JPS5982153A - Production of composite casting - Google Patents
Production of composite castingInfo
- Publication number
- JPS5982153A JPS5982153A JP19099082A JP19099082A JPS5982153A JP S5982153 A JPS5982153 A JP S5982153A JP 19099082 A JP19099082 A JP 19099082A JP 19099082 A JP19099082 A JP 19099082A JP S5982153 A JPS5982153 A JP S5982153A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- metal
- mold
- casting
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/14—Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、金属とタングステン炭化物粒子などを混在さ
せてなる複合鋳物の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a composite casting made of a mixture of metal and tungsten carbide particles.
金属とタングステン炭化物などのセラミック粒子とを混
在させた複合組織を有する材料は、いゎは粒子強化型材
料であり、耐摩耗材等として好適である。かかる複合材
料は、鋳造法を利用することにより、粉末冶金法なとに
比し容易に、かつ安価に製造することかできる。すなわ
ち、金属溶1易と、溶湯より比重の大きいセラミック粒
子とを鋳型内に鋳込み、その固液混合物中のセラミック
粒子を比重差により沈降集積さぜたのち、溶湯を凝固さ
せれば、凝集したセラミック粒子と、粒子間に充填する
母材金属基地とからなる複合組織を有する鋳物が得られ
る。A material having a composite structure in which metal and ceramic particles such as tungsten carbide are mixed is a particle-reinforced material and is suitable as a wear-resistant material. Such a composite material can be manufactured more easily and at a lower cost by using a casting method than by a powder metallurgy method. That is, if a molten metal and ceramic particles having a higher specific gravity than the molten metal are poured into a mold, the ceramic particles in the solid-liquid mixture will settle and accumulate due to the difference in specific gravity, and then the molten metal will solidify. A casting having a composite structure consisting of ceramic particles and a base metal matrix filled between the particles is obtained.
上記鋳造法において、セラミック粒子の分布が緻密かつ
均一で、金属基地−粒子間結合の強固な複合組織を形成
するためには、粒子の沈降集積過程において、溶湯の粘
1周化により粒子の沈降集積が妨げられることのないよ
うに、溶湯は十分な高温流動状態に保持されねばならな
い。In the above casting method, in order to form a composite structure with a dense and uniform distribution of ceramic particles and a strong bond between the metal base and the particles, it is necessary to make the molten metal viscous once during the sedimentation and accumulation process of the particles. The molten metal must be kept sufficiently hot and fluid so that accumulation is not hindered.
しかるに、鋳型内の溶湯は、湯面からの放熱、鋳型壁へ
の熱移動、および投与された粒子による吸熱などのため
、比較的短時間に少なからぬ熱量を失なう。この場合、
溶湯の鋳造量が多ければ、それほどの影響はないが、目
的とする鋳物か小物品や肉厚の薄くもの等のように溶崩
鋳造量が比較的少い場合には、早期に溶湯の粘f周化・
凝固が始まり、その後の粒子の沈降集積、および粒子間
への溶湯浸透が妨げられる。その結果、得られる鋳物は
、粒子の分布に粗密のムラや局部的凝集、あるいは粒子
間隙のミクロポロシティなどの鋳造欠陥を有するものと
なってしまう。この対策としては、鋳型やセラミック粉
末を予熱して使用する、または溶湯の鋳造温度を高くす
る等が考えられるか、鋳型や粉末の予熱で溶湯の流動性
を回復し得る程の熱量補給を期待することはできず、ま
た鋳造温度をあまり高くすると材質上の問題が生じるた
め、いづれも十分な対策とはなり得ない。However, the molten metal in the mold loses a considerable amount of heat in a relatively short period of time due to heat radiation from the molten metal surface, heat transfer to the mold wall, and heat absorption by the applied particles. in this case,
If the amount of molten metal cast is large, there will not be much of an effect, but if the amount of molten metal cast is relatively small, such as for the purpose of casting, small articles, thin-walled items, etc., the viscosity of the molten metal will be affected early. f frequency/
Solidification begins, and subsequent sedimentation and accumulation of particles and penetration of the molten metal between the particles are prevented. As a result, the resulting casting has casting defects such as uneven particle distribution, local agglomeration, and microporosity between particles. Possible countermeasures for this include preheating the mold and ceramic powder, or increasing the casting temperature of the molten metal, or by preheating the mold and powder, it is hoped that preheating the mold and powder will provide enough heat to restore the fluidity of the molten metal. However, if the casting temperature is too high, problems with the material will occur, so neither of these measures can be taken as a sufficient measure.
本tmは上記問題を解決したものである。This TM solves the above problem.
本発明の複合鋳物の製造法は、鋳型内に与えられた金属
溶湯とセラミック粒子の固液混合物におけるセラミック
粒子の沈降集積過程において、鋳型内の溶湯に高周波誘
導加熱による熱補給を行い、溶湯の流動性を保ちながら
、粒子の沈降集積を促進するとともに、粒子間隙への溶
湯浸潤を容易ならしめるようにしたものであり、これに
よって小物品や薄肉あるいは複雑形状の鋳物であっても
、セラミック粒子が均一かつ緻密に分布した健全な複合
組織の形成を可能にした。The method for manufacturing composite castings of the present invention replenishes heat by high-frequency induction heating to the molten metal in the mold during the sedimentation and accumulation process of ceramic particles in a solid-liquid mixture of molten metal and ceramic particles provided in the mold. While maintaining fluidity, it promotes the sedimentation and accumulation of particles and makes it easier for molten metal to infiltrate into the gaps between particles.This allows ceramic particles to be easily absorbed even in small articles, thin walls, or complex-shaped castings. This enabled the formation of a healthy composite tissue with uniform and dense distribution.
第1図は本発明方法による鋳造例を示す。(1)は鋳型
、(4)は鋳型のまわりに設けられた高周波誘導加熱コ
イル、(5)は鋳込みポツパー、(6)は粉末流量調節
弁(7)を有するセラミック粉末投1−1装置である。FIG. 1 shows an example of casting according to the method of the present invention. (1) is a mold, (4) is a high-frequency induction heating coil installed around the mold, (5) is a casting popper, and (6) is a ceramic powder throwing 1-1 device that has a powder flow rate control valve (7). be.
鋳型(1)は例えはロストワックス鋳造に用いられる焼
成モールドであって、バックサンド(例えば、マグネシ
アスタンプ材)(2)にてケース(3)内に設置されて
いる。この装置において、取鍋(8)から予め所定の成
分組成に溶製された金属浴Ft)(M)を鋳込みポツパ
ー(5)を介して鋳型(1)内に鋳込む一方、粉末投与
装置(6)から所要量のセラミック粉末(P)を投入口
(61)を介して鋳型内溶渇に投与する。鋳型内に与え
られた金属溶湯中のセラミック粒子(P)は比重差によ
り沈降を始め、徐々に集積していく。この粒子の沈降集
積過程において、高周波誘導加熱コイル(4)にて溶湯
(M)を加熱する。むろん、加熱による熱補給量は、場
面からの放熱、鋳型壁への熱移動、粒子の吸熱等により
奪われる熱量を補償し、溶湯の粘f周化・凝固を解消す
るに足る量であることを要する。こうして、粒子を十分
沈降集積させたのち、高周波誘導加熱を停止し、溶湯の
凝固完了をまって、複合組織を有する中実円柱状複合鋳
物を得る。The mold (1) is, for example, a firing mold used for lost wax casting, and is installed in a case (3) with back sand (for example, magnesia stamp material) (2). In this device, a metal bath Ft) (M) melted in advance to a predetermined composition is poured from a ladle (8) into a mold (1) via a pouring potper (5), while a powder dosing device ( From step 6), a required amount of ceramic powder (P) is administered to the in-mold melt through the inlet (61). Ceramic particles (P) in the molten metal placed in the mold begin to settle due to the difference in specific gravity and gradually accumulate. During this particle sedimentation and accumulation process, the molten metal (M) is heated by the high frequency induction heating coil (4). Of course, the amount of heat supplied by heating must be sufficient to compensate for the amount of heat taken away by heat radiation from the scene, heat transfer to the mold wall, heat absorption by particles, etc., and to eliminate viscosity and solidification of the molten metal. It takes. After the particles are sufficiently settled and accumulated in this manner, the high-frequency induction heating is stopped and the solidification of the molten metal is waited for, thereby obtaining a solid cylindrical composite casting having a composite structure.
本発明において、鋳型内溶湯に対する高周波誘導加熱は
、溶湯の鋳造開始以降の適当な時期に行えばよい。例え
ば溶湯およびセラミック粉末の鋳造終了後に開始しても
よく、要する粒子の沈降集積が完了するまでの間、沈降
集積が円滑に進行し得る高温流動状態が保たれるように
適時連続的もしくは断続的に熱補給がなされればよい。In the present invention, the high-frequency induction heating of the molten metal in the mold may be performed at an appropriate time after the start of casting the molten metal. For example, it may start after the completion of casting of the molten metal and ceramic powder, and may be continued continuously or intermittently at appropriate times to maintain a high-temperature fluid state in which sedimentation and accumulation can proceed smoothly until the required sedimentation and accumulation of particles is completed. Heat supply should be provided.
また、粒子の沈降途中で凝固が始まったのちに、高周波
誘導加熱により再溶解させて十分な流動性を回復させる
ようにしてもよい。Alternatively, after the particles begin to solidify during sedimentation, they may be redissolved by high-frequency induction heating to restore sufficient fluidity.
第2図は中空円筒形状の鋳物の製造例である。FIG. 2 shows an example of manufacturing a hollow cylindrical casting.
鋳!l!(9)は目的とする鋳物形状に相応する内形状
を有し、その周囲には高周波誘導加熱コイル(4)が付
設されている。鋳型(9)には金属溶湯が鋳込まれたの
ち、粉末投与装置(6)にてセラミック粉末(P)が投
与されるとともに、高周波誘導加熱コイル(4)による
熱補給が適時施こされる。この中空円筒状鋳物の製造に
おいては、セラミック粉末の投与を鋳型(9)内の1個
所で行うと、わ)末はその部分に局在し、円周方向の分
散が不可能である。Cast! l! (9) has an inner shape corresponding to the intended casting shape, and a high frequency induction heating coil (4) is attached around it. After molten metal is poured into the mold (9), ceramic powder (P) is dosed by a powder dosing device (6), and heat is supplied by a high-frequency induction heating coil (4) in a timely manner. . In the production of this hollow cylindrical casting, if the ceramic powder is dosed at one location in the mold (9), the powder will be localized in that location and cannot be distributed in the circumferential direction.
従って、粉末投与装置としては、図示のように、鋳型の
環状開口端にそって設けられた複数の投与口(62)を
有するか、または鋳型の開口端にそった環状投与口(6
2)を有するものを用いて、鋳型内の周方向に偏りなく
分散投与することが必要である。別法として、第3図に
示すように、鋳型(9)を水平回転駆動台(10)に設
置し、回転軸(11)を中心に回転させながら、溶湯(
M)および粉末(P)を鋳型内に与えることにより、周
方向における分散均一化を図ることもできる。Therefore, the powder dosing device may have a plurality of dosing ports (62) along the annular open end of the mold, as shown, or an annular dosing port (62) along the open end of the mold.
2), it is necessary to uniformly distribute and administer in the circumferential direction within the mold. Alternatively, as shown in FIG.
By providing M) and powder (P) in the mold, it is also possible to achieve uniform dispersion in the circumferential direction.
上記の各鋳造例では、金属m崗とセラミック粉末とを各
別に鋳型内に与えたが、それ以外に、例えば、第1図や
第3図の例において、粉末投与装置の投入口(61)の
先端を鋳込みホッパー(5)に指向させ、溶湯(M、)
と粉末(P)を混合状態として鋳型内に鋳込むようにし
てもよい。In each of the above-mentioned casting examples, the metal powder and the ceramic powder were separately provided in the mold, but in addition to that, for example, in the examples shown in FIGS. Aim the tip of the molten metal (M,) toward the casting hopper (5).
and powder (P) may be mixed and cast into a mold.
また、前記のように予め溶製された金属溶湯を鋳造する
方法に代えて、金属塊や金属粉末を溶解原料として鋳型
内に装入し、高周波誘導加熱コイルを利用してこれを溶
解せしめ、生成した金属溶湯にセラミック粉末を投与す
る方法によることもできる。むろん、その場合も粉末投
与後の熱補給は、溶湯の降温状況に応じて前記と同嫌の
要領で行えばよい。In addition, instead of the method of casting a pre-molten metal as described above, a metal lump or metal powder is charged into a mold as a melting raw material, and it is melted using a high frequency induction heating coil, It is also possible to adopt a method of administering ceramic powder to the produced molten metal. Of course, even in that case, heat supply after powder administration may be performed in the same manner as described above, depending on the temperature drop of the molten metal.
本発明の鋳造に使用される鋳型は、前記例記の精密鋳造
用鋳型、その他各種の耐火物鋳型であればよい。The mold used in the casting of the present invention may be the precision casting mold described above or any other type of refractory mold.
金属溶湯は、目的とする鋳物の用途、要求性能に応じて
選らはれる鉄系または非鉄系の各種金属または合金であ
る。金属塊等を溶解原料として鋳型内で金属溶湯を溶製
する場合は、必要ならばフェロアロイ等を配合し所定の
成分組成に調整すればよい。The molten metal is a variety of ferrous or non-ferrous metals or alloys selected depending on the intended use and required performance of the casting. When melting a molten metal in a mold using a metal lump or the like as a melting raw material, if necessary, a ferroalloy or the like may be added to adjust the composition to a predetermined composition.
セラミック粉末は、炭化物、窒化物、はう化物、けい化
物等が目的に応じて選らばれる。もちろん、その粒子は
金属溶湯中で容易に溶解消失しない高融点を有するとと
もに、溶湯より比重の大きいものであることを要する。The ceramic powder is selected from carbide, nitride, ferride, silicide, etc. depending on the purpose. Of course, the particles must have a high melting point so that they do not easily dissolve and disappear in the molten metal, and must also have a specific gravity greater than that of the molten metal.
鋳型内への金属溶湯とセラミック粉末の鋳造を各別に行
う場合、すなわち鋳型内の溶湯にセラミック粉末を投与
する鋳造態様の場合には、セラミック粒子は溶湯に対す
る濡れ性の良いものが好ましい。濡れ性に乏しいと、直
ちに溶湯内に取込まれず、場面上で浮遊し、局部的に凝
集することがあるからである。また、耐摩耗用途の鋳物
を目的とする場合は、セラミック粒子自身が硬質である
ほど有利なことは言うまでもない。例えば、鉄系金属と
の組合せによる耐摩耗鋳物の製造には、」1記各条件を
満たずセラミック粒子として、タングステン炭化物(W
2C,WC)、タングステンチタン炭化物などの炭化物
粒子が好ましく使用される。なお、セラミック粒子の粒
径は、得られる鋳物の材質の点から、約300 ltm
以下であるのが好ましい。しかし、あまり微細であると
、溶湯中の沈降集積が困難であるので、通常粒径の下限
は約50μmとするのがよむ)。When the molten metal and the ceramic powder are separately cast into the mold, that is, when the ceramic powder is applied to the molten metal in the mold, the ceramic particles preferably have good wettability with the molten metal. This is because if the wettability is poor, it may not be immediately incorporated into the molten metal, but may float on the surface and locally aggregate. Furthermore, when the purpose is to make a casting for wear-resistant use, it goes without saying that the harder the ceramic particles themselves are, the more advantageous it is. For example, in the production of wear-resistant castings in combination with iron-based metals, tungsten carbide (W
2C, WC), tungsten titanium carbide and the like are preferably used. In addition, the particle size of the ceramic particles is approximately 300 ltm from the viewpoint of the material of the casting to be obtained.
It is preferable that it is below. However, if the particles are too fine, it will be difficult for them to settle and accumulate in the molten metal, so the lower limit of the particle size is usually about 50 μm).
本発明により得られる鋳物の複合組織におけるセラミッ
ク粒子の占める比率(粒子充填率)Cよ、粒子の粒度構
成にもよるが、約60〜75容積%(粒子:金属の容積
比−約60 :40〜75:25)である。従って、鋳
型内に与えられる金属溶湯量とセラミック粉末量は上記
の比率番こ調節すればよい。通常、この種の鋳造法によ
る場合、溶湯の鋳造量を上記比率よりも多くし、第41
1iこ示ずように、粒子(P)と金属(M)からなる複
合組織部分(A、)のほかに、余剰の金属で形成される
金属単体相部分(B)とからなる鋳造体を得たのち、金
属単体相部分(B)を切断除去し、複合組織部分(A)
を製品として採取する手順が必要である。これは、溶湯
鋳造量を増すことにより鋳型内での溶湯の急速な降温を
抑制しようとするものである。The proportion of ceramic particles in the composite structure of the casting obtained according to the present invention (particle filling rate) C is approximately 60 to 75% by volume (particle:metal volume ratio - approximately 60:40), depending on the grain size structure of the particles. ~75:25). Therefore, the amount of molten metal and the amount of ceramic powder provided in the mold may be adjusted to the above ratio. Usually, when using this type of casting method, the amount of molten metal cast is larger than the above ratio, and the
1i As shown in Fig. 1, a cast body consisting of a composite structure part (A,) consisting of particles (P) and metal (M) and a single metal phase part (B) formed of surplus metal was obtained. After that, the metal single phase part (B) is cut and removed, and the composite structure part (A) is removed.
A procedure is required to extract the material as a product. This is intended to suppress the rapid temperature drop of the molten metal within the mold by increasing the amount of molten metal cast.
これに対し、本発明では、高周波誘導加熱−より必要な
熱補給がなされるので、上記のような余分な溶湯の鋳造
は不要であり、それだけ溶湯量を節減することができる
。もつとも、凝固過程番こおGする収縮量を補償するた
めには、一般の鋳造と[司様の押湯量を与えればよい。In contrast, in the present invention, the necessary heat is supplied by high-frequency induction heating, so there is no need to cast extra molten metal as described above, and the amount of molten metal can be reduced accordingly. However, in order to compensate for the amount of shrinkage that occurs during the solidification process, it is sufficient to give the feeder amount of ordinary casting and [Mr.
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
実施例
金属溶湯として溶解炉で溶製した二)\−1・゛鋳鉄溶
湯(C8,35%、Si0.72%、Δin0.68%
、Ni4.85%、Cri、52%、Mo0.88%)
と、セラミック粉末として粒径150〜250μm(7
)タングステン炭化物(W2C)粉末を準備し、第2図
に示す装置にて鋳造を行った。Example 2) \-1.゛Cast iron molten metal (C8, 35%, Si 0.72%, Δin 0.68%) melted in a melting furnace as a molten metal.
, Ni4.85%, Cri, 52%, Mo0.88%)
and ceramic powder with a particle size of 150 to 250 μm (7
) Tungsten carbide (W2C) powder was prepared and cast using the apparatus shown in FIG.
ます、溶湯5.4 hを鋳型(精密鋳造鋳IM)(9)
に鋳造しく鋳造温度1600°C)、高周波コイル(4
)に通電して鋳型内溶湯温度を1600°ciこイ呆持
したのち、粉末投与装置(6)にてタングステン炭化物
粉末9.4. Kgを投与した。該炭化物粉末(ま予熱
せず、常温のまま使用した。粉末投与後、溶のが降温、
粘1周化したので、更に加熱し1、溶湯?u1隻が16
00°Cに達した時点で加熱を停」上しゾこ。その後自
然冷却させ、凝固完了をまって、夕+?+i4.。5.4 hours of molten metal into a mold (precision casting IM) (9)
Casting temperature: 1600°C), high frequency coil (4
) was energized to maintain the temperature of the molten metal in the mold at 1600°ci, and then a powder dosing device (6) was used to add tungsten carbide powder 9.4. Kg was administered. The carbide powder (used at room temperature without preheating. After administering the powder, the temperature of the melt decreased,
Since the viscosity has become one round, heat it further and make it molten metal? 1 ship is 16
Stop heating when it reaches 00°C. After that, let it cool naturally and wait until the solidification is complete. +i4. .
朋、内径LOOmm、肉厚20mm、長さ1−0 ’O
mmの製品形状を有する中空円筒状鋳物を得た。Inner diameter LOOmm, wall thickness 20mm, length 1-0'O
A hollow cylindrical casting having a product shape of mm was obtained.
得られた鋳物の複合組織における炭化物粒子の分布状態
は製品の全周全長にわたり極めて均一で、粒子充填率は
約70%である。また、粒子間の金属基地も緻密でミク
ロポロシティなどの欠陥は全く認められない。The distribution of carbide particles in the composite structure of the obtained casting is extremely uniform over the entire circumference of the product, and the particle filling rate is about 70%. Furthermore, the metal matrix between the particles is dense and no defects such as microporosity are observed.
以上のように、本発明によれば、金属溶場に対する熱補
16によって、厚肉、大径の鋳物はもちろん、小径薄肉
鋳物、とりわけ直径約80mm以下の円柱体、あるいは
肉厚が30 tnm以下の中空円筒体や板状体鋳物の鋳
造においても、セラミック粒子の均一に分布した緻密な
複合組織を有する鋳物を得ることができる。従って、耐
摩耗性を要する小物部品、例えば小径ロールやサンドブ
ラスト用ノズルなどの製造法として好適である。As described above, according to the present invention, the heat compensation 16 for the metal welding field can be used not only for thick-walled and large-diameter castings, but also for small-diameter thin-walled castings, especially cylindrical bodies with a diameter of about 80 mm or less, or with a wall thickness of 30 tnm or less. Even when casting hollow cylindrical bodies or plate-like bodies, it is possible to obtain castings having a dense composite structure in which ceramic particles are uniformly distributed. Therefore, it is suitable for manufacturing small parts that require wear resistance, such as small diameter rolls and sandblasting nozzles.
第1図〜第3図はそれぞれ本発明による鋳造例を示す縦
断面図、第4図は鋳物の断面説明図である。
1.9:鋳型、4:高周波誘導加熱コイノペ5:鋳込み
ホッパー、6:粉末投与装置、10:水平回転台、P:
セラミック粒子、M:金属。
代理人 弁理士 宮崎新へ部
°控□
−3
4。
・ 、 4
第2図
第4図1 to 3 are longitudinal cross-sectional views showing examples of casting according to the present invention, and FIG. 4 is a cross-sectional explanatory view of the casting. 1.9: Mold, 4: High frequency induction heating Koinope 5: Casting hopper, 6: Powder dosing device, 10: Horizontal rotary table, P:
Ceramic particles, M: metal. Agent Patent Attorney Arata Miyazaki Dept. -3 4.・ , 4 Figure 2 Figure 4
Claims (1)
ク粒子との固液混合物を鋳型内に与え、比重差によりセ
ラミック粒子が沈降集積したのち凝固させて金属とセラ
ミック粒子からなる複合組織を有する鋳物を製造する方
法において、鋳型内の」二記固液混合物に高周波誘導加
熱による熱補給を施して金属溶湯の流動性を保持するこ
とにより、セラミック粒子の沈降集積を促進せしめるこ
とを特徴とする複合鋳物の製造法。(1) A solid-liquid mixture of molten metal and ceramic particles having a higher specific gravity than the molten metal is provided in a mold, and the ceramic particles settle and accumulate due to the difference in specific gravity, and are then solidified to produce a casting having a composite structure consisting of metal and ceramic particles. A composite casting characterized in that the manufacturing method comprises applying heat to the solid-liquid mixture in the mold by high-frequency induction heating to maintain the fluidity of the molten metal, thereby promoting sedimentation and accumulation of ceramic particles. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19099082A JPS5982153A (en) | 1982-10-30 | 1982-10-30 | Production of composite casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19099082A JPS5982153A (en) | 1982-10-30 | 1982-10-30 | Production of composite casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5982153A true JPS5982153A (en) | 1984-05-12 |
Family
ID=16267025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19099082A Pending JPS5982153A (en) | 1982-10-30 | 1982-10-30 | Production of composite casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5982153A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6127164A (en) * | 1984-07-13 | 1986-02-06 | Kubota Ltd | Vertical centrifugal casting method of roll for rolling |
WO2012048919A1 (en) * | 2010-10-13 | 2012-04-19 | Federal-Mogul Burscheid Gmbh | Method for producing a piston ring having embedded particles |
-
1982
- 1982-10-30 JP JP19099082A patent/JPS5982153A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6127164A (en) * | 1984-07-13 | 1986-02-06 | Kubota Ltd | Vertical centrifugal casting method of roll for rolling |
WO2012048919A1 (en) * | 2010-10-13 | 2012-04-19 | Federal-Mogul Burscheid Gmbh | Method for producing a piston ring having embedded particles |
CN103153500A (en) * | 2010-10-13 | 2013-06-12 | 联邦摩高布尔沙伊德公司 | Method for producing a piston ring having embedded particles |
JP2013540969A (en) * | 2010-10-13 | 2013-11-07 | フェデラル−モーグル ブルシェイド ゲーエムベーハー | Manufacturing method of particle-embedded piston ring |
US9174276B2 (en) | 2010-10-13 | 2015-11-03 | Federal-Mogul Burscheid Gmbh | Method of producing a piston ring having embedded particles |
CN103153500B (en) * | 2010-10-13 | 2015-11-25 | 联邦摩高布尔沙伊德公司 | Produce the method with the piston ring embedding particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4971755A (en) | Method for preparing powder metallurgical sintered product | |
JP2000239770A (en) | Production of cast alloy and complex cylinder | |
JP2004538153A (en) | Apparatus and method for producing slurry material without agitation for use in semi-solid molding | |
CN110814305A (en) | A kind of Cu-Fe composite material double melt mixed casting equipment and technology | |
JPH06142870A (en) | Method of die casting high mechanical performance part by injecting semi-fluid metal alloy | |
JPS5982153A (en) | Production of composite casting | |
RU2381087C1 (en) | Forming method of tubular billet | |
CN104874799B (en) | A kind of process preparing wear-resistant coating in fine aluminium and alloy-steel casting surface | |
RU2443505C1 (en) | Method of producing steel tube billets | |
JPS635184B2 (en) | ||
JPS5933064A (en) | Production of composite casting | |
RU2367538C1 (en) | Coating for casting moulds at centrifugal casting of copper alloys | |
RU2647975C1 (en) | Method of producing cast steel by centrifugal casting | |
US20230278095A1 (en) | Method of producing large thin-walled sand castings of high internal integrity | |
JP4036033B2 (en) | High speed casting method for medium carbon steel | |
JPS58221658A (en) | Method and device for producing abrasion-resistant casting | |
JPS6127165A (en) | Production of wear-resistant composite casting | |
JPS6046859A (en) | Production of wear-resistant composite casting | |
RU2742093C1 (en) | Method of producing steel tubing billet with high radiation resistance | |
JPS60124458A (en) | Production of wear resistant composite casting | |
RU2376105C2 (en) | Method of continuous casting of blanks | |
JPS62161450A (en) | Composite material casting apparatus | |
JPH07155919A (en) | Method for charging rheometal into die casting machine | |
JPS59127963A (en) | Production of composite casting | |
JPS5982155A (en) | Production of composite casting |