[go: up one dir, main page]

JPS5999203A - Stepped point detecting method by optical range finder - Google Patents

Stepped point detecting method by optical range finder

Info

Publication number
JPS5999203A
JPS5999203A JP20323182A JP20323182A JPS5999203A JP S5999203 A JPS5999203 A JP S5999203A JP 20323182 A JP20323182 A JP 20323182A JP 20323182 A JP20323182 A JP 20323182A JP S5999203 A JPS5999203 A JP S5999203A
Authority
JP
Japan
Prior art keywords
distance
spot light
light
spot
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20323182A
Other languages
Japanese (ja)
Inventor
Masao Murata
村田 正雄
Seiichiro Tamai
誠一郎 玉井
Yoshikazu Yokose
義和 横瀬
Keiichi Kobayashi
圭一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20323182A priority Critical patent/JPS5999203A/en
Publication of JPS5999203A publication Critical patent/JPS5999203A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To detect a stepped point of a body easily and accurately at high speed by detecting the position of the maximum or minimum value among differences between data which are at distance corresponding to the diameter of spot light in the scanning direction in a distance data sequence obtained by performing the scanning of an optical range finder. CONSTITUTION:The optical range finder 10 is fitted to the hand, etc., of a robot and a scan on a line C of the body 11 with the step is made to detect an image of the light spot 8 which is formed on the body 11 by the light source 2 and lens 3 of a spot light irradiating device 1 through the lens system 5 and photodetecting sensor 6 of a photodetector 4, thereby obtaining the distance data sequence through a controller 7. Difference between data which are distant from each other by a 0.5mm. scanning-directional spot diameter in the data sequence obtained by sensing at intervals of 0.1mm. in the scanning direction are calculated successively to detect the position of the maximum or minimum value, thereby detecting the stepped point of the body 11 easily and accurately at high speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光学式距離計により得られた距離データの処理
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for processing distance data obtained by an optical rangefinder.

従来例の構成とその問題点 近年、スポット光を用いた光学式の距離計も、小型でし
かも軽量の取扱い容易なものが開発され、位置検出のた
めに積極的に利用されるようになってきた。その利用法
は物体までの距離を数点測定することにより、得られた
データを処理して合同な物体の位置ずれを検出するとい
った用い方が大部分である。光学式距離計のセンシング
に用いる前記スポット光径は、通常11IIrQ程度の
円または楕円をしている。物体表面が平面に近くてスポ
ット光全体がその平面上に照射された場合は、前記光学
式距離計にて物体表面までの正確な距離データが得られ
るが、スポット光が物体表面の段差点〔例えば第2図の
P点〕にかかると、スポット光像は2つ以上の部分に分
割されて光学式距離計の受光部のセンサ上に結像するた
め、第8図(a)に示すように現実には存在しない斜面
を示すような中間値の距離データ列が得られ、かつこの
中間値の距離データ列は走査方向のスポット光径に相当
する走査方向の距離だけあられれるので、物体表面の段
差点を正確に検出することが難しい。つまり。
Conventional configurations and their problems In recent years, compact, lightweight, and easy-to-handle optical rangefinders that use spot light have been developed, and are now being actively used for position detection. Ta. Most of its uses include measuring the distance to an object at several points and processing the obtained data to detect positional deviations of congruent objects. The spot light diameter used for sensing with an optical distance meter is usually a circle or an ellipse of about 11IIrQ. If the object surface is close to a flat surface and the entire spotlight is irradiated onto the flat surface, accurate distance data to the object surface can be obtained using the optical rangefinder, but the spot light may be located at a step point on the object surface. For example, at point P in Figure 2, the spot light image is divided into two or more parts and is imaged on the sensor of the light receiving part of the optical rangefinder, so as shown in Figure 8 (a). A distance data string with an intermediate value indicating a slope that does not exist in reality is obtained, and this distance data string with an intermediate value is extended by a distance in the scanning direction corresponding to the spot light diameter in the scanning direction. It is difficult to accurately detect the step point. In other words.

受光部のセンサとしてポジションセンサ〔スポット光像
の光量の重心位置を電気信号として出力するセンサ〕等
を用いているため、走査方向のスポット光径に相当する
距離だけ検出精度が悪いものである。また、得られた距
離データ列から段差を形成する2つの平面部に相当する
距離データの中央値を有するデータ列の位置から段差点
を検出することも考えられるが、ゴミ等のために物体表
面に凹凸がある場合や物体が傾いている場合等の時は、
直線の式そのものを求めるには複雑な処理を必要とし、
データ処理時間も長くかかるため、実用的でない。また
、スポット光径を小さくした場合は、物体表面の影響を
大きく受けて受光量が大きく変化するとともに受光量そ
のものが減少するので、そのための制御回路としては非
常に感度の良い受光量調節機能や光や電気のノイズに対
する対策を必要とし実現は難しい。また、第8図(b)
のように単純に隣りのデータとの差分をとっても、差分
の最大値または最小値が複数個同一の値をもつだけでな
く、ゴミ等の影響やノイズの影響等によって誤認識し易
いものである。
Since a position sensor (a sensor that outputs the position of the center of gravity of the light quantity of a spot light image as an electrical signal) is used as a sensor in the light receiving section, the detection accuracy is poor for a distance corresponding to the spot light diameter in the scanning direction. It is also possible to detect the step point from the position of the data string that has the median value of the distance data corresponding to the two plane parts forming the step from the obtained distance data string, but due to dust etc. If the surface is uneven or the object is tilted,
Determining the straight line equation itself requires complicated processing,
It is not practical because it takes a long time to process the data. In addition, when the spot light diameter is made smaller, the amount of light received changes greatly due to the influence of the object surface, and the amount of light itself decreases, so the control circuit for this purpose has a very sensitive light amount adjustment function. This is difficult to implement as it requires measures against optical and electrical noise. Also, Fig. 8(b)
Even if you simply calculate the difference between adjacent data like this, not only will multiple maximum or minimum values of the difference have the same value, but it is also easy to misrecognize it due to the influence of dust, noise, etc. .

発明の目的 本発明は前述のような点に留意してなされたものであり
、溶接ワーク等のように物体の表面が斜面になっている
場合、また小さなゴミ等のために表面が凹凸している場
合でも物体の段差点をマイコン等を用いて簡単な方法で
正確に、高速に検出できる方法を提供することを目的と
する。
Purpose of the Invention The present invention has been made with the above-mentioned points in mind, and is applicable when the surface of an object is sloped, such as a welding work, or when the surface is uneven due to small particles, etc. The purpose of the present invention is to provide a method that can accurately and quickly detect the step point of an object using a microcomputer or the like, even when the object is in the opposite direction.

発明の構成 本発明の段差点検出方法は、物体表面にスポット光像を
つくるためのスポット光照射装置と前記スポット光像を
受光してセンサ上に結像させセンサ上の結像位置に対応
した電気信号に変換する受光装置とから構成される光学
式距離計の照射光を走査することによって物体表面まで
の距離を測定しかつ走査方向の一定距離ごとに物体表面
までの距離データ列を得ると共に、距離データ列を前記
走査方向のスポット光径に相当する距離だけ離れた所で
センシングした距離データとの差分を順次とって差分デ
ータ列をつくり、このデータ列の中で最大値または最小
値を有するデータの位置を物体表面の段差点の位置と判
定することを特徴とする。
Structure of the Invention The step point detection method of the present invention includes a spot light irradiation device for creating a spot light image on the surface of an object, and a spot light irradiation device that receives the spot light image and forms an image on a sensor, which corresponds to the image formation position on the sensor. The distance to the object surface is measured by scanning the irradiated light of an optical distance meter consisting of a light receiving device that converts it into an electric signal, and a distance data string to the object surface is obtained at every fixed distance in the scanning direction. , a difference data string is created by sequentially taking the difference between the distance data string and the distance data sensed at a distance corresponding to the spot light diameter in the scanning direction, and the maximum value or the minimum value in this data string is calculated. It is characterized in that the position of the data held is determined to be the position of a step point on the object surface.

実施例の説明 光学式距離計(10の構成を第1図に基づいて簡単に説
明する。光学式距離計04は、止め金(9)に相互の位
置が固定されたスポット光照射装置(1)と受光装置(
4)から成り、スポット光照射装置(1)はレーザダイ
オードや発光ダイオード等の光源(2)をレンズ系(3
)で所定のサイズの均一な強度のスポット光(8)とし
て照射できるようになっている。受光装置(4)はその
光軸がスポット光照射装置(1)の光軸と角度θを成す
ように固定されており、いま、面A、Bの位置は受光装
置(4)のレンズ系(5)とポジションセンサ等の受光
センサ(6)上に結像するスポット光像の位置より求め
られる。受光装置(4)により得られた距離データは制
御装置(7)に転送してマイクロコンピュータ等で処理
される。
Description of Embodiment The configuration of the optical rangefinder (10) will be briefly explained based on FIG. ) and photodetector (
4), the spot light irradiation device (1) connects a light source (2) such as a laser diode or light emitting diode to a lens system (3).
), it can be irradiated as a spot light (8) of a predetermined size and uniform intensity. The light receiving device (4) is fixed so that its optical axis forms an angle θ with the optical axis of the spot light irradiation device (1), and the positions of surfaces A and B are now determined by the lens system ( 5) and the position of the spot light image formed on the light receiving sensor (6) such as a position sensor. The distance data obtained by the light receiving device (4) is transferred to the control device (7) and processed by a microcomputer or the like.

前記光学式距離計01をロボットのハンド等に設け、第
2図のC線上を走査し、かつ一定距離(たとえば1価)
ごとに光学式距離計OIの制御装置(7)にセンシング
指令用の信号を送る。光学式距離計0旧よスポット光照
射装置(1)の光軸と受光装置(4)の光軸がなす面を
なるべく段差を構成する物体0υの辺(11a)とほぼ
平行にし、走査方向は物体01)の辺Uta)にほぼ直
角に横切るようにする。これはスポット光(8)の形状
が前記スポット光照射装置(1)と受光装置(4)の光
軸がなす面の方向に長軸となる楕円形としているので、
受光像〔受光装置に結像する像〕が斜面の影響を受けに
くくするためである。なお、スポット光(8)は短軸D
T(以下スポット光径と称す〕が0.51111 +長
軸が1.Olnmぐらいである。
The optical distance meter 01 is installed on a robot's hand, etc., and scans on line C in FIG.
A sensing command signal is sent to the control device (7) of the optical distance meter OI every time. For optical rangefinder 0 old, make the plane formed by the optical axis of the spot light irradiation device (1) and the optical axis of the light receiving device (4) almost parallel to the side (11a) of the object 0υ that constitutes the step, and set the scanning direction. It should cross the side Uta) of the object 01) almost at right angles. This is because the shape of the spot light (8) is an ellipse whose long axis is in the direction of the plane formed by the optical axes of the spot light irradiation device (1) and the light receiving device (4).
This is to make the received light image (the image formed on the light receiving device) less susceptible to the influence of the slope. Note that the spot light (8) has a short axis D
T (hereinafter referred to as spot diameter) is approximately 0.51111 + long axis 1.0 nm.

なお、スポット光(8)は検出精度に応じて変えること
が可能である。
Note that the spot light (8) can be changed depending on the detection accuracy.

このようにして、前記センシング指令用の信号に基づい
て光学式距離計01により第8図(a)に示すような距
離データ列を得る。このデータ列から段差点を検出する
には走査方向に0.1++mごとにセンシングしたデー
列に対して走査方向のスポット光径D7 ” 0.5 
mm離れたデータ間の差分を順次とれば第8図(c)の
ような点列が得られる。例えば、1番目のデータYi(
但し、i=1:]と6番目Yi+5= Y6のデータと
の差分を取って、第(i+3) = 4番目の位置のデ
ータとする。順次この処理が繰り返される。
In this way, a distance data string as shown in FIG. 8(a) is obtained by the optical distance meter 01 based on the sensing command signal. To detect a step point from this data string, the spot light diameter in the scanning direction is D7'' 0.5 with respect to the data string sensed every 0.1++ m in the scanning direction.
If the differences between data separated by mm are taken sequentially, a sequence of points as shown in FIG. 8(c) can be obtained. For example, the first data Yi(
However, the difference between i=1:] and the data at the 6th position Yi+5=Y6 is taken to obtain the data at the (i+3)th=4th position. This process is repeated sequentially.

これは”i十s = yi十、−Yi と表わせる。こ
のような処理によって得られた差分データ列の最大値の
位置Xp  は第2回のP点位置によく対応している。
This can be expressed as "i0s = yi0, -Yi. The position Xp of the maximum value of the difference data string obtained by such processing corresponds well to the second P point position.

このように処理すれば、スポット光径DTの影響を受け
た部分すべてを含んだデータをもつ位置を検出すること
に対応し、この時にのみ差分値は最大値または最小値と
なるので容易に段差を判別できる。
By processing in this way, it is possible to detect a position that has data that includes all the parts affected by the spot light diameter DT, and only at this time the difference value becomes the maximum or minimum value, so it is easy to detect the difference in level. can be determined.

第4図において、開先溶接ワークo2が(a)に示すよ
うに表面に凹凸があり、ギャップがおいている場合、光
学式距離計Onを揺動装置に取付けて走査方向に0.1
Mごとにセンシングを行なえば(b)に示すような距離
データ列が得られる二走査方向のスポット光径D1− 
= 0.5 tmであるが、スポット光の楕円形状と光
の強度分布、すなわち光量を考慮して走査方向に0.3
胴離れた所でセンシングしたデータ間の差分Yを順次と
ってい< (Y′i+I =Yi+3  ”iとする)
ことにより(c)が得られる。差分のデータ列のなかか
らY′の最大値と最小値に対応する走査方向の点X1と
Xmを求め、Xm−Xlとすれば、開先溶接ワークOノ
のギャップが求まり、溶接電流や電圧等が決まり、T(
Xm−1−XI )とすれば溶接線の位置が求まり、ロ
ボット等にこれらの情報を送ることによって自動溶接が
可能となる。
In Fig. 4, when the groove welding workpiece o2 has an uneven surface and a gap as shown in (a), the optical distance meter On is attached to the swinging device and the distance is 0.1 in the scanning direction.
If sensing is performed for each M, a distance data string as shown in (b) can be obtained. Spot light diameter D1- in two scanning directions
= 0.5 tm, but considering the elliptical shape of the spot light and the intensity distribution of the light, that is, the amount of light, 0.3 in the scanning direction.
The difference Y between the data sensed at a distance from the body is taken sequentially.
This gives (c). Find the points X1 and Xm in the scanning direction corresponding to the maximum and minimum values of Y' from the difference data string, and set it as Xm - Xl to find the gap of the groove welding workpiece O, and calculate the welding current and voltage. etc. are determined, and T(
Xm-1-XI), the position of the welding line can be determined, and automatic welding becomes possible by sending this information to a robot or the like.

なお、上記実施例では光学式距離計OIを揺動させて走
査したが、これは光源(2)の光をミラー等で振らして
走査しても同様である。
In the above embodiment, the optical distance meter OI is oscillated to scan, but the same effect can be obtained by swaying the light from the light source (2) with a mirror or the like.

発明の詳細 な説明のように本発明によると、次のような効果が得ら
れる。
According to the present invention, as described in the detailed description of the invention, the following effects can be obtained.

■ 光学式距離計を用いて走査することにより得られた
距離データ列の走査方向のスポット光径DTに相当する
距離前れた差分を順次とり、その最大値または最小値を
もつ位置に相当する点を段差点として検出するだけなの
で、簡単なソフトまたはハード処理でよい。
■ Sequentially take the differences before the distance corresponding to the spot light diameter DT in the scanning direction of the distance data string obtained by scanning with an optical distance meter, and find the position corresponding to the maximum or minimum value. Since points are simply detected as step points, simple software or hardware processing is sufficient.

■ 差分の最大値または最小値がほとんどただ一つに決
まるので正確である。
■ It is accurate because the maximum or minimum value of the difference is almost unique.

■ 溶接ワーク等のように斜面があっても、表面にゴミ
等があって表面が凹凸していても容易に検出できる。
■ Even if there is a slope such as a welding workpiece, etc., or if the surface is uneven due to dust etc., it can be easily detected.

■ 連続的に検出動作をくり返すことにより、開先溶接
線のギャップ及び位置検出、重ね継手位置検出等を行な
い、ロボット等と連動させることにより自動溶接も行な
うことができる。
- By continuously repeating the detection operation, the gap and position of the groove weld line, the lap joint position, etc. can be detected, and automatic welding can be performed by linking with a robot etc.

■ データ処理がマイコンでも高速にでき、装置自体も
簡単で安価にできる。
■ Data processing can be performed at high speed even with a microcomputer, and the equipment itself can be made simple and inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学式距離計の構成図、第2図は物体の段差点
検出装置の斜視図、第8図(a) (b) (c)はそ
れぞれ距離データ例、隣との差分例、本発明による差分
例のグラフ、第4図(a) (b) (c)はそれぞれ
開先溶接ワークの断面図、距離データ列図、本発明によ
る差分列国を表わす。 (1)・・・スポット光照射装置、(2)・・・光源、
(4)・・・受光装置、(6)・・・受光センサ、(7
)・・・制御装置、(8)・・・スポット光、01・・
・光学式距離計 代理人 森本義弘 第3図 Y′ 第4図 手続補正書(閤) 特許庁長官殿     “1゛°1旨6゜2、発明の名
称 光学距離計による段差点検出方法 3、補正をする者 事件との関係  特許出願人 名称 (582)松下電器産業株式会社4、代 理 人 住 所 〒SSO大阪市西区立売堀1丁目6番171″
iアマノビル電話大阪06 (532) 4025番(
代)氏名  (6808)弁理士森 本 義 弘i5、
         の日付(発送日)昭和  年  月
   日 6、補正により増加する発明の数 7、補正の対象 明#4I書の発明の詳細な説明の欄 明細書の特許請求の範囲の瀾 明測書の図面の簡単な説明の欄 8、補正の内容 (1) ■明#I書の発明の詳細な説明の個 (1)第2頁第1行目、同頁第10行目、同頁第13行
目〜第14行目および同頁第17行目、第4頁第17行
目、第5頁第8行目および同頁第9行目、第6頁第2行
目、同頁第4行目、同頁第4行目〜第6行目および同頁
第10行目、第7頁第18行目、第8頁第12行目およ
び同頁第18行目「光学式距離計」とあるを「光学距離
計」と訂正する。 (2)第7頁第2行目 「デー列」とあるを「データ列」と訂正する。 ■明細書の図面の簡単な説明の欄 0第9頁第16行目、第10頁第4行目「光学式距離計
」とあるを「光学距離計」と訂正する。 ■明細書の特許請求の範囲の欄 別紙のとおり (2) 2、特許請求の範囲 ■、物体表面にスポット光像を作るためのスポット光照
射装置と前記スポット光像を受光してセンサ上に結像さ
せセンサ上の結像位置に対応したrイ気信号に父換する
受光装置とから構成される光学距離計の照射光を走査す
ることによって物体表面までの距離を測定し、かつ走査
方向の一定距離ごとに物体表面までの距離データ列を得
ると共に、距離データ列を、前記走査方向のスポット光
径に相当する距離だけ離れた所でセンシングした距離デ
ータとの差分を順次とって差分データ列をつくり、この
差分データ列の中で最大値または最小値を有するデータ
の位置を物体表面の段差点の位置と判定する光学距離計
による段差点検出方法。 (3) 17−
Fig. 1 is a configuration diagram of an optical distance meter, Fig. 2 is a perspective view of a step detection device for an object, Fig. 8 (a), (b), and (c) are examples of distance data, examples of differences from adjacent ones, Graphs of examples of differences according to the present invention, FIGS. 4(a), 4(b), and 4(c) respectively represent a cross-sectional view of a groove welding workpiece, a distance data sequence diagram, and a difference map according to the present invention. (1)...Spot light irradiation device, (2)...Light source,
(4)...Light receiving device, (6)...Light receiving sensor, (7
)...control device, (8)...spot light, 01...
・Optical rangefinder agent Yoshihiro Morimoto Figure 3 Y' Figure 4 Procedural amendment (contract) Dear Commissioner of the Japan Patent Office “1゛°1 to 6゜2, Name of the invention Method for detecting step points using optical rangefinders 3, Relationship with the case of the person making the amendment Patent applicant name (582) Matsushita Electric Industrial Co., Ltd. 4, agent Address 1-6-171 Tachiuribori, Nishi-ku, Osaka, SSO
i-Amano Building Telephone Osaka 06 (532) 4025 (
Name (6808) Patent Attorney Yoshihiro Morimoto i5,
date (shipment date) Showa year, month, day 6, number of inventions increased by 7 due to amendment, subject of amendment #4 Detailed description of the invention in book I drawings of the detailed description of the scope of claims in the description Brief explanation column 8, contents of amendment (1) ■ Detailed explanation of the invention in Ming #I (1) Page 2, line 1, page 2, line 10, page 13, line 1 2nd to 14th line and the 17th line of the same page, page 4, line 17, page 5, line 8 and the 9th line of the same page, page 6, line 2, and line 4 of the same page "Optical distance meter" in lines 4 to 6 of the same page, line 10 of the same page, line 18 of page 7, line 12 of page 8, and line 18 of the same page. Correct that to "optical rangefinder." (2) In the second line of page 7, correct the phrase "day column" to read "data column." ■ In the brief description of the drawings in the specification column 0, page 9, line 16, and page 10, line 4, "optical distance meter" is corrected to "optical distance meter." ■As per appendix in the claims section of the specification (2) 2. Claims ■: A spot light irradiation device for creating a spot light image on the surface of an object, and a spot light irradiation device that receives the spot light image and displays it on a sensor. The distance to the object surface is measured by scanning the irradiated light of the optical rangefinder, which is composed of a light receiving device that forms an image and converts it into an R-air signal corresponding to the image position on the sensor. A distance data string to the object surface is obtained for each fixed distance, and the difference between the distance data string and distance data sensed at a distance corresponding to the spot light diameter in the scanning direction is sequentially calculated to generate difference data. A method for detecting a step point using an optical rangefinder, which creates a series of differential data and determines the position of the data having the maximum or minimum value as the position of the step point on the surface of an object. (3) 17-

Claims (1)

【特許請求の範囲】[Claims] 1、物体表面にスポット光像を作るためのスポット光照
射装置と前記スポット光像を受光してセンサ上に結像さ
せセンサ上の結像位置に対応した電気信号に変換する受
光装置とから構成される光学式距離計の照射光を走査す
ることによって物体表面までの距離を測定し、かつ走査
方向の一定距離ごとに物体表面までの距離データ列を得
ると共に、距離データ列を、前記走査方向のスポット光
径に相当する距離だけ離れた所でセンシングした距離デ
ータとの差分を順次とって差分データ列をつくり、この
差分データ列の中で最大値または最小値を有するデータ
の位置を物体表面の段差点の位置と判定する光学l距離
計による段差点検出方法。
1. Consisting of a spot light irradiation device for creating a spot light image on the surface of an object, and a light receiving device for receiving the spot light image, forming it on a sensor, and converting it into an electrical signal corresponding to the image formation position on the sensor. The distance to the object surface is measured by scanning the irradiation light of the optical distance meter, and a distance data string to the object surface is obtained at every fixed distance in the scanning direction, and the distance data string is A difference data sequence is created by sequentially taking the difference between the distance data and the distance data sensed at a distance corresponding to the spot diameter of the object. A method of detecting a step point using an optical distance meter to determine the position of the step point.
JP20323182A 1982-11-18 1982-11-18 Stepped point detecting method by optical range finder Pending JPS5999203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20323182A JPS5999203A (en) 1982-11-18 1982-11-18 Stepped point detecting method by optical range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20323182A JPS5999203A (en) 1982-11-18 1982-11-18 Stepped point detecting method by optical range finder

Publications (1)

Publication Number Publication Date
JPS5999203A true JPS5999203A (en) 1984-06-07

Family

ID=16470617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20323182A Pending JPS5999203A (en) 1982-11-18 1982-11-18 Stepped point detecting method by optical range finder

Country Status (1)

Country Link
JP (1) JPS5999203A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142712U (en) * 1987-03-12 1988-09-20
JPH0299815A (en) * 1988-10-07 1990-04-11 Juki Corp optical distance sensor
JPH03186705A (en) * 1989-12-15 1991-08-14 Toyota Central Res & Dev Lab Inc 3D shape and dimension measuring device
US6313830B1 (en) 1997-08-21 2001-11-06 Nec Corporation Liquid crystal display
JP6046852B1 (en) * 2016-07-06 2016-12-21 株式会社エクサ Shape analysis program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184908A (en) * 1981-05-08 1982-11-13 Jido Keisoku Gijutsu Kenkiyuukumiai Shape detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184908A (en) * 1981-05-08 1982-11-13 Jido Keisoku Gijutsu Kenkiyuukumiai Shape detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142712U (en) * 1987-03-12 1988-09-20
JPH0299815A (en) * 1988-10-07 1990-04-11 Juki Corp optical distance sensor
JPH03186705A (en) * 1989-12-15 1991-08-14 Toyota Central Res & Dev Lab Inc 3D shape and dimension measuring device
US6313830B1 (en) 1997-08-21 2001-11-06 Nec Corporation Liquid crystal display
JP6046852B1 (en) * 2016-07-06 2016-12-21 株式会社エクサ Shape analysis program

Similar Documents

Publication Publication Date Title
US5392110A (en) Method and device for measuring height of object whose surface has irregular reflectance
EP3663711B1 (en) Distance measurement method and distance measurement system
JPS5852514A (en) Measuring device for distance between light source and surface of observation
US4484069A (en) Apparatus and method for sensing distance
JPS5999203A (en) Stepped point detecting method by optical range finder
JP3552862B2 (en) Optical displacement sensor and optical thickness sensor
US4949024A (en) Contactless profiling method
US4789243A (en) Orientation determining system for a device
JP3600763B2 (en) Method and apparatus for controlling irradiation position of wedge prism
JPS60117102A (en) Welding line tracing detection device
JPS59203906A (en) Detector for inclination of plane
JPH05333152A (en) Inclination measuring device
JPH11230699A (en) Target arrival position measuring apparatus for bullet
JPS61104202A (en) Optical displacement meter
JPS5855813A (en) Optical distance measuring meter
JPS59184804A (en) Optical distance sensor
JP3705863B2 (en) Height measuring device and height measuring method
JP2004170437A (en) Optical displacement sensor and optical thickness sensor
JPS5836032Y2 (en) level detection device
JPS63127103A (en) Position measuring apparatus
JPS59136606A (en) Weld line detection device
JPS62222117A (en) Multipoint distance measuring sensor
JPH051904A (en) Optical profilometer
JPS63179207A (en) Distance and tilt angle measuring instrument
JPH0334563B2 (en)