[go: up one dir, main page]

JPS5998708A - Method for judging particle agglomeration pattern - Google Patents

Method for judging particle agglomeration pattern

Info

Publication number
JPS5998708A
JPS5998708A JP20914682A JP20914682A JPS5998708A JP S5998708 A JPS5998708 A JP S5998708A JP 20914682 A JP20914682 A JP 20914682A JP 20914682 A JP20914682 A JP 20914682A JP S5998708 A JPS5998708 A JP S5998708A
Authority
JP
Japan
Prior art keywords
pattern
particle
reaction
particle agglomeration
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20914682A
Other languages
Japanese (ja)
Inventor
Tokio Kano
時男 嘉納
Akira Tamagawa
玉川 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP20914682A priority Critical patent/JPS5998708A/en
Priority to FR8319054A priority patent/FR2536858A1/en
Priority to DE19833343149 priority patent/DE3343149A1/en
Publication of JPS5998708A publication Critical patent/JPS5998708A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To always accurately judge a particle agglomeration pattern, by judging the pattern on the basis of the thickness ratio of particle layers of the patterns in a part including the lowermost point of the bottom surface of a reaction vessel and the circumferential part separated therefrom. CONSTITUTION:The image formed to the central part including the lowermost point of the bottom surface 1b of a reaction vessel 1a is received in a first light receiving region 6a by a light receiving element 6 and the image of the circumferential part separated from the central part of the bottom surface 1b is received in a second light receiving regions 6b. The outputs of these regions 6a, 6b are supplied to an operation apparatus 9 through amplifiers 7a, 7b and an A-D converter 8 to judge the particle agglomeration pattern formed to the bottom surface 1b and the result thereof is displayed by a display apparatus 10. In the next step, the thickness ratio of particle layers of the patterns in the aforementioned two parts is calculated and this ratio is compared to a reference value to judge the pattern. Therefore, the particle agglomeration pattern can be always accurately judged.

Description

【発明の詳細な説明】 本発明は、免疫学的凝集反応による粒子凝集パターンの
判定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining a particle aggregation pattern using an immunological agglutination reaction.

かかる粒子凝集パターンの判定方法として、例えば底面
が逆円錐状に形成された反応容器を用い、底面の中央部
の像と周辺部の像とを分離した2つの受光素子上に結像
させて、それらの出力の差に基いて凝集パターンを判定
するようにしたものがある。このように、底面が逆円錐
状に形成された反応容器を用いる場合には、収容した粒
子を含む反応溶液が凝集反応を起すと、沈降した粒子が
凝集結合して逆円錐形底面に一様に1「積する一様堆積
パターンが形成され、また凝集反応が起らないと粒子は
離散したまま沈降し、底面に到達するとその斜面を転が
り落ちて中央の最下点部分に集合する集積パターンが形
成されるから、底面中央部の像を受光する受光素子の出
力をE+、周辺部の像を受光する受光素子の出力をE?
とすると、それらの差ΔE=lE2−E+  lは凝集
パターンに応じて変化する。なわち、凝集パターンが第
1図AおよびBに平面図および断面図を、第1図Cに粒
子量の分布をそれぞれ示すような一様堆積パターンの場
合には、ΔEは小さく、また第2図A。
As a method for determining such a particle aggregation pattern, for example, a reaction vessel whose bottom surface is formed in the shape of an inverted cone is used, and an image of the center portion of the bottom surface and an image of the peripheral portion are imaged on two separate light receiving elements. There is a method that determines the agglomeration pattern based on the difference between these outputs. In this way, when using a reaction vessel with an inverted conical bottom, when the reaction solution containing the contained particles undergoes an aggregation reaction, the settled particles coagulate and bond uniformly to the inverted conical bottom. 1. A uniform deposition pattern is formed, and if no agglomeration reaction occurs, the particles settle in a discrete manner, and when they reach the bottom, they roll down the slope and collect at the lowest point in the center. is formed, the output of the light-receiving element that receives the image at the center of the bottom surface is E+, and the output of the light-receiving element that receives the image at the periphery is E?
Then, their difference ΔE=lE2-E+l changes depending on the aggregation pattern. In other words, when the agglomeration pattern is a uniform deposition pattern as shown in FIGS. 1A and B and the particle amount distribution is shown in FIG. 1C, ΔE is small and the second Diagram A.

BおよびCに示すような集積パターンの場合には八Eは
大きくなる。したがって、実験的に定めた2つの基準値
V+ 、V2  (Vl >V2 )とΔFとを比較す
るこことにより、八E<V2のときく第1図)は[)凝
集(+)J、ΔE>V+のとぎ(第2図)は「非凝集(
−)」と判定することができるど共に、第3図A、Bお
よびCに示すように粒子の集積度が中間的な場合、すな
わちV2≦ΔF<、Vlのときは再検査の対象として「
?」と判定することができる。
In the case of accumulation patterns such as those shown in B and C, 8E becomes large. Therefore, by comparing the two experimentally determined reference values V+, V2 (Vl > V2) and ΔF, when 8E<V2 (Fig. 1) is [) agglomeration (+) J, ΔE >V+ Togi (Figure 2) is “non-aggregation (
-)", but as shown in Figure 3 A, B, and C, when the degree of particle accumulation is intermediate, that is, when V2≦ΔF<, Vl, it is subject to re-examination.
? ” can be determined.

しかしながら、かかる従来の判定方法においては次のよ
うな不具合がある。すなわち、反応容器内に分注された
反応溶液中の粒子量が少なくて第4図へ、BおよびCに
示すように集積パターンが形成された場合には、本来第
2図の場合と同様1−一」と判定されるべきものが、中
央部に集まる粒子の量が少ないためにΔFが小さく、Δ
F≦V1となって第3図と同様に「?」と判定されたり
、極端な場合にはΔE<V2となって第1図の場合と同
様に「+」と判定されることがある。また、分注された
反応溶液中の粒子量が多く、しかも凝集反応が起ってい
る場合には、その凝集反応が第1図の場合と同等か、そ
れ以上に起っても反応の相手成分より余乗の粒子は結合
せず、傾斜底面を転がり落ちて中心部に集まり、第5図
A、BおよびCに示すような凝集パターンを形成する。
However, such conventional determination methods have the following drawbacks. In other words, if the amount of particles in the reaction solution dispensed into the reaction container is small and an accumulation pattern is formed as shown in FIG. 4, B and C, 1. ΔF is small due to the small amount of particles gathered in the center, and Δ
If F≦V1, it may be determined as "?" as in FIG. 3, or in an extreme case, ΔE<V2, and as in the case of FIG. 1, it may be determined as "+". In addition, if the amount of particles in the dispensed reaction solution is large and aggregation reaction is occurring, even if the agglutination reaction is equal to or greater than that shown in Figure 1, the reaction partner Particles with a higher power than the components do not combine, but roll down the inclined bottom surface and gather in the center, forming an agglomeration pattern as shown in FIG. 5A, B, and C.

この場合には、通常の凝集反応が起っているのであるか
ら本来r十Jと判定されるべきであるが、ΔFは必ずし
も八E<V2とはならず、ΔE〉V2あるいはΔE>V
+となって「?」または「−」と誤って判定されること
がある。
In this case, since a normal agglutination reaction is occurring, it should be determined that r0J, but ΔF is not necessarily 8E<V2, and ΔE>V2 or ΔE>V
The result may be erroneously determined as "?" or "-".

本発明の目的は上述した種々の不具合を解決し、凝集パ
ターンを常に正確に判定できる粒子凝集パターン判定方
法を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the various problems mentioned above and to provide a method for determining a particle aggregation pattern that can always accurately determine an aggregation pattern.

本発明は、底面の少なく共一部を傾斜面とした反応容器
に収容した反応溶液中の粒子が沈降して底面に形成され
る粒子凝集パターンを光電的に検出して判定するにあた
り、前記反応容器底面の最下点を含む第1の部分および
この第1の部分から離れた周辺の第2の部分に対応する
測定値に基いて、これら第1および第2の部分における
粒子層の厚さの比を求め、この比に基いて前記凝集パタ
ーンを判定することを特徴とするものである。
The present invention provides a method for photoelectrically detecting and determining a particle aggregation pattern formed on the bottom surface by precipitation of particles in a reaction solution contained in a reaction container with a small bottom surface and a common part having an inclined surface. Based on measurements corresponding to a first portion including the lowest point of the bottom of the container and a peripheral second portion remote from this first portion, the thickness of the particle layer in these first and second portions; The method is characterized in that the aggregation pattern is determined based on this ratio.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第6図は本発明を実施する粒子凝集パターン判定装置の
一例の構成を示す線図である。本例では、底面が逆円1
1[形の反応容器を、透光性のプラスチック等にり成る
基板に複数個マトリック状に形成したマイクロプレート
1を用いる。このマイクロプレート7は、その底面を光
源2がら放射される光ににり照明用]ノンズ3および拡
散板4を経て一様に照明し、各反応容器1aの逆円錐形
底面1bの像を結1象用レンズ5により受光素子6に結
像させる。受光素子6は平面図をも示すように同心円状
の第1おにび第2の受光領域6aおよび6bを有し、第
1の受光領域6aで底面1hの最下点を含む中火部の像
を受光し、第2の受光領M61)で底面1hの中央部か
ら離れた周辺部の像を受光する。これら第1および第2
の受光領域6aおよび6bの出力は、それぞれ増幅器7
aおよび7b、A−Dコンバータ8を経て演算装置9に
供給し、ここで後述する演算を行なって底面1bに形成
された凝集パターンを判定し、その結果を表示装置10
に供給して表示する。
FIG. 6 is a diagram showing the configuration of an example of a particle aggregation pattern determination device implementing the present invention. In this example, the base is an inverted circle 1
A microplate 1 is used in which a plurality of reaction vessels having a shape of 1 [1] are formed in a matrix on a substrate made of transparent plastic or the like. The bottom surface of the microplate 7 is uniformly illuminated by light emitted from the light source 2 via the light beam 3 and the diffusion plate 4, and an image of the inverted conical bottom surface 1b of each reaction vessel 1a is formed. An image is formed on the light-receiving element 6 by the one-zoom lens 5. As shown in the plan view, the light-receiving element 6 has concentric first and second light-receiving areas 6a and 6b, and the first light-receiving area 6a covers the middle heating area including the lowest point of the bottom surface 1h. The second light-receiving area M61) receives the image at the periphery of the bottom surface 1h away from the center. These first and second
The outputs of the light-receiving regions 6a and 6b are respectively transmitted to an amplifier 7.
a and 7b, are supplied to the arithmetic unit 9 via the A-D converter 8, where the aggregation pattern formed on the bottom surface 1b is determined by performing the arithmetic operation described later, and the result is displayed on the display device 10.
and display it.

ここで、第1.第2の受光領域6a、5bに対応する反
応容器1aの逆円錐形底面1bの中央部、周辺部への入
射光強度をJ++、II2、該中央部、周辺部における
凝集パターンの粒子層の平均的な透過率をに+、に2お
よび粒子層以外の光路的物質(サンプル液、反応容器材
料等)の総合的透過率をに−I、に−2、第1.第2の
受光領域6a 、6bへの入射光の平均強度をIt、1
2゜その受光面積をS + 、 S 2およびその変換
効率をに1.に2、増幅器7a、7bの増幅度をAI。
Here, the first. The intensity of the incident light to the central and peripheral parts of the inverted conical bottom surface 1b of the reaction vessel 1a corresponding to the second light-receiving areas 6a and 5b is J++, II2, and the average of the particle layer of the agglomeration pattern in the central and peripheral parts. The overall transmittance of the optical path substances other than the particle layer (sample liquid, reaction vessel material, etc.) is -I, -2, 1st. The average intensity of light incident on the second light receiving areas 6a and 6b is It, 1
2゜ Its light receiving area is S + , S 2 and its conversion efficiency is 1. 2. AI the amplification degree of amplifiers 7a and 7b.

A2およびその出力をEl、E2とすると、Ei =K
i  −At  −3i  ・Ii   (i=+、z
)(i =ki−k −i ・f+ i から、 E!  =Ki  −Ai  =3i  −kii(−
i  −II iとなる。今、反応容器1aに粒子を含
まない反応溶液を収容したとき、すなわちki=1のと
きの出力Eiが100mVとなるように増幅度Aiを調
整すると、粒子を含む反応溶液を収容したときの出力E
1は、 F 1=100  ・ k  i となる。ここで、ρ1=i−kiを新しく定義すると、
これは中央部、周辺部において光が粒子層によって散乱
、吸収されて透過していかない度合を表わづこと(ごな
る。このρiを100倍した昂ρ′iは、ρ1のパーセ
ンi・表示組であり、ρ−1=1(’)0ρi =10
0−100k 1−100−Ei となる。すなわち、このρ−1は粒子を含まない反応溶
液を収容したとぎの出力100mVから、粒子を含む反
応溶液を収容したときの出力Eiを差し引いた値で、粒
子による出力値の減少分をパーセントで表わしたもので
あり、粒子層の厚さによって定まるものである。
If A2 and its output are El and E2, then Ei = K
i −At −3i ・Ii (i=+, z
) (i = ki−k −i ・f+ i, E! = Ki −Ai = 3i −kii(−
i −II i. Now, if the amplification degree Ai is adjusted so that the output Ei is 100 mV when the reaction solution containing no particles is stored in the reaction container 1a, that is, when ki = 1, the output when the reaction solution containing particles is stored is E
1 becomes F 1 = 100 · k i . Here, if we newly define ρ1=i−ki, we get
This expresses the degree to which light is scattered and absorbed by the particle layer in the center and periphery and does not pass through. and ρ-1=1(')0ρi=10
0-100k 1-100-Ei. In other words, ρ-1 is the value obtained by subtracting the output Ei when a reaction solution containing particles is contained from the output 100 mV when a reaction solution containing no particles is contained, and the decrease in output value due to particles is expressed as a percentage. It is determined by the thickness of the particle layer.

本例では、演算装置9において上記ρ−1を求めて、r
−ρ−1/ρ′2を演算し、この比rと所定の基準値R
盲、R2(R+ >R2)とを比較づる。すなわち、第
1図および第5図に示したように、粒子結合反応がある
場合には、中央部の粒子層の厚みの周辺部のそれに対す
る比rは小さく、第2図および第4図に示したにうに、
粒子結合反応の殆んどない場合にはその比rは大きい。
In this example, the arithmetic unit 9 calculates the above ρ-1 and r
−ρ−1/ρ′2 is calculated, and this ratio r and a predetermined reference value R
Compare blindness and R2 (R+ > R2). That is, as shown in FIGS. 1 and 5, when there is a particle bonding reaction, the ratio r of the thickness of the particle layer in the central part to that in the peripheral part is small, and as shown in FIGS. The sea urchin shown
When there is almost no particle binding reaction, the ratio r is large.

また、第3図に示したように、わずかに粒子結合反応が
ある場合にはその比は中間的な値となる。そこで、この
比rと実験的に定めた2つの基準値R1゜R2とを比較
することにより、 r>R1;「−」 R1≧r≧R2:r?J r <R2; r+J と判定する。
Further, as shown in FIG. 3, if there is a slight particle bonding reaction, the ratio will be an intermediate value. Therefore, by comparing this ratio r with two experimentally determined reference values R1°R2, we find that r>R1;"-" R1≧r≧R2:r? It is determined that J r <R2; r+J.

このようにすれば、第1図〜第5図に示した種々の凝集
パターンを正確に判定することができる。
In this way, the various agglomeration patterns shown in FIGS. 1 to 5 can be accurately determined.

なお、本発明は上述した例にのみ限定されるものではな
く、幾多の変更または変形が可能である。
Note that the present invention is not limited to the above-mentioned example, and can be modified or modified in many ways.

例えば反応容器はマイクロプレートに形成されたもので
はなく、個々に分離されたものを用いることもできると
共に、その底面の形状も片流れ屋根形、切妻屋根形、ピ
ラミッド形等種々のものを用いることができる。また、
反応容器底面を走査してその最下点を含む部分と、この
部分から離れた周辺部どにおける(1意の1点あるいは
平均的粒子層の厚さを求めるようにしてもよい。
For example, the reaction vessels are not formed into microplates, but can be individually separated, and their bottoms can have various shapes, such as a single-sided roof, a gable roof, and a pyramid. can. Also,
The bottom surface of the reaction vessel may be scanned to determine the thickness of a unique point or the average particle layer at a portion including the lowest point and at a peripheral portion away from this portion.

以上に述べたj、うに、本発明においては反応容器底面
の最下点を含む部分と、これから離れた周辺部分との光
電出力に基いてこれらの部分における凝集パターンの粒
子層の厚さの比を求め、この比と基準値どを比較して凝
集パターンを判定覆るようにしたから、常に正確な判定
ができる。
As mentioned above, in the present invention, the ratio of the thickness of the particle layer of the agglomerated pattern in the bottom of the reaction vessel is calculated based on the photoelectric output of the part including the lowest point and the peripheral part far away from the bottom of the reaction vessel. This ratio is compared with a reference value to determine the agglomeration pattern, so accurate determination can always be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図へ、B、C〜第5図A、B、Cは凝集パターンの
5つの態様を示す線図、 第6図は本発明を実施する粒子凝集パターン判定装置の
一例の構成を示す絵図である。 1・・・マイクロプレート 1a・・・反応容器1h・
・・底面        2・・・光源3・・・照明用
レンズ   4・・・拡散板5・・・結像用レンズ  
 6・・・受光素子6a、 6h・・・受光領域   
7a、 7b・・・増幅器8・・・A−Dコンバータ 
 9・・・演算装置10・・・表示装置、
Figures 1, B, C to Figure 5 A, B, and C are diagrams showing five aspects of agglomeration patterns, and Figure 6 is a pictorial diagram showing the configuration of an example of a particle aggregation pattern determination device implementing the present invention. It is. 1... Microplate 1a... Reaction container 1h.
... Bottom surface 2 ... Light source 3 ... Lens for illumination 4 ... Diffusion plate 5 ... Lens for imaging
6... Light receiving element 6a, 6h... Light receiving area
7a, 7b...Amplifier 8...A-D converter
9... Arithmetic device 10... Display device,

Claims (1)

【特許請求の範囲】[Claims] 1、底面の少なく共一部を傾斜面とした反応容器に収容
した反応溶液中の粒子が沈降して底面に形成される粒子
凝集パターンを光電的に検出して判定するにあたり、前
記反応容器底面の最下点を含む第1の部分およびこの第
1の部分から離れた周辺の第2の部分に対応する測定値
に基いて、これら第1および第2の部分における粒子層
の厚さの比を求め、この比に基いて前記凝集パターンを
判定することを特徴とする粒子凝集パターン判定方法。
1. In photoelectrically detecting and determining a particle aggregation pattern formed on the bottom surface by precipitation of particles in a reaction solution contained in a reaction container with a small bottom surface and a common part having an inclined surface, the bottom surface of the reaction container Based on the measurements corresponding to a first part including the lowest point of and a peripheral second part remote from this first part, the ratio of the thickness of the particle layer in these first and second parts A method for determining a particle aggregation pattern, characterized in that the aggregation pattern is determined based on this ratio.
JP20914682A 1982-11-29 1982-11-29 Method for judging particle agglomeration pattern Pending JPS5998708A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20914682A JPS5998708A (en) 1982-11-29 1982-11-29 Method for judging particle agglomeration pattern
FR8319054A FR2536858A1 (en) 1982-11-29 1983-11-29 Evaluation of particle agglutination pattern in reaction vessel
DE19833343149 DE3343149A1 (en) 1982-11-29 1983-11-29 Method of evaluating agglutination patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20914682A JPS5998708A (en) 1982-11-29 1982-11-29 Method for judging particle agglomeration pattern

Publications (1)

Publication Number Publication Date
JPS5998708A true JPS5998708A (en) 1984-06-07

Family

ID=16568066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20914682A Pending JPS5998708A (en) 1982-11-29 1982-11-29 Method for judging particle agglomeration pattern

Country Status (3)

Country Link
JP (1) JPS5998708A (en)
DE (1) DE3343149A1 (en)
FR (1) FR2536858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013586A1 (en) * 1990-04-27 1991-10-31 Suzuki Motor Co DEVICE FOR DETECTING IMMUNOLOGICAL AGGLUTINATION

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086468A (en) * 1983-10-18 1985-05-16 Olympus Optical Co Ltd Method for deciding antigen antibody reaction
DE4030699C1 (en) * 1990-09-28 1991-10-10 Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De
US5541417A (en) * 1995-05-18 1996-07-30 Abbott Laboratories Quantative agglutination reaction analysis method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI56905C (en) * 1978-02-28 1980-04-10 Osmo A Suovaniemi FOERFARANDE OCH ANORDNING FOER AUTOMATISK MAETNING AV AGGLUTINATIONSPROV T EX I SPEKTROPOTOMETER ADSOPTIONSFOTOMETER FLUOROMETER ELLER NEFELOMETER
JPS6145479Y2 (en) * 1979-09-10 1986-12-20
JPS57182651A (en) * 1981-05-07 1982-11-10 Olympus Optical Co Ltd Detection apparatus of particle agglomeration pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013586A1 (en) * 1990-04-27 1991-10-31 Suzuki Motor Co DEVICE FOR DETECTING IMMUNOLOGICAL AGGLUTINATION
US5169601A (en) * 1990-04-27 1992-12-08 Suzuki Motor Corporation Immunological agglutination detecting apparatus with separately controlled supplementary light sources
DE4013586C2 (en) * 1990-04-27 1994-08-18 Suzuki Motor Co Device for the detection of immunological agglutination

Also Published As

Publication number Publication date
DE3343149A1 (en) 1984-05-30
FR2536858A1 (en) 1984-06-01

Similar Documents

Publication Publication Date Title
EP0479231B1 (en) Apparatus and method for measuring specimen
JP2897027B2 (en) Immunological agglutination detector
JPS5998709A (en) Method for judging particle agglomeration pattern
US20100145627A1 (en) System with extended range of molecular sensing through integrated multi-modal data acquisition
EP0411907A2 (en) Scattered total internal reflectance apparatus
US4465938A (en) Apparatus for detecting a particle agglutination pattern
JP2007263974A (en) Analyte assay using microparticle labels.
JPS6144268B2 (en)
JP2020523592A (en) Analytical test device
JPH0121454B2 (en)
US20150104880A1 (en) Analyte detection method, fluorescence detection method, and fluorescence detection apparatus using same
JPS5998708A (en) Method for judging particle agglomeration pattern
JP2016050792A (en) Fluorescence detection device, test substance detection device, and fluorescence detection method
US4447396A (en) System for discriminating a precipitation pattern of particles
JP2000019099A (en) Titer plate
JPS58102157A (en) Judging method for particle agglomeration pattern
JPH046464A (en) Immunological examination method
JP2779824B2 (en) Immunological agglutination detector
JPH0121453B2 (en)
JPS6116016B2 (en)
JP2897026B2 (en) Immunological agglutination detector
JPS5811835A (en) Apparatus and vessel for deciding particle flocculation
JPS6159454B2 (en)
CN217820406U (en) Reagent kit
JPS60135748A (en) Deciding method of particle flocculation pattern