[go: up one dir, main page]

JPS5921902A - Controller for temperature of steam from boiler - Google Patents

Controller for temperature of steam from boiler

Info

Publication number
JPS5921902A
JPS5921902A JP13186982A JP13186982A JPS5921902A JP S5921902 A JPS5921902 A JP S5921902A JP 13186982 A JP13186982 A JP 13186982A JP 13186982 A JP13186982 A JP 13186982A JP S5921902 A JPS5921902 A JP S5921902A
Authority
JP
Japan
Prior art keywords
ratio
amount
steam temperature
steam
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13186982A
Other languages
Japanese (ja)
Other versions
JPH0366561B2 (en
Inventor
桑田 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13186982A priority Critical patent/JPS5921902A/en
Publication of JPS5921902A publication Critical patent/JPS5921902A/en
Publication of JPH0366561B2 publication Critical patent/JPH0366561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気過熱系統に複数段の減温器をOmえ、種
類の異なる燃料を使用する混焼ボイラや、ガス再循環方
式のボイラや、あるいはガヌー蒸気コンバインドサイク
ル発電プラント用の助燃式ボイラのように、種類の異人
る伝熱源で蒸気を発生し過熱するボイラにおける蒸気温
度制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a multi-stage desuperheater in a steam superheating system, a mixed combustion boiler that uses different types of fuel, a gas recirculation type boiler, Alternatively, the present invention relates to a steam temperature control device for a boiler that generates steam and superheats it using different types of heat transfer sources, such as an auxiliary combustion boiler for a Gannou steam combined cycle power plant.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ボイラで発生する蒸気温度を制御するためには、蒸気過
熱器の前段に減温器を設け、ここでスプレ4水を噴霧し
て蒸気温度を調節する方式が一般に用いられている。蒸
気過熱プロセスは、通常、伝熱特性の異なる数種類の過
熱器を直列に接続して構成されている。このため、ボイ
ラ出口蒸気温度の制御性能を向上させるために、過熱器
群の間に複数個の減温器を設けた2段以上の多段スプレ
ィ方式が採用されている場合がある。
In order to control the temperature of steam generated in a boiler, a method is generally used in which a desuperheater is provided before a steam superheater, and water is sprayed there to adjust the steam temperature. Steam superheating processes are usually constructed by connecting several types of superheaters with different heat transfer characteristics in series. Therefore, in order to improve the control performance of the boiler outlet steam temperature, a multi-stage spray system with two or more stages in which a plurality of attemperators are provided between superheater groups is sometimes adopted.

このようなプロセスにおいては、ボイラ内の蒸気温度分
布が入口から出口に向けてほぼ均等に上昇するように、
また各定常状態においては外乱発生に備えて操作余裕が
確保されているように、各が必要である。
In such a process, the steam temperature distribution inside the boiler increases almost uniformly from the inlet to the outlet.
Further, in each steady state, each is necessary so that an operating margin is secured in case of occurrence of disturbance.

この一方策として、後段の減温器におけるスプレィ量が
給水ちあるいは蒸気流量と一定比率となるように、前段
の減温器におけるスプレィ量を操作する方式を用いてい
る場合がある。
As one solution, a method is sometimes used in which the amount of spray in the attemperator at the front stage is controlled so that the amount of spray at the attemperator at the rear stage is at a constant ratio with the flow rate of water or steam.

第1図は、この従来装置の制御対象である多段スプレィ
方式の蒸気過熱プロセスおよびその制御機構の概念構成
図である。
FIG. 1 is a conceptual diagram of a multi-stage spray type steam superheating process and its control mechanism, which is controlled by this conventional apparatus.

第1図において、1は蒸発器、2は前段過熱器、3は前
段減温器、4は中間過熱器、5は後段減温器、6は最終
過熱器、7は前段スプ!し1弁1.8は後段スグレ弁、
、10は主蒸気温度制御要素、109はその出力、11
は後段減温器出口蒸気温度制御要素、107ばその出力
、12は除算要素、13はス/プ、・し比率制御要素、
105ばその出力、15は削1ス減温器出ロ蒸気温度制
御要素、103はその出力、100は給水、101は検
出される給水流量、102は前段スプレ弁7によって罎
整されるスプレ水、104は前段減温器出口蒸気温度検
出値、106は後段スプレ弁8により調節されるスプレ
水、又は検出さ1tたスプレ水106の流量、yは主蒸
気流量112まだは給水流[:101、x / yは除
算要素12の出力、108は後段減温器出口蒸気温度検
出値、111は主蒸気温度目標値、110は主蒸気温度
検出11転 113は主蒸気である。
In FIG. 1, 1 is an evaporator, 2 is a pre-superheater, 3 is a pre-superheater, 4 is an intermediate superheater, 5 is a post-desuperheater, 6 is a final superheater, and 7 is a pre-stage superheater. 1 valve 1.8 is the rear stage Sugre valve,
, 10 is the main steam temperature control element, 109 is its output, 11
is a second stage desuperheater outlet steam temperature control element, 107 is its output, 12 is a division element, 13 is a sp/sp, and ratio control element,
105 is the output of the filter, 15 is the steam temperature control element at the outlet of the attemperator, 103 is its output, 100 is the water supply, 101 is the detected water supply flow rate, and 102 is the spray water that is regulated by the pre-stage spray valve 7. , 104 is the detected steam temperature at the outlet of the preheater, 106 is the spray water adjusted by the post-spray valve 8, or the flow rate of the detected 1 ton of spray water 106, and y is the main steam flow rate 112, which is the feed water flow [:101 , x/y is the output of the division element 12, 108 is the detected value of steam temperature at the outlet of the second stage desuperheater, 111 is the main steam temperature target value, 110 is the main steam temperature detection 11, and 113 is the main steam.

ボイラへの給水100は、主に燃料の?、焼による放射
伝熱により蒸発器1(ドラム形ボイラの場合にはドラム
を含む)で蒸発して蒸気になる。
Is the water supply to the boiler 100 mainly for fuel? , evaporates into steam in the evaporator 1 (including the drum in the case of a drum-type boiler) due to radiation heat transfer due to sintering.

この蒸気を前段過熱器2で過熱し、欠いて前段減温器3
において前段スプレ弁7で調節したスプレ水102を噴
きして温度を下げる。
This steam is superheated in the pre-stage superheater 2, and then heated in the pre-stage desuperheater 3.
The temperature is lowered by spraying spray water 102 regulated by the front-stage spray valve 7.

前段減温器3f:出た蒸気を中間過熱器4で書び過熱し
、後段減温器5において後段スプレ弁8で調節したスプ
レ水106を噴霧して再び温度を一トげろ。
First-stage desuperheater 3f: Superheat the emitted steam in the intermediate superheater 4, and then spray the spray water 106 adjusted by the second-stage spray valve 8 in the second-stage desuperheater 5 to raise the temperature again.

そして、最終過熱器6で所定の温度1で過熱し主蒸気と
してボイラから送り出す。
Then, it is heated to a predetermined temperature 1 in a final superheater 6 and sent out from the boiler as main steam.

この従来装置メ1の制御機構は、一方では、主蒸気温度
目標値111と主蒸気温度目標値110の偏差により主
蒸気温度制御要素10の出力109を制御し、さらに出
力109と後段減温器出口蒸気温度検出値108の偏差
によI喉減温器出口蒸気温度制御要素11の出力107
 全制御し後段スプレ弁8の1511度を調整する。
The control mechanism of this conventional device ME1, on the one hand, controls the output 109 of the main steam temperature control element 10 based on the deviation between the main steam temperature target value 111 and the main steam temperature target value 110, and further controls the output 109 and the downstream desuperheater. The output 107 of the I throat attemperator outlet steam temperature control element 11 is determined by the deviation of the detected outlet steam temperature value 108.
Fully control and adjust the rear spray valve 8 to 1511 degrees.

1m方では、スプレ水106のスプレ流量Xと主蒸気流
セ(112あるいは給水流量101からなるy′を除算
要素工2へ与えてx/yeスプレ比率制御夢素13に出
力し、その出力(目標値)105と前段減温器出口蒸気
温度検出値104の偏差により前段減温器出口蒸気温度
制御i要素15の出力103を制御し、この出力103
により前段スプレ弁7の開度をW4節している。
On the 1 m side, y' consisting of the spray flow rate X of the spray water 106 and the main steam flow rate 112 or the feed water flow rate 101 is given to the division element 2 and output to the x/ye spray ratio control element 13, and its output ( The output 103 of the pre-stage desuperheater outlet steam temperature control element 15 is controlled based on the deviation between the target value) 105 and the detected value 104 of the pre-stage desuperheater outlet steam temperature, and this output 103
The opening degree of the front stage spray valve 7 is set to W4.

なお、従来機構として後段の減温器5におけるスプレ量
を蒸気量と一足の比率に保つ方法として、前段の減温器
3におけるスプレn:を操作して、後段の減温器5にお
ける人口と出口の蒸気温1組差か−V値となるように制
御する方式が第2図に示される。
In addition, as a conventional mechanism, as a method of keeping the spray amount in the later stage desuperheater 5 at a ratio of one foot to the steam amount, the spray n: in the former stage desuperheater 3 is operated to control the population in the later stage desuperheater 5. FIG. 2 shows a method of controlling the steam temperature at the outlet so that the difference in steam temperature becomes -V value.

図において第1図と同一符号は同一もしくは相当部分を
表わす。
In the figures, the same reference numerals as in FIG. 1 represent the same or corresponding parts.

115は後段減温器人口蒸気温度検出値、14は後段減
温器出口蒸気温度制御要素、114はその出力である。
Reference numeral 115 indicates a detected value of the artificial steam temperature of the latter stage attemperator, 14 indicates the latter stage attemperator outlet steam temperature control element, and 114 indicates its output.

この従来装置は、主蒸気温度制御要素10の出力109
と後段減温器入口蒸気温度検出値115との偏差により
後段減温密入出口蒸気温度差制御要素14の出力114
を制御し、その出力114と前段減温器出口蒸気温度検
出値104との偏差をとシ前段減温器出ロ蒸気温度制御
要素15の出力103′fc制御して前段スプレ弁7の
開度を調整している。
This conventional device has an output 109 of the main steam temperature control element 10.
The output 114 of the second stage desuperheater dense inlet and outlet steam temperature difference control element 14 is determined by the deviation between the detected value 115 of the steam temperature at the inlet of the second stage desuperheater.
The deviation between the output 114 and the detected value 104 of the steam temperature at the outlet of the front attemperator is controlled, and the opening degree of the front spray valve 7 is controlled by controlling the output 103'fc of the front attemperator outlet steam temperature control element 15. are being adjusted.

後段スプレ弁8の開度調節は第1図の場合と同じ。The opening degree adjustment of the rear stage spray valve 8 is the same as in the case of FIG.

しかして、混焼ボイラにおいては混焼比率により、ガス
再循環式ボイラでは燃料量に対する再循環ガス量の比率
によシ、またコンバインドサイクル発電プラントの助燃
にボイラではボイラでの燃料量に対するガスタービン排
ガス量の比率によシ、ボイラ各部での熱吸収配分が大幅
に変化する。
Therefore, in a mixed combustion boiler, the ratio of recirculated gas to the fuel amount varies depending on the mixed combustion ratio, in a gas recirculation boiler, the ratio of the amount of recirculated gas to the amount of fuel, and in the case of auxiliary combustion in a combined cycle power plant, the amount of gas turbine exhaust gas relative to the amount of fuel in the boiler Depending on the ratio, the heat absorption distribution in each part of the boiler changes significantly.

例えば、液体燃料と気体燃料を混焼する場合には1.液
体燃料の比率が大きいほど火炉(蒸発部たとえば蒸発器
1)での熱吸収の割合が大きくなる。
For example, when co-firing liquid fuel and gaseous fuel, 1. The greater the proportion of liquid fuel, the greater the proportion of heat absorption in the furnace (evaporation section, for example, evaporator 1).

逆に、気体燃料の割合が大きいほど煙道部(たとえば過
熱器2,4.6)での熱吸収割合が増大する。
Conversely, the greater the proportion of gaseous fuel, the greater the rate of heat absorption in the flue section (eg superheater 2, 4.6).

このため、混焼ボイラにおいて、後段の減温器5におけ
るスプレ量を蒸気量に対して、混焼比率によらず一定比
率となるように、前段の減温器3におけるスプレ量を操
作して制御する方式では以下の難点があった。
For this reason, in a co-firing boiler, the amount of spray in the desuperheater 3 in the previous stage is controlled by manipulating the amount of spray in the desuperheater 3 in the previous stage so that the amount of spray in the desuperheater 5 in the downstream stage is a constant ratio with respect to the steam amount, regardless of the co-firing ratio. The method had the following difficulties.

すなわち、液体燃料の割合が多い場合には、過熱器2.
 4. 6での伝熱量が減るためスプレ量を減少させな
ければガらず、前段の減温器3のスプレ量の定常値が下
限近くになる。
That is, when the proportion of liquid fuel is large, superheater 2.
4. Since the amount of heat transferred at 6 is reduced, the spray amount must be reduced to prevent the steady state value of the spray amount of the preheating device 3 from reaching the lower limit.

逆に、気体燃料の割合が多くなると、過熱器2゜4.6
での伝熱量が増大しスプレ量を増大しなければならなく
なり、前段の減温器3のスプレ量の定常値が上限近くに
なる。
Conversely, when the proportion of gaseous fuel increases, the superheater 2°4.6
As the amount of heat transferred increases, the amount of spray must be increased, and the steady value of the amount of spray from the attemperator 3 at the front stage becomes close to the upper limit.

この結果、前段の減温器3による蒸気温度調整能力が低
下し、負荷変化などの外乱発生時における蒸気温匠変動
の抑制能力に問題があった。
As a result, the ability to adjust the steam temperature by the desuperheater 3 in the previous stage is reduced, and there is a problem in the ability to suppress fluctuations in steam temperature when disturbances such as load changes occur.

また、混焼の伝熱源比率が変化した時、その影響が蒸気
温度に現われて始めてフィードバック的に制御している
ため制御の応答性が悪かった。
Furthermore, when the heat transfer source ratio of co-firing changes, control is performed in a feedback manner only after the effect appears on the steam temperature, resulting in poor control responsiveness.

さらに、前段の減温器3におけるスプレ量が大幅に変動
し、制御系の時定数が過大なとき前記変動が持続する傾
向があり、安定性の面からも問題があった。
Further, the amount of spray in the attemperator 3 at the front stage fluctuates significantly, and when the time constant of the control system is excessive, the fluctuation tends to persist, which also poses a problem from the standpoint of stability.

なお、ガス再循環式ボイラでは、前記混焼ボイラにおけ
る液体燃料を燃料とし気体燃料を再循環ガス量とし、あ
るいはコンバインドサイクル発電プラントにおける助燃
式ボイラでは、液体燃料をボイラにおける燃料とし気体
燃料をガスタービン排ガスとすれば、前記混焼ボづうに
おける場合と同し状況にある(このため、本発明は混焼
ボイラの場合について説明をする)。
In addition, in a gas recirculation type boiler, the liquid fuel in the mixed combustion boiler is used as the fuel and the gaseous fuel is used as the recirculated gas amount, or in the auxiliary combustion type boiler in a combined cycle power plant, the liquid fuel is used as the fuel in the boiler and the gaseous fuel is used as the gas turbine. In the case of exhaust gas, the situation is the same as in the case of the co-fired boiler (therefore, the present invention will be explained with respect to the case of the co-fired boiler).

〔発明の目的〕[Purpose of the invention]

そこで本発明は、従来装置の不具合な状況に鑑みてなさ
れたもので、伝熱源比率の異なる種々の状態においても
、各減温器でのスプレ量の定常値を負荷変化などの外乱
に対処できる適正な値とし、また同時に伝熱源比率変化
時にはフ4−ドフォワード的制御機能を発揮する、制T
lI41性能が&tしたボ4うの蒸気温度制御装置を提
供することを、その目的とする。
Therefore, the present invention was made in view of the problems with conventional devices, and it is possible to maintain the steady value of the spray amount in each attemperator to cope with disturbances such as load changes even under various conditions with different heat transfer source ratios. Control T is set to an appropriate value and at the same time provides a four-forward control function when the heat transfer source ratio changes.
It is an object of the present invention to provide a steam temperature control device for a vessel with a high performance.

〔発明の概狭〕[Narrowness of the invention]

本発明は、複数り類の伝熱源で蒸気を発生し過熱し、蒸
気過熱系統に複数段の減温器を設けて蒸気温度を制御し
ている2段以上の多段スプレづ方式からなるボイラにお
いて、伝熱源(混焼)比率を関数要素を介しであるいは
その出力をさらに動特性要素を経て、スプレ比率制御要
素あるいは後段減温密入出口蒸気温度差制御要素に与え
て、前記伝熱源比率に応じて給水旬あるいは蒸気毎二と
、スプレ量との比率を可変にしたボイラの蒸気温度制御
装置である。
The present invention relates to a boiler consisting of a multi-stage spray system with two or more stages, in which steam is generated and superheated using a plurality of heat transfer sources, and a steam superheating system is provided with a multi-stage desuperheater to control the steam temperature. , the heat transfer source (co-firing) ratio is applied via a function element or its output is further passed through a dynamic characteristic element to a spray ratio control element or a latter-stage temperature reduction dense inlet and outlet steam temperature difference control element, depending on the heat transfer source ratio. This is a boiler steam temperature control device that allows the ratio between the water supply level or steam volume to be varied and the spray amount.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明の一実施例の構成を示すブロック図で
ある。
FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention.

すなわち、従来のf);IJ l+ltl装置における
構成要素に新たに関数要素16また必要に応じて動特性
要素エフを付加して、本発明の制御装置が構成される。
That is, the control device of the present invention is constructed by adding a new function element 16 and, if necessary, a dynamic characteristic element F to the components in the conventional f);IJ l+ltl device.

ここで、関数要素16は伝熱源(混焼)比率信号115
を入力して、その混焼定常状態での適止なスプレ比率(
蒸気流量または給水流部とスプレ流量の比率)の目標値
を発生する弗素で、1.16はその出力である。
Here, the function element 16 is the heat transfer source (co-firing) ratio signal 115
Enter the appropriate spray ratio (
1.16 is its output.

また、動特性要素17は、伝熱線比率信号115の変化
と伝熱源比率変化によるボづう各部の蒸気温度変化に動
的なタイミングのずれがある場合に、その過渡変化時の
動特性のマツチングをはかり、同時に良好なフィードフ
ォワード制御性を実現するために、関数快素16の出力
信号116を動特性変換してスプレ比率目標値117を
発信する要素である。
In addition, the dynamic characteristic element 17 performs matching of the dynamic characteristic at the time of a transient change when there is a dynamic timing difference between the change in the heat transfer wire ratio signal 115 and the steam temperature change in each part due to the change in the heat transfer source ratio. At the same time, it is an element that converts the dynamic characteristics of the output signal 116 of the function element 16 and transmits the spray ratio target value 117 in order to realize good feedforward controllability.

次に本発明の動作について説明する。Next, the operation of the present invention will be explained.

除算要素12からのスプレ比率実測値x / yがその
目標値117と一致するように、スプレ比率制御要素1
3は前段減温器出口蒸気温度の目標値105を発信する
Spray ratio control element 1 such that the measured spray ratio value x/y from division element 12 matches its target value 117.
3 transmits a target value 105 of the steam temperature at the outlet of the preheater.

前段減温器出口蒸気温度別で面要素15は、前段スプレ
弁7を操作して前段減温器出口蒸気温度検出値104が
その目標値105と一致するように匍制御する。
The surface element 15 controls the pre-stage attemperator outlet steam temperature by operating the pre-stage spray valve 7 so that the detected value 104 of the pre-stage attemperator outlet steam temperature matches its target value 105 .

すなわち、前段スプレ弁7を操作して結果的に後段減温
器出口蒸気温度104を変え、後段減温器5におけるス
プレ流量106の、蒸気流量112あるいは給水流H−
totとの比率が所定の値となるようにfli!制御が
行なわれる。
That is, by operating the front spray valve 7 and changing the steam temperature 104 at the outlet of the rear attemperator, the spray flow rate 106 in the rear attemperator 5 is changed to the steam flow rate 112 or the feed water flow H-.
fli! so that the ratio with tot becomes a predetermined value. Control takes place.

ここで、関数髪素16は伝熱源(混焼)比率信号115
を人力して、その混焼状態における’>Iη切なスプレ
比系の目標値116を発信する。つまり、気体燃料の割
合が増減して過熱器2. 4. 6部での伝熱袖が増減
すると、主蒸気温l&:lloを一定に保つためにはス
プレーを増減させなけt’LばならiV)。
Here, the function element 16 is the heat transfer source (co-firing) ratio signal 115
is manually transmitted, and a target value 116 of the spray ratio system that is '>Iη in that co-firing state is transmitted. In other words, the proportion of gaseous fuel increases or decreases in the superheater 2. 4. If the heat transfer sleeve in Part 6 is increased or decreased, the spray must be increased or decreased in order to keep the main steam temperature l&:llo constant.

このため、スプレ比率の目標値105も変化させ、前段
減温器3におけるスプレ44.の増7威と共に、後段減
温器5のスプレ適も増減する。
For this reason, the target value 105 of the spray ratio is also changed, and the spray 44. As the power increases, the spray capacity of the post-temperature reducer 5 also increases or decreases.

これにより、従来、伝熱源(わも焼)比率が変化した際
にスプレ偏・の増減が全て前段スプレ弁7に背負され、
伝熱源(混焼)比率が標準値から離ノtだ場合に前段ス
プレ弁7の開度が限界値近くになるという、負荷変化時
における制御上の問題点が解消した。
As a result, conventionally, when the heat transfer source (wamoyaki) ratio changes, all the increase or decrease in spray bias is carried by the front spray valve 7,
The control problem at the time of load change, in which the opening degree of the front spray valve 7 becomes close to the limit value when the heat transfer source (co-firing) ratio is far from the standard value, has been solved.

さらに、伝熱源(混焼)比率のと同時に、蒸気温度の変
化を待つことなくフィードフォワード的にスプレ弁を操
作するため、過渡変化時における応答性が早まり、制御
性が向上する。
Furthermore, since the spray valve is operated in a feedforward manner at the same time as the heat transfer source (co-firing) ratio without waiting for a change in steam temperature, responsiveness during transient changes is quickened and controllability is improved.

しかも動特性要素17は、伝熱源(混焼)比率が変化し
た時の信号の伝達の遅速を補償して過渡時の制御性をさ
らに改善する必要がある場合に、制御系に挿入して使用
し、関数要素16の出力信号116の変化特性を変えて
スプレ目標値信号として発信する。
Furthermore, the dynamic characteristic element 17 can be inserted into the control system when it is necessary to further improve controllability during transient conditions by compensating for the slow speed of signal transmission when the heat transfer source (co-firing) ratio changes. , the change characteristic of the output signal 116 of the function element 16 is changed and transmitted as a spray target value signal.

なお、伝熱源(混焼)比率が変化した時に、その変化信
号115が本発明装置を介してスプレ弁7の開度を変化
させ、これによる主蒸気温度の応答110とボイラ内部
における熱吸収配分変化による主蒸気温度の応答110
を比較し、前者の応答が早ければ遅れ特性の要素を、逆
に遅ければ進み特性の要素を、動特性要素17として用
いる。
Note that when the heat transfer source (mixed combustion) ratio changes, the change signal 115 changes the opening degree of the spray valve 7 via the device of the present invention, resulting in a main steam temperature response 110 and a change in heat absorption distribution inside the boiler. Main steam temperature response 110 due to
If the former response is quick, the element with the delay characteristic is used as the dynamic characteristic element 17, and conversely, if the response is slow, the element with the advance characteristic is used as the dynamic characteristic element 17.

さらに、熱吸収配分変化による主蒸気温度の応答110
が逆応答特性を示すボイラでは、こ・れを補償する逆応
答特性の要素を、動特性要素17とじて採用する。
Furthermore, the main steam temperature response 110 due to changes in heat absorption distribution.
In a boiler that exhibits a reverse response characteristic, an element of the reverse response characteristic that compensates for this is employed as the dynamic characteristic element 17.

これにより、応答のマツチングがとれ、伝熱源(混焼)
比率の定常時の制御性のみならず、伝熱源(混焼)比率
変化時においても優t″した制御性全発揮するボイラの
蒸気温度制御装置を得ることができる。
As a result, response matching can be achieved and the heat transfer source (co-firing)
It is possible to obtain a boiler steam temperature control device that exhibits excellent controllability not only when the ratio is steady, but also when the heat transfer source (mixed firing) ratio changes.

第4図は、本発明の能の実施例の構成を表わすブロック
図である。
FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention.

この能の実施例は第2図の従来装置において、減温益5
0人出口1晶度差が一定であれば、蒸気流量に対するス
プレ流量の比率もほぼ一定になることを利用している。
An example of this function is that in the conventional device shown in FIG.
This method utilizes the fact that if the crystallinity difference is constant, the ratio of the spray flow rate to the steam flow rate will also be approximately constant.

すなわち、後に減温器入出口蒸気温度走制御要素14は
、仮設減温器入口蒸気温度検出値115とその出口蒸気
温度目標値109の間の温鹿差を、その温匿差−標帥1
19と一致するように、前段減温器出口蒸気温度目標値
114を発信し前段減温器出口蒸気温度検出値素15を
介して前段スプレ弁7を制(財)する。
That is, later, the attemperator inlet/outlet steam temperature travel control element 14 converts the temperature difference between the temporary attemperator inlet steam temperature detection value 115 and its outlet steam temperature target value 109 into the temperature difference - standard 1.
19, the pre-stage attemperator outlet steam temperature target value 114 is transmitted and the pre-stage attemperator outlet steam temperature detection value element 15 is used to control the pre-stage spray valve 7.

さらに、関数要素18は伝熱源(混焼)比率信号115
を入力(−1その混焼状態で適切なスプレ比率の場合の
温度差値を温度差1樟fig、 118として発信する
Furthermore, the function element 18 is a heat transfer source (co-firing) ratio signal 115
Input (-1) The temperature difference value when the spray ratio is appropriate in that co-firing state is transmitted as the temperature difference 1歟fig, 118.

なお、伝熱源(混焼)比率変化時の過渡制御応答をさら
に改善したい場合には、第3図の実施例と同様に、動特
性要素19を系に挿入して関数要素18の出力信号11
8の変化特性を変えて温度差の目標値119として発信
する。
Incidentally, if it is desired to further improve the transient control response when the heat transfer source (co-firing) ratio changes, the dynamic characteristic element 19 is inserted into the system and the output signal 11 of the function element 18 is changed as in the embodiment shown in FIG.
8 is changed and transmitted as a target value 119 of the temperature difference.

〔発明の効果〕〔Effect of the invention〕

かぐしと本発明によれば、多段スプレ方式で蒸気温度を
制(財)しているボイラにおいて、伝熱源比率を変化さ
せる運用がなされても、いずれの状態においても、負荷
変化時に蒸気を晶度を良好に制御できる。また、伝熱源
比率変化の過渡時においても制御性が向上し、蒸気温度
変動幅が減少する効果が得られる。
According to Kagushi and the present invention, even if the heat transfer source ratio is changed in a boiler that controls steam temperature using a multi-stage spray method, the steam will not be crystallized when the load changes in any state. The temperature can be well controlled. In addition, controllability is improved even during transient changes in the heat transfer source ratio, and the effect of reducing the width of steam temperature fluctuation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来装置のブロック図、第3図お
よび第4図は本発明の一実施例および曲の実施例の栴成
を示すブロック図である。 1・・・蒸発器、2・・・前段過熱器、3・・・前段減
温器、4・・・中間過熱器、5・・・後段減温器、6・
・・最終過熱器、7・・・前段スプレ弁、8・・・後段
スプレ弁、 10・・・主蒸気温度制御要素、11・・
・後段減温器出口蒸気温度制御要素、12・・・除算要
素、13・・・スプレ比率制御要素、14・・・後段減
温器出口蒸気温度制御要素、15・・・前段減温器出口
蒸気温度制?ill要素、16.18・・・関数要素、
17.19・・・動特性要素。 出願人代理人  猪 股   清 1
FIGS. 1 and 2 are block diagrams of a conventional device, and FIGS. 3 and 4 are block diagrams showing an embodiment of the present invention and the construction of an embodiment of a song. DESCRIPTION OF SYMBOLS 1... Evaporator, 2... Pre-stage superheater, 3... Pre-stage desuperheater, 4... Intermediate superheater, 5... Post-stage desuperheater, 6.
...Final superheater, 7.. Front stage spray valve, 8.. Later stage spray valve, 10.. Main steam temperature control element, 11..
- Post-stage desuperheater outlet steam temperature control element, 12... Division element, 13... Spray ratio control element, 14... Post-stage desuperheater outlet steam temperature control element, 15... Pre-stage desuperheater outlet Steam temperature system? ill element, 16.18...function element,
17.19...Dynamic characteristic element. Applicant's agent Kiyoshi Inomata 1

Claims (1)

【特許請求の範囲】 1、複数種類の伝熱源で蒸気を発生し過熱し、蒸気過熱
系統に複数段の減温器を設けて蒸気温度を制御している
2段以上の多段スプレィ方式からなるボイラにおいて、
低熱源比率に応じて給水量あるいは蒸気量と、スプレィ
量との比率を可変にしたこと全特徴とするボイラの蒸気
温度制御装置。 2、前記複数段の減温器において、後段の減温器の入・
出口蒸気温度差を低熱源比率に応じて可変にすることに
より、給水量あるいは蒸気量、とスプレィ量との比率を
変えろようにした特許請求の範囲第1項記載のボイラの
蒸気温度制御装置。 3、低熱源比率の変化と所定の動的対応をもって、給水
量あるいは蒸気量との比率をさせるようにした特許請求
のイ11λ囲第1項記載のボイラの蒸気温度制御装置。 4、伝熱源が種類の異なる燃料の混焼ボイラにおいて、
低熱源比率として混焼比率を用いる特許請求の範囲第1
項記載のボづうの蒸気温度制御装置。 5、伝熱源が燃料と火炉へ再循環される排ガスのガス再
循環式ボイラにおいて、低熱源比率として燃料量とガス
再循環量の比率を用いる特許請求の範囲第1項記載のボ
イラの蒸気温度制御装置。 6、伝熱源がガスタービン排ガスと燃料のコンバインド
サイクル発′亀用助燃式ボイラにおいて、低熱源比率と
して燃料量とガスタービン排ガス俸の比率音用いる特許
請求の範囲第1項記載のボイラの蒸気温度制御装置。
[Claims] 1. Consists of a two or more stage multi-stage spray system in which steam is generated and superheated using multiple types of heat transfer sources, and the steam temperature is controlled by providing multiple stages of desuperheaters in the steam superheating system. In the boiler,
A boiler steam temperature control device characterized in that the ratio between the amount of water supplied or the amount of steam and the amount of spray is made variable according to the low heat source ratio. 2. In the multi-stage desuperheater, turning on/off the latter stage desuperheater
2. The steam temperature control device for a boiler according to claim 1, wherein the ratio between the amount of water supplied or the amount of steam and the amount of spray is changed by making the outlet steam temperature difference variable in accordance with the low heat source ratio. 3. The steam temperature control device for a boiler according to claim 1, wherein the ratio between the amount of water supplied or the amount of steam is adjusted by a predetermined dynamic response to a change in the low heat source ratio. 4. In a mixed combustion boiler where the heat transfer source uses different types of fuel,
Claim 1 using a co-firing ratio as a low heat source ratio
Bozu's steam temperature control device as described in Section 1. 5. In a gas recirculation boiler in which the heat transfer source is fuel and exhaust gas is recirculated to the furnace, the steam temperature of the boiler according to claim 1, in which the ratio of the amount of fuel to the amount of gas recirculated is used as the low heat source ratio. Control device. 6. In an auxiliary combustion boiler for which the heat transfer source is a combined cycle generator of gas turbine exhaust gas and fuel, the steam temperature of the boiler according to claim 1, in which the low heat source ratio is the ratio of the amount of fuel to the gas turbine exhaust gas salary. Control device.
JP13186982A 1982-07-28 1982-07-28 Controller for temperature of steam from boiler Granted JPS5921902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13186982A JPS5921902A (en) 1982-07-28 1982-07-28 Controller for temperature of steam from boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13186982A JPS5921902A (en) 1982-07-28 1982-07-28 Controller for temperature of steam from boiler

Publications (2)

Publication Number Publication Date
JPS5921902A true JPS5921902A (en) 1984-02-04
JPH0366561B2 JPH0366561B2 (en) 1991-10-17

Family

ID=15068031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13186982A Granted JPS5921902A (en) 1982-07-28 1982-07-28 Controller for temperature of steam from boiler

Country Status (1)

Country Link
JP (1) JPS5921902A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182502A (en) * 1986-02-06 1987-08-10 株式会社日立製作所 Steam temperature control device
JPS62217006A (en) * 1986-03-19 1987-09-24 株式会社日立製作所 Boiler automatic control device
JPH04126901A (en) * 1990-09-18 1992-04-27 Nippon Steel Corp Method for controlling temperature of main steam from boiler
JP2010151345A (en) * 2008-12-24 2010-07-08 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2013181679A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Power generation system, and steam temperature control method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640007A (en) * 1979-09-07 1981-04-16 Hitachi Ltd Boiler steam temperature controlling method
JPS56124809A (en) * 1980-03-05 1981-09-30 Mitsubishi Heavy Ind Ltd Vapor temperature control device for mixed firing electric power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640007A (en) * 1979-09-07 1981-04-16 Hitachi Ltd Boiler steam temperature controlling method
JPS56124809A (en) * 1980-03-05 1981-09-30 Mitsubishi Heavy Ind Ltd Vapor temperature control device for mixed firing electric power plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182502A (en) * 1986-02-06 1987-08-10 株式会社日立製作所 Steam temperature control device
JPS62217006A (en) * 1986-03-19 1987-09-24 株式会社日立製作所 Boiler automatic control device
JPH04126901A (en) * 1990-09-18 1992-04-27 Nippon Steel Corp Method for controlling temperature of main steam from boiler
JP2010151345A (en) * 2008-12-24 2010-07-08 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2013181679A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Power generation system, and steam temperature control method therefor

Also Published As

Publication number Publication date
JPH0366561B2 (en) 1991-10-17

Similar Documents

Publication Publication Date Title
KR950007016B1 (en) Temperature control system of heat exchanger
CN108386829B (en) A kind of temprature control method of boiler overheating steam, device and system
US3667217A (en) Steam gas turbine including a gas turbine and a steam turbine with a steam generator at the downstream end
US3411300A (en) Method and apparatus for sliding pressure operation of a vapor generator at subcritical and supercritical pressure
JPS6033971B2 (en) Control device for power generation equipment
WO2014131272A1 (en) Boiler provided with external steam heater
CN108954294B (en) Feed-forward control method for steam temperature of superheater/reheater of thermal power unit
JPS6224608B2 (en)
JPS5921902A (en) Controller for temperature of steam from boiler
GB793048A (en) An improved method of and apparatus for controlling steam temperatures in a reheat steam generator
US3155077A (en) Power plant organization and method of operation
US3135245A (en) Vapor generator
US3183897A (en) Superheat control
GB744797A (en) Improvements in forced flow, once-through tubulous vapour generating and vapour heating units and to a method of operation thereof
US3139869A (en) Method of regulating vapor temperature
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
US3133529A (en) Control of benson boilers and similar high pressure boilers
CN114110558B (en) Reheat steam temperature control method of secondary reheat boiler based on flue gas baffle adjustment
GB967022A (en) Heat exchanger elements
JPS62245009A (en) Automatic controller for boiler
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
SU646145A1 (en) Method of regulating commercial superheating temperature
JPH0563683B2 (en)
JP2894118B2 (en) Boiler steam temperature control method
US2840055A (en) Method and apparatus for generating steam