. or higher. In the hydrolysis process, an organic amine such as pyridine or triethylamine or a hydrochloride thereof, or an acid such as hydrochloric acid, sulfuric acid or acetic acid can be used as a catalyst.
Next, the mixture containing the low molecular weight polymer obtained by the above reaction is further subjected to dehydration condensation to obtain a high molecular weight polymer.
At this time, in an atmosphere of air or an atmosphere of an inert gas such as nitrogen or argon, a temperature of 80 to 100 ° C. is usually used.
By allowing the reaction to proceed for 0.5 to 6 hours, the molecular weight can be efficiently increased, and a polymer having a weight average molecular weight of 5,000 to 5,000,000 can be obtained. Note that it is preferable to use a hydrochloride of an organic amine such as pyridine or triethylamine as the catalyst.
さらにまた、上記した第3の課題は、本発明によれ
ば、前記一般式(1)により表わされ、かつ5,000〜5,0
00,000の重量平均分子量を有する有機ケイ素重合体から
なる層間絶縁膜を有することを特徴とする、多層配線構
造をもった半導体装置によって解決することができる。Still further, according to the present invention, the third object described above is represented by the general formula (1), and is 5,000 to 5,0.
The problem can be solved by a semiconductor device having a multilayer wiring structure, comprising an interlayer insulating film made of an organosilicon polymer having a weight average molecular weight of 00,000.
層間絶縁膜の形成に用いられる有機ケイ素重合体は、
好ましくは、前記一般式(1)により示され、式中のR1
が、H,CH3,C2H5,n−C3H7,i−C3H7,OH,OCH3,OC2H5,O−n
−C3H7,O−i−C3H7などであり、R2がアルキレン基であ
り、そしてnが10〜50,000の整数を表わすポリオルガノ
シルアルキレンシロキサンである。また、アルキレン基
は、特に限定されていないけれども、なかんずく−CH2
−,−C2H4−であることが実用的である。また、ポリオ
ルガノシルアルキレンロキサン構造単位の分子鎖中での
比率はいずれであってもよいが、耐熱性の面から25重量
%以上含まれていることが好ましい。また、上記樹脂
は、単独で層間絶縁膜を形成しても、あるいは、二酸化
珪素、窒化珪素、燐ガラス(PSG)等の無機膜と併用し
て層間絶縁膜を形成してもよい。Organosilicon polymer used for forming the interlayer insulating film,
Preferably, R 1 is represented by the general formula (1),
There, H, CH 3, C 2 H 5, n-C 3 H 7, i-C 3 H 7, OH, OCH 3, OC 2 H 5, O-n
—C 3 H 7 , OiC 3 H 7, etc., wherein R 2 is an alkylene group and n is an integer of 10 to 50,000. Further, the alkylene group is not particularly limited, but is preferably -CH 2
−, −C 2 H 4 − is practical. Further, the ratio of the polyorganosylalkyleneloxane structural unit in the molecular chain may be any, but is preferably 25% by weight or more from the viewpoint of heat resistance. The above resin may form an interlayer insulating film alone, or may form an interlayer insulating film in combination with an inorganic film such as silicon dioxide, silicon nitride, and phosphor glass (PSG).
本発明に係わるポリオルガノシルアルキレンシロキサ
ン樹脂は、多くの有機溶媒に可溶であり、従来技術のス
ピンコート法により成膜可能である。従って、凹凸表面
を有する半導体基板表面を容易に平坦化できる。The polyorganosylalkylenesiloxane resin according to the present invention is soluble in many organic solvents and can be formed into a film by a conventional spin coating method. Therefore, the surface of the semiconductor substrate having the uneven surface can be easily flattened.
また、このポリオルガノシルアルキレンシロキサン樹
脂は、フレキシブルであるとともに、480℃までの加熱
に対しても2〜3μmまでしか破損せず、その膜質を保
持できる。そのため、十分な絶縁性が期待でき、半導体
集積回路の層間絶縁膜としての使用に適している。In addition, this polyorganosylalkylenesiloxane resin is flexible and can be damaged only up to 2-3 μm even when heated up to 480 ° C., and can maintain its film quality. Therefore, sufficient insulation can be expected, and it is suitable for use as an interlayer insulating film of a semiconductor integrated circuit.
引き続いて、本発明をいくつかの実施例により具体的
に説明する。Subsequently, the present invention will be specifically described with reference to some examples.
例1(調製例) 1,2−ビス(メチルジクロロシリル)エタン5gをテト
ラヒドロフラン50ccに溶解し、得られた溶液をメチルイ
ソブチルケトン100cc、メチルセロソルブアセテート50c
c及びトリエチルアミン15cc、イオン交換水30ccの混合
系に滴下し、75゜で3時間撹拌した。冷却後、静置して
水層を除き、さらに、十分な水洗いを施した。得られた
反応溶液を乾固し、残った樹脂を1,4−ジオキサンに再
び溶解し、凍結乾燥した。2.8gのポリジメチルシルエチ
レンジシロキサン粉末が回収できた。Example 1 (Preparation Example) 5 g of 1,2-bis (methyldichlorosilyl) ethane was dissolved in 50 cc of tetrahydrofuran, and the obtained solution was 100 cc of methyl isobutyl ketone and 50 c of methyl cellosolve acetate.
c, 15 cc of triethylamine and 30 cc of ion-exchanged water were added dropwise, and the mixture was stirred at 75 ° for 3 hours. After cooling, the mixture was allowed to stand to remove an aqueous layer, and further washed sufficiently with water. The obtained reaction solution was dried, and the remaining resin was redissolved in 1,4-dioxane and freeze-dried. 2.8 g of polydimethylsilethylenedisiloxane powder could be recovered.
例2(調製例) ビス(メチルジクロロシリル)メタン5gをテトラヒド
ロフラン50ccに溶解し、得られた溶液をメチルイソブチ
ルケトン100cc、メチルセロソルブアセテート50cc、ト
リエチルアミン15cc及びイオン交換水30ccの混合系に滴
下し、75℃で3時間撹拌した。冷却後、静置して水層を
除き、さらに十分な水洗いを施した。得られた反応溶液
を乾固し、残った樹脂を1,4−ジオキサンに再び溶解
し、凍結乾燥した。2.8gのポリジメチルシルメチレンジ
シロキサン粉末が回収できた。Example 2 (Preparation Example) 5 g of bis (methyldichlorosilyl) methane was dissolved in 50 cc of tetrahydrofuran, and the resulting solution was dropped into a mixed system of 100 cc of methyl isobutyl ketone, 50 cc of methyl cellosolve acetate, 15 cc of triethylamine and 30 cc of ion-exchanged water. Stir at 75 ° C. for 3 hours. After cooling, the mixture was allowed to stand to remove an aqueous layer, and further sufficiently washed with water. The obtained reaction solution was dried, and the remaining resin was redissolved in 1,4-dioxane and freeze-dried. 2.8 g of polydimethylsilmethylenedisiloxane powder could be recovered.
例3(調製例) 300ccの四つ口フラスコにメチルイソブチルケトン100
cc、メチルセロソルブアセテート50cc,水30ccを仕込
み、触媒として塩酸30ccを加え、加熱攪拌し還流させ
た。1,2−ビス(メチルジメトキシシリル)エタン10gを
テトラヒドロフラン50ccに溶解し、フラスコ中に30分間
かけて滴下した。滴下後、2時間還流を持続した。冷却
後、系を500ccの分液漏斗に移し、水、メチルイソブチ
ルケトン各100ccを加え攪拌し、静置後下層の水層を除
去した。有機層を十分に水洗した後フラスコに戻し、加
熱攪拌し、共沸によって残存した水を完全に取り除い
た。得られた反応溶液を乾固し、残った樹脂を1,4−ジ
オキサンに再び溶解し、凍結乾燥した。3.0gのポリジメ
チルシルエチレンジシロキサン粉末が回収できた。Example 3 (Preparation Example) 100 ml of methyl isobutyl ketone was placed in a 300 cc four-necked flask.
Then, 50 cc of methylcellosolve acetate and 30 cc of water were charged, 30 cc of hydrochloric acid was added as a catalyst, and the mixture was heated, stirred and refluxed. 10 g of 1,2-bis (methyldimethoxysilyl) ethane was dissolved in 50 cc of tetrahydrofuran and added dropwise to the flask over 30 minutes. After dropping, reflux was maintained for 2 hours. After cooling, the system was transferred to a 500 cc separatory funnel, to which 100 cc of water and 100 cc of methyl isobutyl ketone were added and stirred. After standing, the lower aqueous layer was removed. The organic layer was thoroughly washed with water, returned to the flask, heated and stirred, and the remaining water was completely removed by azeotropic distillation. The obtained reaction solution was dried, and the remaining resin was redissolved in 1,4-dioxane and freeze-dried. 3.0 g of polydimethylsilethylenedisiloxane powder could be recovered.
例4 前記例1により得た粉末を酢酸イソアミルに溶解し、
半導体素子を形成し第一層アルミ配線を施したシリコン
基板上(アルミの厚さは1μm、最小線幅は1μm、最
小線間隔は1.5μm)に1.5μm厚にスピン塗布した。塗
布後、80℃で20分間溶剤乾燥、続いて窒素中、420℃、
1時間の熱処理を施した。熱処理後の基板表面の段差
は、約0.2μmであり、アルミ配線により生じた段差は
平坦化されていた。続いて、スルーホールを形成し二層
目のアルミ配線を行い、保護層として1.2μmのSiO2膜
を形成した後、電極取り出し用窓開けを行って半導体装
置を得た。この装置は、大気中450℃で1時間の加熱試
験、−65℃→150℃の10回の熱衝撃試験後も全く不良は
見られなかった。Example 4 The powder obtained according to Example 1 was dissolved in isoamyl acetate,
A semiconductor element was formed and a first layer aluminum wiring was applied on a silicon substrate (aluminum thickness 1 μm, minimum line width 1 μm, minimum line interval 1.5 μm) by spin coating to a thickness of 1.5 μm. After coating, solvent drying at 80 ° C for 20 minutes, followed by nitrogen at 420 ° C,
Heat treatment was performed for 1 hour. The step on the substrate surface after the heat treatment was about 0.2 μm, and the step caused by the aluminum wiring was flattened. Subsequently, a through hole was formed, a second layer of aluminum wiring was formed, a 1.2 μm SiO 2 film was formed as a protective layer, and a window for taking out an electrode was opened to obtain a semiconductor device. This device did not show any defect even after a heating test at 450 ° C. for 1 hour in the atmosphere and 10 thermal shock tests from −65 ° C. to 150 ° C.
例5 前記例4と同様の方法で樹脂層まで形成した(シリコ
ン基板上で1.0μm厚に塗布)後、さらにSiO2膜を0.3μ
m公知の方法で形成した。この膜は、下地段差を0.3μ
mに平坦化していた。その後は前記例4と同様に半導体
装置を製造して試験したところ、全く不良は見られなか
った。Example 5 A resin layer was formed up to a thickness of 1.0 μm on a silicon substrate in the same manner as in Example 4, and then an SiO 2 film was further formed to a thickness of 0.3 μm.
m formed by a known method. This film has an underlying step of 0.3μ.
m. Thereafter, when a semiconductor device was manufactured and tested in the same manner as in Example 4, no defect was found.
例6 前記例2により得た粉末を酢酸イソアミルに溶解し、
半導体素子を形成し第1層アルミ配線を施したシリコン
基板上(アミノの厚さは1μm、最小線幅は1μm、最
小線間隔は1.50μm)に1.5μm厚にスピン塗布した。
塗布後、80℃で20分間溶剤乾燥、続いて窒素中、420
℃、1時間の熱処理を施した。熱処理後の基板表面の段
差は、約0.2μmであり、アルミ配線により生じた段差
は平坦化されていた。続いて、スルーホールを形成し二
層目のアルミ配線を行い、保護層として1.2μmのSiO2
膜を形成した後、電極取り出し用窓開けを行って半導体
装置を得た。この装置は、大気中450℃で1時間の加熱
試験、−65℃→150℃の10回の熱衝撃試験後も全く不良
は見られなかった。Example 6 The powder obtained according to Example 2 was dissolved in isoamyl acetate,
A semiconductor element was formed and spin-coated to a thickness of 1.5 μm on a silicon substrate on which a first layer aluminum wiring was formed (the thickness of amino was 1 μm, the minimum line width was 1 μm, and the minimum line interval was 1.50 μm).
After coating, solvent drying at 80 ° C for 20 minutes, followed by 420
C., heat treatment was performed for 1 hour. The step on the substrate surface after the heat treatment was about 0.2 μm, and the step caused by the aluminum wiring was flattened. Subsequently, a through-hole was formed, a second layer of aluminum wiring was formed, and 1.2 μm SiO 2 was used as a protective layer.
After forming the film, a window for taking out an electrode was opened to obtain a semiconductor device. This device did not show any defect even after a heating test at 450 ° C. for 1 hour in the atmosphere and 10 thermal shock tests from −65 ° C. to 150 ° C.
例7 前記例6と同様の方法で樹脂層まで形成した(シリコ
ン基板上で1.0μm厚に塗布)後、さらにSiO2膜を0.3μ
m公知の方法で形成した。この膜は、下地段差を0.3μ
mに平坦化していた。その後は前記例6と同様に半導体
装置を製造して試験したところ、全く不良は見られなか
った。Example 7 A resin layer was formed up to a thickness of 1.0 μm on a silicon substrate in the same manner as in Example 6, and then an SiO 2 film was further formed to a thickness of 0.3 μm.
m formed by a known method. This film has an underlying step of 0.3μ.
m. Thereafter, when a semiconductor device was manufactured and tested in the same manner as in Example 6, no defect was found.
例8 前記例3により得た粉末を酢酸イソアミルに溶解し、
半導体素子を形成し第一層アルミ配線を施したシリコン
基板上(アルミの厚さは1μm、最小線幅は1μm、最
小線間隔は1.5μm)に1.5μm厚にスピン塗布した。塗
布後、80℃で20分間溶剤乾燥、続いて窒素中、420℃、
1時間の熱処理を施した。熱処理後の基板表面の段差
は、約0.2μmであり、アルミ配線により生じた段差は
平坦化されていた。続いて、スルーホールを形成し二層
目のアルミ配線を行い、保護層として1.2μmのSiO2膜
を形成した後、電極取り出し用窓開けを行って半導体装
置を得た。この装置は、大気中450℃で1時間の加熱試
験、−65℃→150℃の10回の熱衝撃試験後も全く不良は
見られなかった。Example 8 The powder obtained according to Example 3 was dissolved in isoamyl acetate,
A semiconductor element was formed and a first layer aluminum wiring was applied on a silicon substrate (aluminum thickness 1 μm, minimum line width 1 μm, minimum line interval 1.5 μm) by spin coating to a thickness of 1.5 μm. After coating, solvent drying at 80 ° C for 20 minutes, followed by nitrogen at 420 ° C,
Heat treatment was performed for 1 hour. The step on the substrate surface after the heat treatment was about 0.2 μm, and the step caused by the aluminum wiring was flattened. Subsequently, a through hole was formed, a second layer of aluminum wiring was formed, a 1.2 μm SiO 2 film was formed as a protective layer, and a window for taking out an electrode was opened to obtain a semiconductor device. This device did not show any defect even after a heating test at 450 ° C. for 1 hour in the atmosphere and 10 thermal shock tests from −65 ° C. to 150 ° C.
例9 前記例8と同様の方法で樹脂層まで形成した(シリコ
ン基板上で1.0μm厚に塗布)後、さらにSiO2膜を0.3μ
m公知の方法で形成した。この膜は、下地段差を0.3μ
mに平坦化していた。その後は前記例8と同様に半導体
装置を製造して試験したところ、全く不良は見られなか
った。Example 9 A resin layer was formed in the same manner as in Example 8 (applied to a thickness of 1.0 μm on a silicon substrate), and then a SiO 2 film was formed to a thickness of 0.3 μm
m formed by a known method. This film has an underlying step of 0.3μ.
m. Thereafter, when a semiconductor device was manufactured and tested in the same manner as in Example 8, no defect was found.
本発明によれば、新規で有用な有機ケイ素重合体を得
ることができるばかりでなく、その重合体の製造も、簡
便な方法で効率よく可能である。さらに、本発明によれ
ば、平坦化機能を有し、高温下で使用しても膜の破損を
起こさない信頼性の高い層間絶縁膜をもった半導体装置
を得ることが可能である。According to the present invention, not only can a new and useful organosilicon polymer be obtained, but also the production of the polymer can be efficiently performed by a simple method. Further, according to the present invention, it is possible to obtain a semiconductor device having a highly reliable interlayer insulating film which has a flattening function and does not damage the film even when used at high temperatures.
Claims (3)
もよく、R1は、水素、ヒドロキシル基、低級アルキル基
又は低級アルコキシ基を表わし、R2はアルキレン基を表
わし、そしてnは10〜50,000の整数を表わす)により表
わされ、かつ5,000〜5,000,000の重量平均分子量を有す
る有機ケイ素重合体。1. The following structural formulas (I) and / or (II): (Wherein R 1 and R 2 may be the same or different, R 1 represents hydrogen, a hydroxyl group, a lower alkyl group or a lower alkoxy group, R 2 represents an alkylene group, and n represents 10 An organosilicon polymer having a weight average molecular weight of 5,000 to 5,000,000.
もよく、R1は、水素、ヒドロキシル基、低級アルキル基
又は低級アルコキシ基を表わし、R2はアルキレン基を表
わし、そしてnは10〜50,000の整数を表わす)により表
わされ、かつ5,000〜5,000,000の重量平均分子量を有す
る有機ケイ素重合体を製造するに当って、 次式の有機ケイ素化合物: (上式において、R1は同一もしくは異なっていてもよ
く、前記定義に同じであり、R2は前記定義に同じであ
り、そしてR3は、同一もしくは異なっていてもよく、ハ
ロゲンを表わすかもしくは低級アルコキシ基を表わす)
を水と反応させて加水分解し、引き続いて、得られた反
応生成物を脱水縮重合させて前記構造式の有機ケイ素重
合体を製造することを特徴とする、有機ケイ素重合体の
製法。2. The following structural formulas (I) and / or (II): (Wherein R 1 and R 2 may be the same or different, R 1 represents hydrogen, a hydroxyl group, a lower alkyl group or a lower alkoxy group, R 2 represents an alkylene group, and n represents 10 In preparing an organosilicon polymer having a weight average molecular weight of 5,000 to 5,000,000, represented by the following formula: (Wherein R 1 may be the same or different and are as defined above, R 2 is as defined above, and R 3 may be the same or different and represent halogen Or represents a lower alkoxy group)
Is reacted with water to hydrolyze, and subsequently, the obtained reaction product is subjected to dehydration-condensation polymerization to produce an organosilicon polymer of the above structural formula, which is characterized in that:
もよく、R1は、水素、ヒドロキシル基、低級アルキル基
又は低級アルコキシ基を表わし、R2はアルキレン基を表
わし、そしてnは10〜50,000の整数を表わす)により表
わされ、かつ5,000〜5,000,000の重量平均分子量を有す
る有機ケイ素重合体からなる層間絶縁膜を有することを
特徴とする、多層配線構造をもった半導体装置。3. The following structural formulas (I) and / or (II): (Wherein R 1 and R 2 may be the same or different, R 1 represents hydrogen, a hydroxyl group, a lower alkyl group or a lower alkoxy group, R 2 represents an alkylene group, and n represents 10 A semiconductor device having a multi-layer wiring structure, characterized by having an interlayer insulating film made of an organosilicon polymer having a weight average molecular weight of 5,000 to 5,000,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14354688A JP2574403B2 (en) | 1988-06-13 | 1988-06-13 | Organosilicon polymer, method for producing the same, and semiconductor device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14354688A JP2574403B2 (en) | 1988-06-13 | 1988-06-13 | Organosilicon polymer, method for producing the same, and semiconductor device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01313528A JPH01313528A (en) | 1989-12-19 |
JP2574403B2 true JP2574403B2 (en) | 1997-01-22 |
Family
ID=15341263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14354688A Expired - Lifetime JP2574403B2 (en) | 1988-06-13 | 1988-06-13 | Organosilicon polymer, method for producing the same, and semiconductor device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2574403B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1787319A4 (en) * | 2004-08-31 | 2011-06-29 | Silecs Oy | NOVEL DIELECTRIC MATERIALS OF POLYORGANOSILOXANE |
US20060293482A1 (en) * | 2005-06-13 | 2006-12-28 | Rantala Juha T | Organo functionalized silane monomers and siloxane polymers of the same |
JP4451457B2 (en) * | 2007-02-26 | 2010-04-14 | 富士通株式会社 | Insulating film material and manufacturing method thereof, multilayer wiring and manufacturing method thereof, and manufacturing method of semiconductor device |
JP2008222857A (en) * | 2007-03-13 | 2008-09-25 | Jsr Corp | Composition for forming insulation film, silica-based film and production method thereof |
JP4379637B1 (en) | 2009-03-30 | 2009-12-09 | Jsr株式会社 | Method for producing organosilicon compound |
JP5445473B2 (en) * | 2011-01-14 | 2014-03-19 | 信越化学工業株式会社 | Silicone resin composition for optical material formation and optical material |
-
1988
- 1988-06-13 JP JP14354688A patent/JP2574403B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01313528A (en) | 1989-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6743471B2 (en) | Process for preparing insulating material having low dielectric constant | |
CN102212195A (en) | Photoactive group-bonded polysilsesquioxane having a ladder structure and a method for preparing the same | |
JP2574403B2 (en) | Organosilicon polymer, method for producing the same, and semiconductor device using the same | |
KR100451044B1 (en) | Method for preparing organic silicate polymer and method for preparing insulating film using the same | |
JPS6046826B2 (en) | semiconductor equipment | |
JP2002534804A (en) | Dielectric film with organic hydride siloxane resin | |
JP4343949B2 (en) | Novel polymer and method for producing nanoporous low dielectric polymer composite using the same | |
JP3982073B2 (en) | Low dielectric constant insulating film forming method | |
JP2002201416A (en) | Coating liquid for forming semiconductor silica coating film, semiconductor silica coating film, and semiconductor device | |
JPH0446934A (en) | Photosensitive heat-resistant resin composition, semiconductor device using the same, and manufacturing method thereof | |
JPH07242747A (en) | Organic silicon polymer and semiconductor device | |
JPH01221431A (en) | Organosilicon polymer, its production and semiconductor device prepared by using the same | |
JP2671902B2 (en) | Method for forming multi-layer wiring of semiconductor integrated circuit | |
JPH02129226A (en) | Organosilicon polymer, its manufacturing method, and semiconductor device using the same | |
JPH0551458A (en) | Organosilicon polymer and method for producing semiconductor device using the same polymer | |
JP2705078B2 (en) | Method for planarizing semiconductor element surface | |
JPH0341121A (en) | Organosilicon polymers and their production methods and uses | |
JPH01313942A (en) | Semiconductor device | |
JPH0284435A (en) | Organosilicon polymers, their production methods and uses | |
JP3227359B2 (en) | Semiconductor device | |
JPH0263057A (en) | Photosensitive heat resistant resin composition and production of integrated circuit | |
JPH04185641A (en) | Production of heat-resistant resin composition and insulation film | |
US7108807B2 (en) | Methods for producing a dielectric, dielectric having self-generating pores, monomer for porous dielectrics, process for preparing poly-o-hydroxyamides, process for preparing polybenzoxazoles, and processes for producing an electronic component | |
JP2003077908A (en) | Interlayer insulating film containing aromatic polycarbosilane and semiconductor device using the same | |
JPH02286720A (en) | organosilicon polymer |