[go: up one dir, main page]

JPS60122801A - Fluidized-bed boiler device - Google Patents

Fluidized-bed boiler device

Info

Publication number
JPS60122801A
JPS60122801A JP22936283A JP22936283A JPS60122801A JP S60122801 A JPS60122801 A JP S60122801A JP 22936283 A JP22936283 A JP 22936283A JP 22936283 A JP22936283 A JP 22936283A JP S60122801 A JPS60122801 A JP S60122801A
Authority
JP
Japan
Prior art keywords
fluidized bed
superheater
cell
reheater
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22936283A
Other languages
Japanese (ja)
Other versions
JPH0512601B2 (en
Inventor
徹哉 岩瀬
森川 健悟
前田 政勝
藤江 譲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP22936283A priority Critical patent/JPS60122801A/en
Publication of JPS60122801A publication Critical patent/JPS60122801A/en
Publication of JPH0512601B2 publication Critical patent/JPH0512601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は流動層ボイラ装置に係り、特に部分負荷運転時
の生蒸気温度、および再熱蒸気温度制御に好適な流動層
ボイラ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluidized bed boiler apparatus, and particularly to a fluidized bed boiler apparatus suitable for controlling live steam temperature and reheat steam temperature during partial load operation.

〔発明の背景〕[Background of the invention]

発電用ボイラにおいて、ターピン負荷が低下すると、(
1)ドラム圧力(温度)が低下し、過熱器人口エンタル
ピが増加するのに対し、過熱器出口エンタルピの変化割
合が微小であるため過熱器のエンタルピピンクアップは
減少する。(2)給水温度の低下とともに給水エンタル
ピも減少するためエコノマイザ及び蒸発器のエンタルピ
ピックアップ(rよ増加する。(3)再熱器入口蒸気圧
力(温ωの低下に伴い、再熱器入ロエンタルビが減少す
るため再熱器のエンタルピピックアップは増加する。(
4)主蒸気と再熱蒸気との流量については再熱蒸気流量
の流量低下割合が主蒸気流量に対してわずかでるるか低
い。これらの理由から発電用ボイラでの熱吸収割合と負
荷の関係は第1図に示すように過熱蒸気(SH)につい
ては負荷の低下とともに全体の熱吸収量中に占める割合
が低下するのに対し、再熱蒸気(RH)は負荷の低下と
ともに増加する傾向を示す。なお図中W/Wは飽和水冷
壁、EC0は節ffi器を示す。
In a power generation boiler, when the turpin load decreases, (
1) While the drum pressure (temperature) decreases and the superheater population enthalpy increases, the rate of change in the superheater outlet enthalpy is minute, so the enthalpy pink-up of the superheater decreases. (2) As the feed water temperature decreases, the feed water enthalpy also decreases, so the enthalpy pickup of the economizer and evaporator (increases by r. The enthalpy pickup of the reheater increases because it decreases. (
4) Regarding the flow rates of main steam and reheat steam, the rate of decrease in the flow rate of the reheat steam flow rate is slightly or low compared to the main steam flow rate. For these reasons, the relationship between the heat absorption rate and load in a power generation boiler is as shown in Figure 1.For superheated steam (SH), as the load decreases, the proportion of the total heat absorption decreases. , reheat steam (RH) shows a tendency to increase with decreasing load. In the figure, W/W indicates a saturated water cooling wall, and EC0 indicates a nodal ffi device.

このような過熱蒸気と再熱蒸気の熱吸収特性に対して、
流動層ボイラでは従来蒸気温度制御としてスプレ制御や
パラレル制御が採用されている。
Regarding the heat absorption characteristics of superheated steam and reheated steam,
Spray control and parallel control have conventionally been adopted as steam temperature control in fluidized bed boilers.

第2図および第3図は従来の流動層ボイラの蒸気温度制
御方式の概略を示す。第2図において、第1再熱器1と
第1過熱器2、およびパラレルダンパ3が対流部に設置
され、第2再熱器4と第2過熱器5は同じ流動層セル中
に配設されている。
FIGS. 2 and 3 schematically show a steam temperature control system for a conventional fluidized bed boiler. In FIG. 2, a first reheater 1, a first superheater 2, and a parallel damper 3 are installed in a convection section, and a second reheater 4 and a second superheater 5 are installed in the same fluidized bed cell. has been done.

この流動層ボイ2では再熱器の蒸気温度制御はパラレル
ダンパ3をコントロールすることによって行い、過熱器
の蒸気温度制御は対流部と層内伝熱部の中間に設けられ
たスプレ6で行なっている。
In this fluidized bed boiler 2, the steam temperature in the reheater is controlled by controlling the parallel damper 3, and the steam temperature in the superheater is controlled by the spray 6 installed between the convection section and the intrabed heat transfer section. There is.

スゲレフは非常時用であシ、通常は使用されない。Sugelev is only for emergencies and is not normally used.

このような流動層ボイラでは過熱器および再熱器の一部
をそれぞれ対流部に設置しなければならないため、流動
層ボイラの利点のひとつである層内伝熱管の利用による
伝熱面積のコンパクト化が損なわれる。また対流部の伝
熱面積は構造的にボイラ上部に位置するのに対し、層内
伝熱部はボイラとの連絡管の配管が長くなる。
In such a fluidized bed boiler, part of the superheater and reheater must be installed in the convection section, so one of the advantages of a fluidized bed boiler is the use of interbed heat transfer tubes to reduce the heat transfer area. is damaged. In addition, the heat transfer area of the convection section is structurally located above the boiler, whereas the intralayer heat transfer section has a long communication pipe with the boiler.

第3図の流動層ボイラにおいて、第1再熱器1と第2再
熱器4とはともに流動層内圧配設され、Ml過熱器2は
対流部釦配設され、第2過熱器5は流動ノー内に配設さ
れている。この流動層ポインでは再熱器の蒸気温度制御
と過熱器の蒸気温度制御はそれぞれスプレ8およびスプ
レ9によっテ行なっている。タービンの負荷が高くなる
と、第1図に示すように再熱蒸気が減少する。したがっ
て第3図に示す流動J−ボイラでは高負荷になる程スプ
レ9のスプレ廿を増加させなければならなhoこのため
プラント効率が低下する。
In the fluidized bed boiler shown in FIG. 3, both the first reheater 1 and the second reheater 4 are provided with a fluidized bed internal pressure, the Ml superheater 2 is provided with a convection button, and the second superheater 5 is provided with a convection button. It is located within the flow no. At this fluidized bed point, the reheater steam temperature control and the superheater steam temperature control are performed by spray 8 and spray 9, respectively. As the load on the turbine increases, the reheat steam decreases as shown in FIG. Therefore, in the flow J-boiler shown in FIG. 3, the higher the load, the more the spray height of the sprayer 9 must be increased, which lowers the plant efficiency.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、伝熱面積のコンパクト化を損ねること
なく、またプラント効率を低下させることなく主蒸気温
度、再熱蒸気温度を′制御することができる流動層ボイ
ラ装置を提供することにある。
An object of the present invention is to provide a fluidized bed boiler device that can control main steam temperature and reheat steam temperature without compromising the compactness of the heat transfer area or reducing plant efficiency. .

〔発明の概要〕[Summary of the invention]

本発明は過熱器、再熱器および蒸発器のいずれもが流動
層内に配設されるとともに、前記過熱器が配設された流
動層セルと前記再熱器が配設された流動層セルとを区画
して設け、各流動層セルに必要な燃料を投入することに
よって蒸気温度を制御するようにしたものである。
The present invention provides a fluidized bed cell in which a superheater, a reheater, and an evaporator are all disposed in a fluidized bed, and a fluidized bed cell in which the superheater is disposed and a fluidized bed cell in which the reheater is disposed. The steam temperature is controlled by supplying the necessary fuel to each fluidized bed cell.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の一実施例を示し、第4図において再熱
器11%過熱器12および蒸発器13はそれぞれ周壁に
よって区画された別個の流動層セルA、B、Cに配設さ
れている。また対流部にエコノマイザ14が配設されて
いる。
FIG. 4 shows an embodiment of the present invention, in which the reheater 11% superheater 12 and the evaporator 13 are arranged in separate fluidized bed cells A, B, and C, respectively, partitioned by peripheral walls. ing. Furthermore, an economizer 14 is provided in the convection section.

この流動層ボイラ装置において、N5図に示すように過
熱器12を配設した流動層セルBで過熱器12の必要熱
吸収量が確保できるように負荷変動やベッドの流動部分
の面積の変化(構造上のベッド断面積に対して、流動化
している部分のベッド面積を変化させて運転した場合)
K応じて63チから50チ程度まで燃料投入割合を調整
する。
In this fluidized bed boiler device, as shown in diagram N5, changes in the load and the area of the fluidized portion of the bed ( (When operating by changing the bed area of the fluidized part with respect to the structural bed cross-sectional area)
Adjust the fuel input ratio from 63 inches to about 50 inches depending on K.

一方、再熱器11を配設した流動層セルAで負荷変動や
流動化部分の面積変化に応じて13チから17チ程Kま
で燃料投入割合を調整する。
On the other hand, in the fluidized bed cell A equipped with the reheater 11, the fuel injection rate is adjusted from about 13 inches to about 17 inches according to load fluctuations and changes in the area of the fluidized portion.

この結果、流動層セルA、Bへの燃料投入割合を調整す
ることによって主蒸気および再熱蒸気は層内伝熱面のみ
で規定の蒸気温度に維持でき、スプレによる蒸気温度制
御を必要としない。
As a result, by adjusting the fuel input ratio to fluidized bed cells A and B, the main steam and reheated steam can be maintained at the specified steam temperature only by the heat transfer surface in the bed, and there is no need to control the steam temperature by spraying. .

ただし流動層ボイラへの燃料投入量は負荷に対応して定
まっているため、蒸発器13を配設した流動層セルCへ
の燃料投入量によってボイラ全体への燃料投入量の調節
を行う。すなわち、負荷一定時のボイラ全体への燃料投
入量から流動層セルAおよび流I!h層セルBへのそれ
ぞれの燃料投入蓋を差引いたものが蒸祐器13を配設し
た流動層セルCへの燃料投入量となる。したがって第5
図に示すように流動層セルCへの燃料投入割合は35.
5チから25チ程度調贅する。このように谷ベッド(流
動層セル)への燃料投入量配分を調整することによって
、再熱器11、i熱器12および蒸発器13の吸収熱量
を谷ベッド毎に燃料量で独立に制御し、規定の蒸気温度
と蒸発蓋を維持できる。
However, since the amount of fuel input to the fluidized bed boiler is determined according to the load, the amount of fuel input to the entire boiler is adjusted by the amount of fuel input to the fluidized bed cell C in which the evaporator 13 is disposed. That is, fluidized bed cell A and flow I! are determined from the amount of fuel input to the entire boiler when the load is constant. The amount of fuel input into the fluidized bed cell C in which the evaporator 13 is provided is obtained by subtracting the respective fuel input lids to the h-layer cell B. Therefore, the fifth
As shown in the figure, the fuel input ratio to fluidized bed cell C is 35.
The size of the body is about 5 inches to 25 inches. By adjusting the distribution of fuel input to the valley bed (fluidized bed cell) in this way, the absorbed heat amount of the reheater 11, i-heater 12, and evaporator 13 can be controlled independently by the fuel amount for each valley bed. , can maintain the specified steam temperature and evaporation lid.

第6図は本発明の他の実施例を示し、N6図において蒸
発器21と第2過熱器22は同じ流動層内に配設されて
おり(この部分を流動層セルDという)、再熱器23は
流動層セルDと周壁によって区画された流動j−セルE
内の流動層内に配設され、過熱器の対流部と層内伝熱部
の中間にスプレ24が設けられている。また対流部に第
1過熱器25とエコノマイザ26が配設されている。す
なわち、本実施例は蒸発器のみを配設したベッドを有し
ない点が第4図に示す実施例と異なる。
FIG. 6 shows another embodiment of the present invention, in which the evaporator 21 and the second superheater 22 are arranged in the same fluidized bed (this part is called fluidized bed cell D), The vessel 23 has a fluidized bed cell D and a fluidized J-cell E divided by a peripheral wall.
A spray 24 is disposed within the fluidized bed of the superheater, and is provided between the convection section and the intrabed heat transfer section of the superheater. Further, a first superheater 25 and an economizer 26 are arranged in the convection section. That is, this embodiment differs from the embodiment shown in FIG. 4 in that it does not have a bed in which only an evaporator is disposed.

このような流動層ゲイ2装置において、再熱蒸気温度(
ROT)は流動層セルEの燃料投入量によって制御する
。一方、各流動層セル(ベッド)への燃料投入割合が変
化した場合、ベッドの周壁を構成する水冷壁での蒸@量
の変動を制御できない。したがって本実施例において、
流動層セルDに対しては規定の蒸発量を得るのに必要な
燃料が投入され、主蒸気温度はスプレ24におけるスプ
レ量によって制御することができる。本実施例において
はスプレ制御方式が採用されるが、高負荷運転に移行し
ても再熱蒸気温自体は流動層セルEへの燃料投入量に制
御されるのでプラント効率の低下は極めて少ない。
In such a fluidized bed Gay 2 device, the reheat steam temperature (
ROT) is controlled by the amount of fuel input to the fluidized bed cell E. On the other hand, if the ratio of fuel input to each fluidized bed cell (bed) changes, it is not possible to control the variation in the amount of steam at the water-cooled wall that forms the peripheral wall of the bed. Therefore, in this example,
Fuel necessary to obtain a specified amount of evaporation is supplied to the fluidized bed cell D, and the main steam temperature can be controlled by the amount of spray in the spray 24. In this embodiment, a spray control method is adopted, but even if the operation shifts to a high load, the reheat steam temperature itself is controlled by the amount of fuel input to the fluidized bed cell E, so there is very little reduction in plant efficiency.

本発明において、第4図のように蒸発器が、過熱器およ
び再熱器をそれぞれ配設した流動層セルと区画された別
個の流動層セルに配設された場合において、過熱器を配
設した流動層セルまたは再熱器管配設した流動層セルに
蒸発器を配設してもよい。また第4図のように蒸発器が
、過熱器および再熱器をそれぞれ配設した流動層セルと
区画された別個の流動層セルに配設δれた場合において
、過熱器を配設した流動層セルに再熱器を共存配置して
もよく、また再熱器を配設したff、動/lfセルに過
熱器を共存配置させることもできる。これらの場合にお
いても、運転負荷に応じて谷流動層セルに対する燃料投
入割合を調整することにより、規定の主蒸気温度と再熱
蒸気温度を維持することができる。
In the present invention, when the evaporator is arranged in a separate fluidized bed cell separated from a fluidized bed cell in which a superheater and a reheater are respectively arranged as shown in FIG. 4, a superheater is arranged. The evaporator may be installed in a fluidized bed cell equipped with a reheater tube or a fluidized bed cell equipped with a reheater tube. Furthermore, as shown in Fig. 4, when the evaporator is installed in a separate fluidized bed cell separated from the fluidized bed cell in which a superheater and a reheater are installed, A reheater may be co-located in a layer cell, or a superheater may be co-located in an FF, dynamic/lf cell provided with a reheater. Even in these cases, the prescribed main steam temperature and reheat steam temperature can be maintained by adjusting the fuel input ratio to the valley fluidized bed cell according to the operating load.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、過熱器、再熱器、蒸発器
のいずれもが流動層内に配設されている。
As described above, according to the present invention, the superheater, reheater, and evaporator are all arranged within the fluidized bed.

したがって伝熱面積を全て、熱伝達率が対流部に比べて
約6倍大きい層内に配置できるだめ伝熱面積を小さくシ
、コンパクトな装置とすることができる。蒸気温度制御
にスプレ制御を必要とする場合にもプラント効率低下が
極めて少なく、またパラレルダンパ用の対流部伝熱面積
を要しないのでコンパクトにできる。更に対流部伝熱部
と層内伝熱部との連結配管を簡略化できる。
Therefore, since the entire heat transfer area can be arranged in a layer where the heat transfer coefficient is about 6 times larger than that of the convection area, the heat transfer area can be reduced and the apparatus can be made compact. Even when spray control is required for steam temperature control, there is very little deterioration in plant efficiency, and since the heat transfer area of the convection section for the parallel damper is not required, the system can be made compact. Furthermore, the connecting piping between the convection heat transfer section and the intralayer heat transfer section can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発電用ボイラのボイラ各部の熱吸収割合と負荷
との関係を示す説明図、第2図および第3図は従来の流
動層ボイラの概略的構成図、第4図は本発明の一実施例
を示す概略的構成図、第5図は第4図の流動層ボイラ装
置のボイラ負荷特性説明図、第6図は本発明の他の実施
例を示す概略的構成図である。 1.4.11.23・・・再熱器、2.5、12.22
.25・・・i14?th器、3・・・パラレルダンパ
、6.7.8.9.24・・・スプレ、工3.21・・
・蒸発器、10.14.26・・・エコノマイザ。 第1図
Figure 1 is an explanatory diagram showing the relationship between the heat absorption rate of each part of a power generation boiler and the load. Figures 2 and 3 are schematic diagrams of a conventional fluidized bed boiler. FIG. 5 is a diagram illustrating the boiler load characteristics of the fluidized bed boiler device shown in FIG. 4, and FIG. 6 is a schematic diagram showing another embodiment of the present invention. 1.4.11.23...Reheater, 2.5, 12.22
.. 25...i14? th device, 3...parallel damper, 6.7.8.9.24...spray, engineering 3.21...
・Evaporator, 10.14.26...Economizer. Figure 1

Claims (1)

【特許請求の範囲】 (1)過熱器、再熱器および蒸発器のいずれもが流動層
内に配設されるとともに、前記過熱器が配設された流動
層セルと前記再熱器が配設された流動層セルとを区画し
て設けたことを特徴とする流動ノーボイラ装置。 (2、特許請求の範囲第1項において、前記蒸発器が、
前記過熱器および再熱器をそれぞれ配設した流動層セル
と区画された別個の流動層セルに配設されていることを
特徴とする流動層ボイラ装置。 (3)特許請求の範囲第1項において、前記蒸発管が、
過熱器を配設した流動セル内に配設されていることを特
徴とする流動層ボイラ。
[Scope of Claims] (1) A superheater, a reheater, and an evaporator are all arranged in a fluidized bed, and a fluidized bed cell in which the superheater is arranged and the reheater are arranged in a fluidized bed. A fluidized no-boiler device characterized in that a fluidized bed cell and a fluidized bed cell are separated from each other. (2. In claim 1, the evaporator comprises:
A fluidized bed boiler apparatus characterized in that the superheater and the reheater are arranged in separate fluidized bed cells separated from a fluidized bed cell in which the superheater and reheater are respectively arranged. (3) In claim 1, the evaporation tube is
A fluidized bed boiler characterized in that it is installed in a fluidized cell equipped with a superheater.
JP22936283A 1983-12-05 1983-12-05 Fluidized-bed boiler device Granted JPS60122801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22936283A JPS60122801A (en) 1983-12-05 1983-12-05 Fluidized-bed boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22936283A JPS60122801A (en) 1983-12-05 1983-12-05 Fluidized-bed boiler device

Publications (2)

Publication Number Publication Date
JPS60122801A true JPS60122801A (en) 1985-07-01
JPH0512601B2 JPH0512601B2 (en) 1993-02-18

Family

ID=16890976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22936283A Granted JPS60122801A (en) 1983-12-05 1983-12-05 Fluidized-bed boiler device

Country Status (1)

Country Link
JP (1) JPS60122801A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321401A (en) * 1986-07-14 1988-01-29 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン Steam generator using separate fluid flow circuit and operating method thereof
JPH02290402A (en) * 1989-04-28 1990-11-30 Ebara Corp Heat recovery control method for fluidized bed boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331001A (en) * 1976-09-03 1978-03-23 Kawasaki Heavy Ind Ltd Fluid layer boiler
JPS5792601A (en) * 1980-11-28 1982-06-09 Foster Wheeler Corp Steam generator equipped with piled fluidized bed and water cooled heat recovery enclosure
JPS57122203A (en) * 1981-01-23 1982-07-30 Babcock Hitachi Kk Load control operation of fluidized bed boiler
JPS57192704A (en) * 1981-05-22 1982-11-26 Babcock Hitachi Kk Fluid bed boiler
JPS5893904A (en) * 1981-11-30 1983-06-03 Babcock Hitachi Kk Preventing method of turbine trip
JPS58164902A (en) * 1982-03-23 1983-09-29 川崎重工業株式会社 Fluid bed type reheating boiler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331001A (en) * 1976-09-03 1978-03-23 Kawasaki Heavy Ind Ltd Fluid layer boiler
JPS5792601A (en) * 1980-11-28 1982-06-09 Foster Wheeler Corp Steam generator equipped with piled fluidized bed and water cooled heat recovery enclosure
JPS57122203A (en) * 1981-01-23 1982-07-30 Babcock Hitachi Kk Load control operation of fluidized bed boiler
JPS57192704A (en) * 1981-05-22 1982-11-26 Babcock Hitachi Kk Fluid bed boiler
JPS5893904A (en) * 1981-11-30 1983-06-03 Babcock Hitachi Kk Preventing method of turbine trip
JPS58164902A (en) * 1982-03-23 1983-09-29 川崎重工業株式会社 Fluid bed type reheating boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321401A (en) * 1986-07-14 1988-01-29 フオスタ−・ホイ−ラ−・エナ−ジイ・コ−ポレイシヨン Steam generator using separate fluid flow circuit and operating method thereof
JPH02290402A (en) * 1989-04-28 1990-11-30 Ebara Corp Heat recovery control method for fluidized bed boiler

Also Published As

Publication number Publication date
JPH0512601B2 (en) 1993-02-18

Similar Documents

Publication Publication Date Title
US4473032A (en) Steam generator with circulating atmosphere or pressurized turbulent layer firing, and method for control thereof
JPS63243602A (en) Improved steam-temperature control
JPH0222860B2 (en)
JPS60122801A (en) Fluidized-bed boiler device
JPH0942606A (en) Once-through boiler steam temperature control device
JPS61180805A (en) Method of controlling coordination of boiler-steam temperature
JPS5921902A (en) Controller for temperature of steam from boiler
JP2944783B2 (en) Natural circulation type waste heat recovery boiler
JP3709263B2 (en) Boiler control method and boiler
JPH0688605A (en) Controlling device for temperature of steam in boiler
US2702531A (en) Apparatus for temperature regulation of superheated vapors
JP2931141B2 (en) Control method and apparatus for variable-pressure Benson boiler
JPH0674407A (en) Steam temperature control device for variable pressure once-through boiler
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JPH0861012A (en) Evaporation amount control device for exhaust gas boiler
JP2894118B2 (en) Boiler steam temperature control method
JPS6229763Y2 (en)
JP2651351B2 (en) Combustion superheater and design method thereof
JPS6229809A (en) Boiler device
JPH06257964A (en) Condensed water flow rate controller
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPS5837405A (en) Control method for once-through boiler with circulation device
JPS59181910U (en) Precision control steam temperature control device
JPH0160723B2 (en)