[go: up one dir, main page]

JPS5994884A - Manufacture of photoelectric conversion device - Google Patents

Manufacture of photoelectric conversion device

Info

Publication number
JPS5994884A
JPS5994884A JP57206805A JP20680582A JPS5994884A JP S5994884 A JPS5994884 A JP S5994884A JP 57206805 A JP57206805 A JP 57206805A JP 20680582 A JP20680582 A JP 20680582A JP S5994884 A JPS5994884 A JP S5994884A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor
trimming
photoelectric conversion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57206805A
Other languages
Japanese (ja)
Other versions
JPS6257252B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP57206805A priority Critical patent/JPS5994884A/en
Publication of JPS5994884A publication Critical patent/JPS5994884A/en
Publication of JPS6257252B2 publication Critical patent/JPS6257252B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/10Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the manufacturing yield and contrive to improve the reliability by performing laser trimming wherein the electrode at a defect part, the electrode and a semiconductor, or the upper and lower electrodes and the semiconductor therebetween are erased instantaneously by irradiating the part with a visible light. CONSTITUTION:A foreign matter 16 causes the first and second electrodes 3 and 5 to flow a leakage current and becomes a scattering center. Such the defect part is scanned with the viasible light, thus detecting the output thereof, and then a part whose output deteriorates by 30-60% as compared with a fixed value is detected. Further, the semiconductor and the upper electrode are evaporated and removed by irradiating this place with a YAG laser spot. Thus, the semiconductor 4 is exposed at the side surface or the surface 20. Thereafter, this PVC1 is coated with an Si nitride insulator 21 over the entire surface thereof, resulting in the formation of a passivation film. Moreover the upper surface thereof is coated with polyimide resin, thereby improving the moisture resistance and preventing the leakage current on the I-layer side surface between the P-N junction at this trimming part.

Description

【発明の詳細な説明】 本発明は、P工N接合を少なくとも1つ有するにて除去
することにより、光電変換装置(PVC!という)とし
ての効率の向上を計ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to improve the efficiency of a photoelectric conversion device (referred to as PVC!) by eliminating at least one P-N junction.

本発明は、かかるレーザトリミングをPVOの内部に設
けるとともに、このトリミングで生じた半導体表面を介
[7て再びリークが発生しないように、この半導体表面
士に窒化珪素膜または酸化珪素膜またはこれらの上面の
有機樹脂と(Cよりパッシベーション膜を形成させるこ
とを目的としている0 詰 いう)を検出用に、可視光例えばHe−Nθレーザ光の
照射を行ない、この不良置所がその表面の凹凸または異
物によシ散乱しやすいことを利用してこの散乱光を照射
光よシ斜方向に複数個つけられた光フアイバー検出子に
よりフォトセンサに導きり記憶し、一方は光ファイバー
よシの散乱信号検出用の7オトセンサ(0,8μ以上の
波長の赤外光に対するフィルターを設けている)をオフ
とし、さらにトリミング用レーザ(例えばYAGレーザ
〕に信号を与えて、20〜100I一般には40〜60
 p”の円形のパルス光(波長約1μ)を照射して、上
面の第2の電極またはこの第2の電極とその下側の半導
体の一部を気化除去することにより、上下の第2、第1
の電極間でのショートまたはリークの存在を除去してし
まうことを目的とする。
The present invention provides such laser trimming inside the PVO, and in order to prevent leakage from occurring again through the semiconductor surface caused by this trimming, a silicon nitride film, a silicon oxide film, or a silicon oxide film thereof is applied to the semiconductor surface. The organic resin on the top surface (which is intended to form a passivation film from C) is irradiated with visible light, such as a He-Nθ laser beam, for detection. Taking advantage of the fact that it is easily scattered by foreign objects, this scattered light is guided to a photosensor and stored by multiple optical fiber detectors attached in the diagonal direction of the irradiated light, and one side detects the scattered signal from the optical fiber. Turn off the 7 otosensor (equipped with a filter for infrared light with a wavelength of 0.8μ or more), and then give a signal to the trimming laser (for example, a YAG laser) to generate a signal of 20 to 100 I, generally 40 to 60
By irradiating the second electrode on the upper surface or part of the semiconductor below the second electrode and the second electrode on the upper surface by vaporizing and removing the second electrode on the upper surface, 1st
The purpose is to eliminate the presence of shorts or leaks between the electrodes.

従来光電変換装置とはその真性効率用面積が0.1〜5
 %/c m”であったこともあシ、その製造歩留りに
はあまり大きな進歩がみられていなかった。
Conventional photoelectric conversion devices have an intrinsic efficiency area of 0.1 to 5.
%/cm", but not much progress had been made in the manufacturing yield.

しかし本発明人は、とのPVOの1つのパネルが20’
X40cm”または20X60CmLと大きくすると、
この面積中に小さなピンホールが4ヶ以上、大きなピン
ホールが1ヶ以上あると、その部分でPvCの開放電圧
の低下、さらKまたは短絡電流がIJ−りによシ所定の
値を有さす、特にFF(曲線因子)が一般の0.6〜0
.73から0.2〜0.4になってしまうことに気がつ
いた。このように、かかるpvcを調べた結果、ゴミ、
突起等の汚物または異物の付着により、上下の電極が互
いに電気的にショーが生じ、P■0パネルとしての所定
の特性を得ることができず、さらに前記した2 0 c
 m’″以上のパネルにあっては、その製造歩留シが2
0〜40多しかなく90チ以上を有さなければならない
製造ラインを全く満たしていない。結果として製品のコ
ストア体または上下の電極とその間の半導体を瞬時にし
て消去してしまうレーザトリミングを行なうことによシ
、結果として製造歩留シを向上Δせ、さらにその信頼性
を向上せしめることを目的としている0 以下にその実施例を図面に従って説明する。
However, the inventor has determined that one panel of PVO with 20'
If you enlarge it to “X40cm” or 20X60CmL,
If there are 4 or more small pinholes and 1 or more large pinholes in this area, the open circuit voltage of PvC will decrease in that area, and the K or short circuit current will have a predetermined value due to IJ-. , especially when the FF (fill factor) is generally 0.6 to 0.
.. I noticed that it went from 73 to 0.2-0.4. As a result of examining such PVC, it was found that garbage,
Due to the adhesion of dirt or foreign matter such as protrusions, an electrical show occurs between the upper and lower electrodes, making it impossible to obtain the desired characteristics as a P■0 panel, and furthermore, the above-mentioned 20c
For panels larger than m''', the manufacturing yield is 2.
There are only 0 to 40 units, which does not meet the production line requirement of 90 units or more. As a result, by performing laser trimming that instantly erases the cost structure of the product or the upper and lower electrodes and the semiconductor between them, it is possible to improve the manufacturing yield and further improve the reliability. The following embodiments will be described with reference to the drawings.

第1図は本発明に用いたレーザトリミング系の概要を示
す。
FIG. 1 shows an outline of the laser trimming system used in the present invention.

第1図においてレーザトリミングをされる半導体(1)
は基板(2)、第1の電極(3)、P工N接合を少なく
とも1つ有する水素またはハロゲン元素が添加された非
単結晶半導体(4)例えばP型5iXO+−x(0<X
< 1)−1型5i−N型(μ(!−8i)よりなる半
導体で0.4〜0.6μの厚さを有せしめている。さら
にこの上面に第2の電極(5)即ちAg(500〜20
00λ) +A1 (0,5μ)またはITO(700
〜1400λ) +Ag (500〜2000^)十N
i (1000−4000大)を設けたものである。こ
の被膜作製において、He−Neレーザ光(8)を照射
すると、この光電変換装置における0、1〜10μの大
きさの異物がプロセス中またはプロセス前についている
と、この部分に半導体層または電極が形成されなくなっ
てしまう。即ち凹部をF(#、’ してしまう。またこ
れらの異物が残存すると凸部を作シ、いずれも可視光に
対し散乱中心になってしまうこ置し、このこの散乱光を
フォトセンサで検出し、信号があった場合第1のマイク
ロコンピュータα1にてフォトセンサ(7)をオフとし
、さらに第2のマイクロコンピュータα4にで制御した
後、信号をYAGレーザ(9)K与え、とのレーザより
トリミング光(1〜IOW例えば5Wの出力)を与えて
ハーフミラ−(10)を介しミラー0])をへてトリミ
ングレーザ0■によシ30〜50p+の照射光により不
良すをえばHe−NeレーザまたはArレーザ(8)に
より照た0 第2図は第1図の工程をそのたて断面図をもつて示した
ものである。
Semiconductor being laser trimmed in Figure 1 (1)
are a substrate (2), a first electrode (3), a non-single crystal semiconductor (4) doped with hydrogen or a halogen element and having at least one P-N junction (4), for example, a P-type 5iXO+-x (0<X
< 1) It is a semiconductor consisting of -1 type 5i-N type (μ (!-8i)) and has a thickness of 0.4 to 0.6 μ.Furthermore, a second electrode (5), that is, Ag (500~20
00λ) +A1 (0,5μ) or ITO (700
~1400λ) +Ag (500~2000^) 1N
i (1000-4000 large). In this film preparation, when the He-Ne laser beam (8) is irradiated, if a foreign substance with a size of 0, 1 to 10 μm is attached to the photoelectric conversion device during or before the process, the semiconductor layer or electrode will be damaged in this part. It will no longer form. In other words, the concave portion becomes F(#,').Also, if these foreign substances remain, they create a convex portion, which becomes a center of scattering for visible light, and this scattered light is detected by a photosensor. If there is a signal, the first microcomputer α1 turns off the photosensor (7), and after controlling the second microcomputer α4, the signal is given to the YAG laser (9)K. Apply a trimming light (output of 1 to IOW, e.g. 5W) and pass it through the half mirror (10) to the trimming laser 0. FIG. 2 shows the process of FIG. 1 in a longitudinal sectional view.

た。PVC!(1)は基板(2)上に透光性の第1の電
極(3)、非単結晶半導体(4)、第2の電極(例えば
半導体上K OTFさらにその上KAgを薄く形成した
ものを用いた。外部電極との接触用にその上KNiiた
はAI+Niの多層膜を0.5〜1.5μ形成してもよ
い)(5)を設けている。
Ta. PVC! In (1), a transparent first electrode (3), a non-single-crystal semiconductor (4), and a second electrode (for example, KOTF on the semiconductor and KAg on top of it) are formed on the substrate (2). A multilayer film of 0.5 to 1.5 μm of KNii or AI+Ni may be formed thereon for contact with the external electrode (5).

乱中心になっている。It is the center of rebellion.

かかる不良部所を可視光を走査し、その出力を検出し、
出力(電圧または0.5〜0.6■の電流値)ット(5
0μm)を照射し、第2図(B) K示す如く半導体お
よび上部の電極を蒸発せしめ除去した。
Scanning such defective parts with visible light and detecting the output,
Output (voltage or current value of 0.5~0.6)
The semiconductor and the upper electrode were evaporated and removed as shown in FIG. 2(B)K.

かくして半導体(4)はその側面または1表面(イ)が
露出する。
Thus, one side or one surface (a) of the semiconductor (4) is exposed.

この後この第2図(B)のPVO(1)をこの全面にわ
たって窒化珪素絶縁物Q])を500〜2000Hの厚
さにコーティングをしてパッシベーションII1作った
。これはプラズマ気相法によp 200〜350°C代
表的には280°Cで形成させた。さらにこの上面にポ
リイミド樹脂を1〜3μの厚さにコーティングをして、
耐湿性の向上およびこのトリミング部でのPN間での1
層側面でのリーク電流を防止した。
Thereafter, the entire surface of the PVO (1) shown in FIG. 2(B) was coated with a silicon nitride insulator Q]) to a thickness of 500 to 2000 H to form passivation II1. This was formed by a plasma vapor phase method at temperatures between 200 and 350°C, typically 280°C. Furthermore, coat the top surface with polyimide resin to a thickness of 1 to 3 μm,
Improved moisture resistance and 1 between PN at this trimmed part
Prevents leakage current on the side surfaces of the layer.

第2図において、レーザ光はαつの上側よシ行なった。In FIG. 2, the laser beam was directed upwards.

この半導体がステンレス基板上に形成されており、この
基板を第1の電極とし、その上面に非単結晶半導体を形
成し、さらにその上面に第2の電極を設けた場合は本発
明を適用することができる。
The present invention is applied when this semiconductor is formed on a stainless steel substrate, this substrate is used as a first electrode, a non-single crystal semiconductor is formed on its upper surface, and a second electrode is further provided on its upper surface. be able to.

第3図はトリミング部での除去される領域を示したもの
である。
FIG. 3 shows the area to be removed at the trimming section.

第3図(A)は半導体(4)は異物に対し第2の電極(
5)させても、第2の電極(5)のみを選択的に除去し
ている。さらにこの上面にパッシベーション膜Q])を
設けて、リークの発生、信頼性の低下を防いでいる0 第3図(B)は第1、第2の電極(3)、(5)が互い
にショートしている時、そのショート筒所の第2の電極
および半導体(4)をレーザトリミングをして除去し第
2の電極(3)(5)およびその間の半導体(4)のす
べてを除去している。この場合レーザ光によシその上面
よシみると第3図(D)の如く概略円形(イ)(20〜
80μ9一般には50p”)を有している。もちろんト
リミングのスポットが2またはそれ以上となった場合は
その形状が複合化することによシだ円形、ひようたん状
等があシ得ることはいうまでもない。
FIG. 3(A) shows that the semiconductor (4) is connected to the second electrode (
5), only the second electrode (5) is selectively removed. Furthermore, a passivation film Q) is provided on the upper surface to prevent leakage and decrease in reliability.0 Figure 3 (B) shows that the first and second electrodes (3) and (5) are shorted to each other. At that time, the second electrode and semiconductor (4) at the short-circuit tube are removed by laser trimming, and the second electrode (3) (5) and all of the semiconductor (4) between them are removed. There is. In this case, if you look at the top surface of the laser beam, you will see a roughly circular shape (A) (20~
80μ9 (generally 50p").Of course, if there are two or more trimming spots, the shape will become complex, resulting in an ellipse, gourd shape, etc. Needless to say.

以上の如くにして本発明のPVCにおいては、その内部
においてスポット状に少なくとも基板とよシ、従来の3
0〜40多しかその製造歩留シがなかつたのが、この不
良修正を行なうことにょシ、その製造歩留シを80チ以
上にすることができた。
As described above, in the PVC of the present invention, inside the PVC, at least the substrate and the conventional three
The production yield was only 0 to 40 units, but by correcting this defect, the production yield was increased to 80 units or more.

その結果、NBDO規定の40cmX120cmの光電
変換装置用のボードを作ろうとする際、即ち2゜X40
cmを6枚組合わせる、または20X60cmを4枚組
合わせる等の実用化を計る際それぞれのパネルの歩留シ
を2倍以上にできたこと、このボードの製造価格を〜5
00 p’l/Wで得ることができ、またその変換効率
もこれまで10〜1%X=4%であったものを10〜4
%X=6%とすることができ、効率の向上においてもき
わめてすぐれたものであった。
As a result, when trying to make a board for a photoelectric conversion device of 40cm x 120cm according to the NBDO standard, that is, 2° x 40cm
When trying to put it into practical use by combining 6 panels of 20cm x 60cm or 4 panels of 20x60cm, we were able to more than double the yield of each panel, and the manufacturing price of this board was reduced to ~5.
00 p'l/W, and the conversion efficiency has increased from 10 to 1% x = 4% to 10 to 4%.
%X=6%, and the improvement in efficiency was also extremely excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザトリミング装置の概略を示す。 第2図は本発明のレーザトリミングをされた光電変換装
置を示す。 第3図は本発明のトリミングがされたたて断面図を示す
。 特許出願人 (8) (C) 1−≦ U コ  。 /2 +−1 ′(A) ≧ CB) cc) 28目 CD)
FIG. 1 schematically shows a laser trimming device of the present invention. FIG. 2 shows a laser-trimmed photoelectric conversion device of the present invention. FIG. 3 shows a trimmed vertical sectional view of the present invention. Patent applicant (8) (C) 1-≦U co. /2 +-1 ′(A) ≧ CB) cc) 28th CD)

Claims (1)

【特許請求の範囲】 1、可視光とトリミング用パルス光とを同軸光で照射で
きるレーザートリミング装置によシ導電性基板または透
光性基板上の透光性導電膜よシなる第1の電極と、該電
極上に少なくとも1つのP工N接合を有する非単結晶半
導体層と、該半導体層上の導電性の第2の電格とを有す
る光電変換装置のトリミングする作製方法において、前
記第1および第2の電極間が局部的に短絡またはリーク
着所または領所または領域が相対的に大きいことを光セ
ンサによシ検出することにより、確定し、かか帖 る確定された前記短絡またはリークY所また。 は領域の第2の電極または該電極と該電極下の半導体、
該電極と該電極下の半導体および第1の電極を除去する
ことによりトリミングすることを特徴とする光電変換装
置の作製方法。
[Claims] 1. A first electrode made of a transparent conductive film on a conductive substrate or a transparent substrate, which can be used with a laser trimming device that can coaxially irradiate visible light and pulsed trimming light. a non-single-crystal semiconductor layer having at least one P-N junction on the electrode; and a conductive second potential on the semiconductor layer. The determined short circuit is determined by detecting, by means of an optical sensor, that a local short circuit or a leakage point or region or area between the first and second electrodes is relatively large. Or leak Y again. is the second electrode of the region or the electrode and the semiconductor under the electrode,
A method for manufacturing a photoelectric conversion device, characterized in that trimming is performed by removing the electrode, a semiconductor under the electrode, and a first electrode.
JP57206805A 1982-11-24 1982-11-24 Manufacture of photoelectric conversion device Granted JPS5994884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206805A JPS5994884A (en) 1982-11-24 1982-11-24 Manufacture of photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206805A JPS5994884A (en) 1982-11-24 1982-11-24 Manufacture of photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPS5994884A true JPS5994884A (en) 1984-05-31
JPS6257252B2 JPS6257252B2 (en) 1987-11-30

Family

ID=16529379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206805A Granted JPS5994884A (en) 1982-11-24 1982-11-24 Manufacture of photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS5994884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728615A (en) * 1984-10-17 1988-03-01 Fuji Electric Company Ltd. Method for producing thin-film photoelectric transducer
US4734379A (en) * 1985-09-18 1988-03-29 Fuji Electric Corporate Research And Development Ltd. Method of manufacture of solar battery
JPS63244627A (en) * 1987-03-30 1988-10-12 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Method for manufacturing thin-film solar cell and device for monitoring film-forming state of thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728615A (en) * 1984-10-17 1988-03-01 Fuji Electric Company Ltd. Method for producing thin-film photoelectric transducer
US4734379A (en) * 1985-09-18 1988-03-29 Fuji Electric Corporate Research And Development Ltd. Method of manufacture of solar battery
JPS63244627A (en) * 1987-03-30 1988-10-12 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2000353814A (en) * 1999-06-10 2000-12-19 Fuji Electric Co Ltd Method for manufacturing thin-film solar cell and device for monitoring film-forming state of thin film

Also Published As

Publication number Publication date
JPS6257252B2 (en) 1987-11-30

Similar Documents

Publication Publication Date Title
JP5048843B2 (en) Manufacturing method of solar cell
US6271462B1 (en) Inspection method and production method of solar cell module
US5021362A (en) Laser link blowing in integrateed circuit fabrication
JPH0671097B2 (en) Color sensor
JPS5994884A (en) Manufacture of photoelectric conversion device
US5712499A (en) Large photodetector array
JPH0837317A (en) Solar battery, detecting method of defect in solar battery, and defect detecting and recovering apparatus
JPS6331952B2 (en)
JPH053151B2 (en)
EP0694975A1 (en) Post-fabrication repair structure and method for thin film imager devices
JPS637032B2 (en)
US4728615A (en) Method for producing thin-film photoelectric transducer
JPH0377672B2 (en)
JP2009109432A (en) Semiconductor device inspection method and semiconductor device inspection device
JP2006229052A (en) Solar cell, its manufacturing method, and short-circuited part removal device
JPS5986270A (en) Photoelectric conversion device
US4700463A (en) Non-crystalline semiconductor solar battery and method of manufacture thereof
KR101169455B1 (en) Fabrication method for a solar cell
JPS6095978A (en) Photoelectric conversion semiconductor device
JPS5935486A (en) Photo semiconductor device
JPS6184073A (en) Method for manufacturing semiconductor devices
JPS6314874B2 (en)
JPS62145781A (en) Manufacturing method of semiconductor device
JP2638235B2 (en) Method for manufacturing photoelectric conversion device
JPS61164274A (en) Method of manufacturing photovoltaic device