JPS5986269A - Method for manufacturing photoelectric conversion device - Google Patents
Method for manufacturing photoelectric conversion deviceInfo
- Publication number
- JPS5986269A JPS5986269A JP57196179A JP19617982A JPS5986269A JP S5986269 A JPS5986269 A JP S5986269A JP 57196179 A JP57196179 A JP 57196179A JP 19617982 A JP19617982 A JP 19617982A JP S5986269 A JPS5986269 A JP S5986269A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- laser
- semiconductor
- trimming
- improve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 title claims description 5
- 238000000034 method Methods 0.000 title claims description 4
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 239000013078 crystal Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000009966 trimming Methods 0.000 abstract description 15
- 238000002161 passivation Methods 0.000 abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052736 halogen Inorganic materials 0.000 abstract description 2
- 150000002367 halogens Chemical class 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 239000012212 insulator Substances 0.000 abstract description 2
- 229920001721 polyimide Polymers 0.000 abstract description 2
- 239000004642 Polyimide Substances 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 230000002950 deficient Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 241000219122 Cucurbita Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は p工N接合を少なくとも1つ有する光電変換
装置匝おいて、短絡(ショート)またはリークをする箇
所または領域をレーザトリミングにて除去することによ
り、光電変換装置(pvcという)としての効率の向上
を計ることを目的とする0
本発明は、かかるレーザトリミングをpvcの内部に設
けるとともに、このトリミングで生じた半導体表面を介
して再びリークが発生しないように、この半導体表面上
に窒化珪素膜または酸化珪素膜またはこれらの上面の有
機樹脂とによシハツシベーション膜を形成させることを
目的としている0
この発明は、不良箇所(ショートまたはリークをしてい
る箇所または領域を以下単に不良箇所という)を検出用
に、とのPVOとして可視光照射によシ出力を検出し、
さらにこの出力の低下箇所をマイクロコンピュータによ
シトリミング用レーザ(例えばYAGレーザ)を与えて
20〜100 d’一般には40〜60μφの円形のノ
くルスLを照射して、上面の電極またはその下側の半導
体を気化除去することにより、上下の第2、第1の電極
間でのショートまたはリークの存在を除去してしまうこ
とを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a photoelectric conversion device having at least one p-N junction, by removing a short-circuit or leakage point or region by laser trimming. The purpose of the present invention is to provide such laser trimming inside the PVC, and to prevent leakage from occurring again through the semiconductor surface caused by this trimming. The purpose of the present invention is to form a silicon nitride film, a silicon oxide film, or an organic resin on the top surface of these semiconductors to form an insulating film on the surface of the semiconductor. (hereinafter simply referred to as a defective area), the output is detected by irradiation with visible light as a PVO,
Furthermore, a microcomputer is used to apply a trimming laser (for example, a YAG laser) to the area where the output decreases, and irradiates it with a circular nozzle L of 20 to 100 d', generally 40 to 60 μφ, to remove the top electrode or its The purpose is to eliminate the presence of short circuits or leaks between the upper and lower second and first electrodes by vaporizing and removing the lower semiconductor.
従来光電変換装置とはその真性効率用面積が0.1〜5
cm’であったこともあり、その製造歩留りにはあまり
大きな進歩がみられていなかった。Conventional photoelectric conversion devices have an intrinsic efficiency area of 0.1 to 5.
cm', so not much progress has been made in the manufacturing yield.
しかし本発明人は、とのpvoの1つのノ(ネルが20
X40cm’または20X60cm”と大きくすると、
この面積中に小さなピンホールが4ヶ以上、太き定の値
を有さす、特K FF (曲線因子)が一般の0.6〜
0.73から0.2〜0.4になつτしまうことに気が
ついた。このように、かかるPVOを調べた結果、ゴミ
、凸起等の汚物または異物の付着により、上下の電極が
互いに電気的にショートしてしまっていることがわかっ
た。またこのような不良箇所があると前記した如くの特
性の劣化が生じPVOパネルとしての所定の特性を得る
ことができず、さらに前記した20cm”以上のパネル
にあっては、その製造歩留りが20〜40%しかなく、
90チ以上を有さなければならない製造ラインを全く満
たしていない。結果として製品のコストアップまた信頼
性の低下をもたらしてしまった。However, the inventor has determined that one of the pvo's (Nel is 20
If you enlarge it to ``X40cm' or 20X60cm'',
There are 4 or more small pinholes in this area, with a thick constant value, and the special K FF (fill factor) is from 0.6 to 0.6.
I noticed that τ went from 0.73 to 0.2-0.4. As a result of examining this PVO, it was found that the upper and lower electrodes were electrically short-circuited to each other due to the adhesion of dirt or foreign matter such as dust and protrusions. In addition, if there are such defective parts, the characteristics will deteriorate as described above, making it impossible to obtain the specified characteristics as a PVO panel, and furthermore, in the case of panels of 20 cm or more as described above, the manufacturing yield will decrease by 20 cm. ~40% only,
The production line, which must have 90 inches or more, is not fulfilled at all. As a result, the cost of the product increases and reliability decreases.
本発明はかかる欠点を除去するため、不良箇所に可視光
を照射して検出し、同時にその箇所にパルス光を照射し
7てその箇所の電極、電極と半導体または上下の電極と
その間の半導体を瞬時にして消去してしまうレーザトリ
ミングを行なうことにより、結果と口て製造歩留りを向
上させ、さらにその信頼性を向上せしめることを目的と
している。In order to eliminate such defects, the present invention irradiates and detects the defective location with visible light, and simultaneously irradiates the defective location with pulsed light 7 to detect the electrode, the electrode and the semiconductor, or the upper and lower electrodes and the semiconductor between them. By performing laser trimming that instantly erases the data, the purpose is to improve the manufacturing yield and further improve the reliability.
以″′Fにその実施例を図面(/i:従って説明する。The embodiment will be described below with reference to the drawing (/i).
第1図は本発明に用いたレーザトリミング系の概要を示
す。FIG. 1 shows an outline of the laser trimming system used in the present invention.
第1図においてレーザトリミングをされる半導体(1)
は基板(2)、第1の電極(5)、P工N接合を少なく
とも1つ有する水素またはハロゲン元素が添加された非
単結晶半導体(3)例えばP型S i x 0f−11
(0’: xZl)−1型5i−IJ型(μCf31)
よシなる半導体で0.4〜0.6μの厚さを有せしめて
いる。さらにこの上面に第2の電極(4)を設け、不良
箇所検出用の端子を2つの電極から連結しデテクター(
6)K導入している。Semiconductor being laser trimmed in Figure 1 (1)
are a substrate (2), a first electrode (5), a non-single-crystal semiconductor (3) doped with hydrogen or a halogen element having at least one P-N junction (3), for example, P-type S i x Of-11
(0': xZl)-1 type 5i-IJ type (μCf31)
It is made of a good semiconductor and has a thickness of 0.4 to 0.6 μm. Furthermore, a second electrode (4) is provided on this upper surface, and a terminal for detecting a defective part is connected from the two electrodes to a detector (4).
6) K has been introduced.
この信号をYAGレーザ(1〜IOW例えば5Wの出力
)を与えてl\−フ2ラー(10)を介しミラーαめを
へてトリミングレーザ0カニよシ30〜50 pfの照
射光により不良箇所を除去する。This signal is applied to a YAG laser (output of 1~IOW, e.g. 5W) and trimmed through a mirror (10) through a mirror (10). remove.
不良箇所の検出用には30〜100μφの可視光例えば
He−NeレーザまたはArレーザ(8)にょシ照射を
する。For detecting defective locations, visible light of 30 to 100 μΦ, such as a He-Ne laser or an Ar laser (8), is irradiated.
かくして不良箇所のレーザトリミングを行なった0
第2図は第1図の工程をそのたて断面図をもって示した
ものである。In this way, laser trimming of the defective parts was carried out. FIG. 2 shows the process of FIG. 1 in a vertical sectional view.
図面(A) において、基板(2)は透光性のガラスを
用い、レーザ光0■を走査して不良箇所鵠(1υを検出
した。PVO(1)は基板(2)上に透光性の第1の電
極(5)、非単結晶半導体(4)、第2の電極(例えば
半導体±をτN1さらKAIO多層膜を0.5〜1.5
p ) (3)を設けている。In drawing (A), the substrate (2) is made of translucent glass, and defective areas (1υ) are detected by scanning the laser beam with 0μ. The first electrode (5), the non-single crystal semiconductor (4), the second electrode (for example, the semiconductor ± is τN1 and the KAIO multilayer film is 0.5 to 1.5
p) (3) is provided.
図面(A)では第1図との対応において上下逆になって
いる。異物α→により第1、第2の電極(5)、(3)
がリーク電流を流している。またα→がショート状態に
ある。Drawing (A) is upside down in correspondence with FIG. 1. The first and second electrodes (5), (3) due to the foreign substance α→
is passing leakage current. Also, α→ is in a shorted state.
かかる不良箇所を可視光を走査し、その出方を検出し、
出力(電圧または0.5〜0.6Vの電流値が所定の値
に比べて30〜60%以上劣化している箇所を検出した
。さらにここK YAGレーザスポット(5ohm”
)を照射し、第2図(B) K示す如く半導体および上
部の電極を蒸着せしめ除去した。Scanning such defective parts with visible light and detecting the appearance of the defect,
We have detected a location where the output (voltage or current value of 0.5 to 0.6 V has deteriorated by 30 to 60% or more compared to the predetermined value.
), and the semiconductor and upper electrode were deposited and removed as shown in FIG. 2(B)K.
かくして半導体(4)はその側面(社)が露出する。Thus, the semiconductor (4) has its side surface exposed.
この後この第2図(B)のpvc(1)をこの全面にわ
たって窒化珪素絶縁物Qカを500−200OAの厚さ
にコーティングをしてパッシベーション膜を作った。こ
れにプラズマ気相法にょシ200〜350”C!代表的
には280°Cで形成させた。さらにこの上面にポリイ
ミド樹脂を1〜3μの厚さにコーティングをして、耐湿
性の向上およびこのトリミング部でのPN間での14
(jll、11のリーク電流を防止した。Thereafter, the entire surface of the PVC (1) shown in FIG. 2(B) was coated with a silicon nitride insulator Q to a thickness of 500-200 OA to form a passivation film. This was formed using a plasma vapor phase method at a temperature of 200 to 350 degrees Celsius (typically 280 degrees Celsius). Furthermore, a polyimide resin was coated on the top surface to a thickness of 1 to 3 μm to improve moisture resistance and 14 between PN in this trimming part
(Jll, 11 leakage current was prevented.
第2図において、レーザ光はα→の下側より上下をJj
7!−’−1’ I 1行った。しかしこの半導体がス
テンレス基板であり、この基板を第1の電極とし、その
上面に非単結晶半導体を形成し、さらにその上面に第2
の電極を設けた場合は、第2図(A)、のα→の方向よ
りのトリミング用レーザ光が好壕しかった。In Figure 2, the laser beam is directed upward and downward from the bottom side of α→
7! -'-1' I went 1. However, this semiconductor is a stainless steel substrate, and this substrate is used as a first electrode, a non-single crystal semiconductor is formed on its upper surface, and a second electrode is formed on its upper surface.
When the electrode was provided, the trimming laser beam from the direction α→ shown in FIG. 2(A) was preferable.
第3図はトリミング部での除去される領域を示したもの
である。FIG. 3 shows the area to be removed at the trimming section.
第3図(A)は半導体(4)は異物に対し第2の電極(
3)のみを選択的に除去したものである。このためpv
a(1)の不良箇所(a2に関し、半導体(4)を一部
露呈させても第2の電極(3)のみを選択的に除去して
いる。さらにこの上面にパッシベーション膜に)を設け
て、リークの発生、信頼性の低下を防いでいる0
第3図(B)は第1、第2の電極(3)(5)が互いに
ショク
一トしている時、そのショート箇所の第2の電極および
半導体(4)をレーザトリミングをして除去したもので
ある。FIG. 3(A) shows that the semiconductor (4) is connected to the second electrode (
3) is selectively removed. For this reason pv
A defective part of a(1) (regarding a2, only the second electrode (3) is selectively removed even if a part of the semiconductor (4) is exposed.Furthermore, a passivation film is provided on the upper surface of this). , which prevents the occurrence of leaks and deterioration of reliability.0 Figure 3 (B) shows that when the first and second electrodes (3) and (5) are in shock with each other, the second electrode at the short-circuit point The electrode and semiconductor (4) were removed by laser trimming.
第3図は不良箇所に)に対し、半導体(1)の第11第
2の電極(5)、(3)およびその間の半導体(4)の
すべてを除去している。この場合レーザ光によりその上
面よシみると第3図食の7w44q円形(イ)(20〜
80μ一般には50μ)を有している。もちろんトリミ
ングのスポットが2またはそれ以上となった場合はその
形状が複合化することによシだ円形、ひようたん状等が
あり得ることはいうまでもない。In FIG. 3, the eleventh and second electrodes (5) and (3) of the semiconductor (1) and all of the semiconductor (4) between them are removed. In this case, if you look at the top surface of the laser beam, you will see a 7w44q circle (A) (20~
80μ, generally 50μ). Of course, if there are two or more trimming spots, the shape may become complex, such as an ellipse or a gourd shape.
以上の如くeζして本発明のPVOにおいては、その内
部においてスポット状に少なくとも基板とは反対側の電
極を除去し、2つの相対する電極間のリーク、ショート
の不良箇所を除去することにより、従来30〜40%し
かその製造歩留シがなかったのが、この不良修正を行な
うことにより、その製造歩留シを80チ以上にすること
ができた。As described above, in the PVO of the present invention, at least the electrode on the side opposite to the substrate is removed in spots inside the PVO, and defective points such as leaks and shorts between the two opposing electrodes are removed. Conventionally, the production yield was only 30 to 40%, but by correcting these defects, the production yield was increased to 80 or more.
Claims (1)
できるレーザートリミング装置によシ導電性基板または
透光性基板上の透光性導電膜よりなる第1の電極と、該
電極上に少なくとも1つのPIN接合を有する非単結晶
、半導および第2の電極間が局部的に短絡またはリーク
箇所または領域を、前記可視光を前記光電変換装置に照
射することによシ発生する光起電力に比べて、前記短絡
またはリース箇所または領域で発生する光起電力が相対
的に少ないことを検出することによシ、確定し、かかる
確定された前記短絡またはリーク箇所または領域の第2
の電極または該電極を該電極下の半導体、該電極下の半
導体および第1の電極を除去することを特徴とする光電
変換装置の作製方法。1. A first electrode made of a transparent conductive film on a conductive substrate or a transparent substrate, and at least A photovoltaic force generated by irradiating the photoelectric conversion device with the visible light at a locally short-circuited or leakage point or region between a non-single crystal semiconductor having one PIN junction and a second electrode. by detecting that relatively less photovoltaic force is generated at the short circuit or leak point or region compared to the short circuit or leak point or region;
A method for manufacturing a photoelectric conversion device, comprising removing an electrode, a semiconductor under the electrode, a semiconductor under the electrode, and a first electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57196179A JPS5986269A (en) | 1982-11-09 | 1982-11-09 | Method for manufacturing photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57196179A JPS5986269A (en) | 1982-11-09 | 1982-11-09 | Method for manufacturing photoelectric conversion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5986269A true JPS5986269A (en) | 1984-05-18 |
JPS637032B2 JPS637032B2 (en) | 1988-02-15 |
Family
ID=16353509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57196179A Granted JPS5986269A (en) | 1982-11-09 | 1982-11-09 | Method for manufacturing photoelectric conversion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5986269A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196774A (en) * | 1984-10-17 | 1986-05-15 | Fuji Electric Co Ltd | Thin film photoelectric conversion device manufacturing equipment |
JPS61210681A (en) * | 1986-02-20 | 1986-09-18 | Sanyo Electric Co Ltd | Manufacture of photovoltaic device |
US4700463A (en) * | 1985-09-09 | 1987-10-20 | Fuji Electric Company Ltd. | Non-crystalline semiconductor solar battery and method of manufacture thereof |
US4734379A (en) * | 1985-09-18 | 1988-03-29 | Fuji Electric Corporate Research And Development Ltd. | Method of manufacture of solar battery |
JP2007273933A (en) * | 2006-03-31 | 2007-10-18 | Kla-Tencor Technologies Corp | Method and apparatus for detecting and removing localized shunt defects in a photovoltaic field |
-
1982
- 1982-11-09 JP JP57196179A patent/JPS5986269A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196774A (en) * | 1984-10-17 | 1986-05-15 | Fuji Electric Co Ltd | Thin film photoelectric conversion device manufacturing equipment |
US4728615A (en) * | 1984-10-17 | 1988-03-01 | Fuji Electric Company Ltd. | Method for producing thin-film photoelectric transducer |
JPH055187B2 (en) * | 1984-10-17 | 1993-01-21 | Fuji Denki Sogo Kenkyusho Kk | |
US4700463A (en) * | 1985-09-09 | 1987-10-20 | Fuji Electric Company Ltd. | Non-crystalline semiconductor solar battery and method of manufacture thereof |
US4734379A (en) * | 1985-09-18 | 1988-03-29 | Fuji Electric Corporate Research And Development Ltd. | Method of manufacture of solar battery |
JPS61210681A (en) * | 1986-02-20 | 1986-09-18 | Sanyo Electric Co Ltd | Manufacture of photovoltaic device |
JPH053752B2 (en) * | 1986-02-20 | 1993-01-18 | Sanyo Electric Co | |
JP2007273933A (en) * | 2006-03-31 | 2007-10-18 | Kla-Tencor Technologies Corp | Method and apparatus for detecting and removing localized shunt defects in a photovoltaic field |
JP4560013B2 (en) * | 2006-03-31 | 2010-10-13 | ケーエルエー−テンカー コーポレイション | Method for increasing the efficiency of photovoltaic laminates |
Also Published As
Publication number | Publication date |
---|---|
JPS637032B2 (en) | 1988-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4806496A (en) | Method for manufacturing photoelectric conversion devices | |
US6271462B1 (en) | Inspection method and production method of solar cell module | |
KR19980018476A (en) | Parasitic M structure structure analysis method of semiconductor device and parasitic M structure structure analysis method of silicon semiconductor device | |
KR102633537B1 (en) | System and method for reworking shingled solar modules | |
JP2009141056A (en) | Method and device for manufacturing solar cell module | |
EP0435469B1 (en) | Method for laser link blowing in integrated circuit fabrication | |
JP5144747B2 (en) | SOLAR CELL MANUFACTURING METHOD, SOLAR CELL MANUFACTURING DEVICE, AND SOLAR CELL | |
JPS5986269A (en) | Method for manufacturing photoelectric conversion device | |
JPS59107579A (en) | Method for manufacturing photoelectric conversion device | |
US5712499A (en) | Large photodetector array | |
JPS5994884A (en) | Manufacture of photoelectric conversion device | |
JP5186552B2 (en) | Solar cell manufacturing method and solar cell manufacturing apparatus | |
JPS6154681A (en) | Method for manufacturing thin film photovoltaic device | |
TWI472782B (en) | Semiconctor device inspecting method and semiconctor device inspecting method system | |
JPH0377672B2 (en) | ||
US4700463A (en) | Non-crystalline semiconductor solar battery and method of manufacture thereof | |
JP2009246122A (en) | Device and method for manufacturing solar cell | |
JPS5986270A (en) | Photoelectric conversion device | |
JPH055187B2 (en) | ||
JPWO2011024750A1 (en) | Solar cell evaluation method and evaluation apparatus | |
JPH077840B2 (en) | Method for manufacturing photoelectric conversion semiconductor device | |
JPS62176174A (en) | Manufacture of photoelectric conversion device | |
KR20110068219A (en) | Repair device and repair method for thin film solar cell | |
KR20120057127A (en) | Laser apparatus and method for manufacturing a solar cell module including the same | |
JPH0710499Y2 (en) | Variable capacity diode device |