JPS5933064A - Production of composite casting - Google Patents
Production of composite castingInfo
- Publication number
- JPS5933064A JPS5933064A JP14312082A JP14312082A JPS5933064A JP S5933064 A JPS5933064 A JP S5933064A JP 14312082 A JP14312082 A JP 14312082A JP 14312082 A JP14312082 A JP 14312082A JP S5933064 A JPS5933064 A JP S5933064A
- Authority
- JP
- Japan
- Prior art keywords
- composite
- molten metal
- metal
- carbide
- casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/14—Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
木廃明は、−合一物、、の製造法、詳しくは、金属とタ
ングステンカーバイドなどの炭、化物粒子が混在してな
る複合相を有、する−゛摩耗性等にすぐれた複合材料の
鋳造による製哨力法に、関する。[Detailed Description of the Invention] Kokuhaimei is a method for producing a coalesced product, specifically, it has a composite phase consisting of a mixture of metal and charcoal and compound particles such as tungsten carbide. This article relates to a method for manufacturing patrol forces by casting superior composite materials.
従来、この種複合材料の製造法として、粉末冶金法によ
り、例えばタングステンカーバイド、粉末とコバル1〜
粉末とを混合して成形したのち焼結させ、tljられた
焼結体を機械加工に付して所要の製品に仕」−げる方法
がある。しか[7、その製jIl’E 、”’、i、’
l程□′ □は煩瑣で、生産性が低く、ロストも高くつ
く。し−: 、j、j、、も、′製造可能゛な製品の形
状やサイズに制限かあ:、、訃複雑な形状を9.するも
のや大(9,1のものを:、製Zfするこ七ができない
。Conventionally, this type of composite material has been manufactured using a powder metallurgy method, for example, by combining tungsten carbide, powder, and Kobal 1 to
There is a method in which the powder is mixed with powder, molded, and then sintered, and the tljed sintered body is subjected to machining to produce the desired product. Only [7, its production jIl'E,"',i,'
□' □ is cumbersome, has low productivity, and is expensive to lose. Is there a limit to the shape and size of products that can be manufactured?9. I can't make something or something large (9,1).
零発51け」1記欠点を解消したものであり、任5・は
の形状、サイズを有する複合材F−1・の安価にして簡
易々る製造方法を提供することをl″E口六〕とする。It is our aim to provide an inexpensive and simple manufacturing method for the composite material F-1 having the shape and size of 51, which eliminates the disadvantages listed in 1. ].
′址た、本発明の他の[」的は、耐摩耗性等にすぐれ、
金型、ロール材などとして好′J&な複合門料の□製造
方法を提供す!″′Tあ机 、。Other objects of the present invention include excellent wear resistance, etc.
We provide a manufacturing method for composite materials suitable for molds, roll materials, etc. ``'T a desk.
本発明の特徴は、鉄、なヴの金属溶湯と、り・ゲステン
カーバイトなどのくとき、1眸溶揚より比重の、大きい
炭化物粉末(!:flj型、17型処179、比重i后
により炭化物粒子を沈降させることによって鋳型内の所
定部分に金属溶湯と炭化物粒子の混在する複合相全形成
して凝固させ、・凝固後、複合相部分の」二部(1炭化
物粒子が比重分離された実質的に金属のみからなる金属
相部分)を複合相部分から切断除去することによシ複合
鋳物を製造することである。The feature of the present invention is that when using molten metal such as iron or navel, and carbide powder with a larger specific gravity than that of a single molten metal (!: flj type, 17 type, 179, specific gravity i After that, by sedimenting the carbide particles, a composite phase in which molten metal and carbide particles are mixed is completely formed and solidified in a predetermined part of the mold. A composite casting is manufactured by cutting and removing a metal phase portion (consisting essentially only of metal) from a composite phase portion.
以下、木発頃]について詳しく説明する。第1図に木発
り」による複合鋳物の製造要領の具体、例を示す。図中
、(1)は鋳型、(4)は金属溶湯鋳込みポツパー、(
6)は取鍋、(7)は炭化物粉末投−5,装植である。The following is a detailed explanation of Kihatsu. Figure 1 shows a concrete example of the manufacturing procedure for composite castings using wood starting methods. In the figure, (1) is the mold, (4) is the molten metal casting popper, (
6) is a ladle, and (7) is a carbide powder cast-5.
鋳栗(1)は上部(1弓)と下部(1・2)〔、」一部
と下部は一体に形成されたものてあってよい〕からなり
、金属溶湯ば、後記のように下部(1・2)を満たし、
かつ溶湯兜が」二部(1・1)内に達する早が鋳込まれ
るが、目的とする複合鋳物は下部(1・2)の部分にて
形成される(以下1.鋳型下部(1・2)ζ::「製品
部」という>。tJ−ろん、製品部(1・2)は目的と
すそ、複合散物に応じた任意の形状・サイズに形感され
ている。また1、上部(工・1)は、鋳造の便宜上、図
示の例では」1力に拡大するテーパ形状を有するが、鋳
造(支障のりい適宜の形状″F今ってよい。 。The cast chestnut (1) consists of an upper part (1 bow) and a lower part (1 and 2) (the part and the lower part may be integrally formed), and the molten metal part is the lower part (1 bow) as described below. 1.2) are satisfied,
The molten metal is cast as soon as it reaches the second part (1. 2) ζ:: Referred to as the "Product Department">.tJ-ron, the Product Department (1 and 2) is shaped into any shape and size depending on the purpose, base, and composite powder.Also, 1. For convenience of casting, the upper part (work 1) has a tapered shape that expands to "1" in the illustrated example, but it may have an appropriate shape "F" if it does not interfere with casting.
なお、図示、の鋳型(1)は、例えばロストワックス精
密鋳造法に使用されや焼成モーイレリであって、パック
サンド、(2)とともにケース(3)内炉設置されてお
り、これを炉中で加熱すれば保温モールドとしで使用す
ることができる。The mold (1) shown in the figure is a fired mold used for example in the lost wax precision casting method, and is installed in a case (3) in a furnace together with a pack sand mold (2). If heated, it can be used as a heat-insulating mold.
炭化物粉末投入装置(7)には炭化物粉末(P)が収納
され、投入量調節パルプ(8)を介してホッパー(4)
′内に所定量の炭化物粉末が投与されるようになっでい
る。Carbide powder (P) is stored in the carbide powder input device (7), and is fed to the hopper (4) via the input amount adjusting pulp (8).
A predetermined amount of carbide powder is dispensed within '.
」1記装置において、取鍋(6)からホッパー(4)内
に□金属溶湯(侑を注入するとともに、炭化物粉末(P
)全ホッパー内に投与すれば、溶湯(V)と粉末(P□
)とは混合状態となって、ホッパー下部のスリーシ゛(
5)を通って鋳型(1)内に鋳造される。鋳造され九当
初は、第2図(1)に示すように、炭化物粒子(P)′
は鋳型内の溶湯の全、領域にわたってほぼ均一に分散し
た状態を呈するが、溶湯よの比重差によって重い炭化物
粒子は下方に沈降し、同図(IDに示す・ように製品部
(1・2)内に集積して金属溶湯(M)2炭化物粒子(
P’)からなる複合相が形成される。In the apparatus described in 1, □ molten metal is injected from the ladle (6) into the hopper (4), and carbide powder (P) is injected into the hopper (4).
) If injected into all hoppers, molten metal (V) and powder (P□
) is in a mixed state, and the three seams at the bottom of the hopper (
5) and is cast into the mold (1). At the beginning of casting, carbide particles (P)' are formed as shown in Fig. 2 (1).
The particles are almost uniformly dispersed over the entire area of the molten metal in the mold, but due to the difference in specific gravity of the molten metal, the heavier carbide particles settle downward, and as shown in the figure (ID), the product parts (1 and 2) ) accumulates in the molten metal (M)2 carbide particles (
A composite phase consisting of P') is formed.
上部(1弓:)r、i炭化物粒子が比重分離された結′
11果、実質的に金属溶湯のみとなる。 ′::
:こうして溶湯を凝固させたのち、鋳型から!′3図に
示すごとき形状の鋳迭体(C)を収出じ、」一部の実質
的に金属のみから々る部分(C・1)をa−a線にそう
て切断除去し、下部の製品部(分(′C・2つを複合鋳
物として得る計そ□の組織を模□式的□に示せは第4図
のととくで巷り、炭化物粒子(P)・か緻密に凝集し、
金属(M)ば各わ1を子の表面を被膜・す乙とともに粒
子間隙を完全に充填し、炭化物粒子と金属とは強固な結
谷状態を呈する計その□複合相における炭化物粒子と金
属の割・合は、’1:’1〜′3:l(容積比)である
。 □ ・″″−1―記’IJF造において、
金属溶湯は製□品音(分の形成に四、するl□71をこ
えて多用に鋳造されたが、製品部と
分それに必要な押湯に相当する一鼠だけ鋳造す□るこ
二△
とにJ:って複合鋳物を行名ことも不111酸では力い
。Upper part (1 bow:) r, i result of gravity separation of carbide particles'
11, the result is essentially only molten metal. ′::
: After solidifying the molten metal in this way, from the mold! Collect the cast body (C) in the shape shown in Figure 3, cut and remove the part (C.1) that is essentially made of metal along the a-a line, and The structure of the product part ('C) obtained as a composite casting is schematically shown in □. death,
When the metal (M) is used, the surface of the metal (M) is coated and the gaps between the particles are completely filled, and the carbide particles and metal form a strong knot. The ratio is '1:'1 to '3:l (volume ratio). □ ・″″-1-Note’ In IJF construction,
The molten metal was cast in many ways, exceeding 71 liters (4,000 liters) to form the product, but only one molten metal was cast, which corresponded to the riser required for the product part.
2 △ Toni J: The name of the composite casting is also strong in non-111 acid.
しかし、そのように溶湯鋳□造亀を制限すると、炭化物
粒子表面の完全な被覆と粒子間隙め充填が困・知となる
。特に炭化物粉末投−!j量に対する溶湯L■の相対割
合が小さいと、炭化物粉末にJ:する溶)豚の降温(・
炭化物粉末が溶湯の熱を奪うことにより生ずる)とそれ
に伴う粘稠化が急速に近付するため、1−配本具合は−
そう頭薯に現#’>hる。こめ不具合を回避する□ため
訛、+jfr記のように比較的各日14の溶湯を鋳造し
、炭化物粒子を溶湯中□で沈降させガから製品部分に凝
集さ斗るのが打首しく、それKl上って炭化物粒子と金
−とが強固に結合した緻密外複合組織全脈成子ることが
できる。かかる観点から、溶湯の鋳造量と炭化物粉末の
授与1什の比−1、例え−:炭化物粉末1重重1部に対
し、溶湯2〜ら□重量部に調節子るのが好ましい計なお
、炭化物務末ば、比重分離により所定の製品部分に十分
沈降・□集合させれば、その投与!?1.は製品部分の
複合相茫形成するに足る背1て:よく、それ以−にの投
与を何口ないことは言うまでも々ム。□
木廃明の鋳造においては、鋳型内の〆渇か脚−を開始す
るまでの量産、炭化物粒子を製品部分(1・2)に十分
凝集させ不ことを要する。どのためには、炭化物粉末の
投与を、□溶湯の鋳造と同時に開始し、溶湯の全鋳造量
の約415が鋳造される寸での間に全量を投与し終るの
が好ましい。もつとも、鋳込まれた溶湯力k、鋳型や投
写されンbt化物粒子に熱を奪われることにより□、炭
化物粒子の沈降・製品部への凝集を終える前に凝固を開
始す泡ようガ場合には、凝1固を遅延させるために、例
えば、溶湯の鋳造温度1を高めるか、または鋳型を予熱
しておくか、あるいは炭化物粉末を1予熱して投与する
などの方法をいづれがFつまたは2以」二の組合せで実
施するのも□有効である。・寸た、このような温度補償
法のほかに、溶湯中を沈降し易い炭化物粉末、すなわぢ
粒径の大きいもの・や、溶湯との比重差の大きいものを
選択するのも:効果的である。 −□
□ ・−□不発1y′1に用いられる炭化物粉末
は、溶湯中での迅速な沈降と製・品部への凝集を容易な
ら□しめるために前記のように溶湯との比重差の大ぎい
もの、好イしくけ比重差が3以上のものが用いら瓦る計
重た、□複合相における金属との強固な結:合状態を得
るために、□鋳造される□金属とめ結′谷性(濡れに1
1つの良いものが好ましい。更”VL、rmらh′容被
合鋳物の耐摩耗性を高めるには、炭化物粒子自体硬度の
高いものであることが望寸しい。′む□ろんJ高温め溶
湯中に投与されて、容易に耐融・消失しない□高融点を
有するものであることが必要である。かがる要件を満た
す屏化物の好せしい例として、タングステンカーバI
) (Wc、W2c ) i’:□挙ケラれ□る(比重
15.7 (WC)、17.”2”” (W 2C)、
融点 □2800°C)。捷た、タングステンヂクン
カーバイトも打首しく用いられる。もっとも、との着炭
化物には、比重約4.9〜17.2のものが存在するの
で、後記金属溶湯との□組合せにおいては、比重約10
以」二のもめを選択する□ことが望jしい。これらの炭
化物は弔独寸たは混合して使用してよ弓。However, if the molten metal casting mechanism is restricted in this way, it becomes difficult to completely cover the surfaces of carbide particles and fill the gaps between the particles. Especially when throwing carbide powder! If the relative ratio of molten metal L to the amount of J is small, the temperature of the pig will decrease (・
(This is caused by the carbide powder taking away the heat from the molten metal) and the resulting viscosity rapidly approaches.
That's right, I'm currently #'>h. In order to avoid this problem, it is interesting to cast 14 times a day of molten metal, as described in +JFR, and let the carbide particles settle in the molten metal and coagulate from the particles to the product part. As Kl rises, carbide particles and gold are tightly bound together to form a dense outer composite structure. From this point of view, it is preferable that the ratio of the casting amount of the molten metal to the amount of the carbide powder is -1, for example: 1 part by weight of the carbide powder to 2 to 2 parts by weight of the molten metal. At the end of the day, if the product is sufficiently sedimented and aggregated by specific gravity separation, it can be administered! ? 1. Needless to say, the product should be long enough to form a complex phase of the product. □ In the casting of Mokuhaimei, it is necessary to mass-produce the mold and ensure that the carbide particles are sufficiently agglomerated in the product parts (1 and 2) before the drying process begins. For this purpose, it is preferable to begin dosing the carbide powder at the same time as the molten metal is cast, and to finish dosing the entire amount by the time about 415 of the total cast amount of the molten metal has been cast. However, due to the force of the cast molten metal, heat being taken away by the casting mold and the projected carbide particles, foaming may begin to solidify before the carbide particles have finished settling and agglomerating into the product. In order to delay the solidification, for example, the casting temperature of the molten metal is increased, the mold is preheated, or the carbide powder is preheated and administered. □It is also effective to implement a combination of 2 or more.・In addition to this temperature compensation method, it is also effective to select carbide powder that easily settles in the molten metal, ie, one with a large particle size, or one with a large difference in specific gravity from the molten metal. It is. −□
□ ・-□ The carbide powder used for the unexploded 1y'1 is a powder with a large specific gravity difference from the molten metal, as described above, in order to prevent rapid sedimentation in the molten metal and agglomeration in the product/product parts. □Strong bond with metal in composite phase: In order to obtain a bonded state, □Forged □Metal and metal joints are used. (1 for wetness)
One good one is preferred. Further, in order to improve the wear resistance of the cast material, it is desirable that the carbide particles themselves have high hardness. It is necessary to have a high melting point that does not melt or disappear easily.A preferable example of a silica that satisfies this requirement is tungsten carbide I.
) (Wc, W2c) i': □Raise vignetting□ru (specific gravity 15.7 (WC), 17."2"" (W 2C),
Melting point □2800°C). Curved tungsten carbide is also used for decapitation. However, since there are carbides with a specific gravity of about 4.9 to 17.2, in combination with the molten metal described below, the specific gravity is about 10.
It is desirable to choose the second option. These carbides can be used in a single or mixed bow.
炭化物粉末の粒度は、溶湯中ての沈降促進および得られ
る複合鋳物の性能の点から、75〜3o。The particle size of the carbide powder is 75-3o from the viewpoint of promoting sedimentation in the molten metal and the performance of the resulting composite casting.
μ法の箱面が好まし似o粒子の形状には特に=1限1は
なく、例′えば□破砕した□まメの凹凸に富むもの□も
□好ましく用い:られる。 : □碗化物
會末を予熱し1荊えば、温度j’oo”c以゛上□で投
与する場合、その炭化物が加熱部長酸化し易いものであ
乏とき献□酸化防止のために例えげ゛□無電解三ヅゲル
系めつき外どの保護被膜を粒字表向に被覆しておくΩも
効果的な対策の1つである。The box surface of the μ method is preferable, and there is no particular limit to the shape of the particles; for example, □ crushed □ grains with rich irregularities □ are also preferably used. : □ If you preheat the bowl and put it in one pot, then when administering it at a temperature higher than □, the carbide is easily oxidized by heating and is insufficient. □ For example, to prevent oxidation.゛□An effective measure is to cover the surface of the grain with a protective film such as electroless three-gel plating.
一方、金属としては、コバルト(C,0)、ニッケル(
Ni)、鉄(Fe、)、あるいはCo系合金、Ni系合
金、Fe系合金などが挙げられ、目的とする複合鋳物の
用途・使用条件に応じて選択される。On the other hand, metals such as cobalt (C,0) and nickel (
Examples include Ni), iron (Fe), Co-based alloys, Ni-based alloys, Fe-based alloys, etc., and are selected depending on the intended use and usage conditions of the composite casting.
これらの金属は、いづれも前記炭化物に対し良好な濡れ
性を有し、炭化物粒子と強固に結合した複合相を形成す
る。All of these metals have good wettability to the carbide and form a composite phase that is strongly bonded to the carbide particles.
本発明の製造法には、その他に特別の条件は必要とじな
め。使用される鋳型は前記例示のものに。The production method of the present invention does not require any other special conditions. The mold used is as exemplified above.
限らず、砂型や金型などであってよく、必要に応じ適当
な温度、例えば500°C以」〕に加熱して鋳造を行え
ばよい。形成される複合相における炭化物粒子と金属と
の比は、例えば炭化物粒子の形状、粒度、粒度分布、比
重などを適宜選ぶことにより所望に応じた値に制限する
ことができる。However, the casting may be carried out by heating to an appropriate temperature, for example, 500° C. or higher, as required. The ratio of carbide particles to metal in the composite phase formed can be limited to a desired value by appropriately selecting, for example, the shape, particle size, particle size distribution, specific gravity, etc. of the carbide particles.
次に本発明の実施例について説明する。Next, examples of the present invention will be described.
実施例
前記第1図に示すごとき鋳造装置を、用い、金属溶湯と
してニハード鋳鉄溶湯を取鍋(6)からホンパー(4)
に注入するとともに、炭化物粉末として予熱したタング
ステンカーバイド(W2C)粉末(粒子表面に無電解ニ
ッケルーボロン(N i −B) メ:) キを施した
もの)ei与装M(7)からホッパー内溶湯に投与して
鋳型(1)内への鋳造を行った。EXAMPLE Using a casting apparatus as shown in FIG.
At the same time, preheated tungsten carbide (W2C) powder (with electroless nickel-boron (Ni-B) on the particle surface) is injected into the hopper from the loading M(7). The mixture was poured into the molten metal and cast into the mold (1).
なお、炭化物粉末の投与は、溶湯の鋳込み開始と同時に
はじめ、全溶湯量のはソ415が鋳込まれた時点で終了
した。その投与量は、経験により鋳型内製品部に形成さ
れる複合相における金属:炭化物粉末の比がは\’30
ニア0(容積比)となることを考慮して決定した。鋳造
条件の詳細は次のとおりである。Note that the administration of the carbide powder started at the same time as the start of pouring the molten metal, and ended when the total amount of the molten metal was poured. The dosage is determined by experience so that the ratio of metal:carbide powder in the composite phase formed in the product part in the mold is \'30.
This was determined taking into consideration that the ratio would be near 0 (volume ratio). Details of the casting conditions are as follows.
(A)鋳型
鋳型(焼成モールド)(1)は、パンクザンド(2)と
ともにケース(3)内に設置し、炉内で950°Cに予
熱。鋳造時の鋳型製品部(1・2)の温度は85000
″′r:あった。(A) Mold The mold (firing mold) (1) was placed in the case (3) together with Panxand (2) and preheated to 950°C in the furnace. The temperature of the mold product parts (1 and 2) during casting is 85,000.
″′r: There was.
鋳型寸法(第5図参照):上部(l・1)の高さくdi
)150朋、製品部(1・2)の高さくn2)100調
、上部直径(dl)120騎、製品部直径(d2)80
麿。Mold dimensions (see Figure 5): Height of the top (l/1) di
) 150 mm, height of product part (1/2) n2) 100 scale, upper diameter (dl) 120 mm, product part diameter (d2) 80
you.
(B)金FA(ニ)・−ド鋳鉄)
(1)化学成分組成(wt%):C8,38%、5iO
176%、Mn0.68%、Ni4.41%、CrL5
7%、Mo 0.38%、残W F e 0(11)鋳
造蚤:9,7kq
(ii+)鋳造温度: 1610°C
(C’)炭化物粉末(W2C粉末)
(1)粒度二150〜250μm
(it)Ni−Bめつき厚さ:約1.Q71m(出)予
熱温度:500°C
(1v)投与ql : 6.1 kq
上記鋳造により第8図に示すごとき形状の鋳造体を得、
上部の実質的に金属からなる金属相部分(C−1)を切
断除去し、下部の複合相部分(C・2)′f:製品(複
合鋳物)として採取した。得られた複合鋳物の金属:炭
化物の容積比は82 : 68であり、硬度はHItA
86であつ、た。その金属組織を第6図に示す。炭化物
粒子は緻密かつ均一に分布し、各粒子表面は完全に金属
で被覆されるとともに粒子間隙が金属で充填され、強固
に結合していることがわかる。(B) Gold FA (d)/-d cast iron) (1) Chemical composition (wt%): C8,38%, 5iO
176%, Mn0.68%, Ni4.41%, CrL5
7%, Mo 0.38%, remaining W Fe 0 (11) Casting flea: 9,7 kq (ii+) Casting temperature: 1610°C (C') Carbide powder (W2C powder) (1) Particle size 2 150-250 μm (it)Ni-B plating thickness: approx. 1. Q71m (output) Preheating temperature: 500°C (1v) Dosage ql: 6.1 kq A cast body having the shape shown in Fig. 8 was obtained by the above casting,
The upper metal phase portion (C-1) consisting essentially of metal was cut and removed, and the lower composite phase portion (C.2)'f: was collected as a product (composite casting). The volume ratio of metal:carbide in the obtained composite casting was 82:68, and the hardness was HItA.
It was 86. The metal structure is shown in FIG. It can be seen that the carbide particles are densely and uniformly distributed, the surface of each particle is completely coated with metal, and the interstices between the particles are filled with metal, so that they are firmly bonded.
以上のように、本発明によれば、炭化物粒子が金属を介
して緻密かつ強固に結合した複合相分有する鋳物が得ら
れる。特に、本発明では、特殊な装置や条件を必要とせ
ず、例えば粉末冶金法などによる場合に比し、工程が簡
素であり、生産性にすぐれるとともに、その製造コスト
も極めて安価である。また、鋳物形状の自由度も大きく
、大物から小物まで所望に応じた種々の形状の複合材料
が得られ、その後の機械加工での加工代も少くてよい。As described above, according to the present invention, a casting having a composite phase in which carbide particles are densely and firmly bonded via metal can be obtained. In particular, the present invention does not require special equipment or conditions, and the process is simpler and more productive than, for example, powder metallurgy, and the manufacturing cost is extremely low. Furthermore, there is a large degree of freedom in the casting shape, and composite materials of various shapes can be obtained as desired, from large to small objects, and the machining allowance for subsequent machining can be small.
本発明により得られる複合鋳物は、例えば金型材料、圧
延ロール材料、その他の耐摩耗材として好適である。む
ろん、その用途は耐摩耗用途に限らず、金属や炭化物粉
末の選択、両者の複合割合の適宜の制御等により、耐熱
性その他の機械的、化学的特性を付与して種々の用途に
供することができる。The composite casting obtained by the present invention is suitable as, for example, a mold material, a roll material, and other wear-resistant materials. Of course, its uses are not limited to wear-resistant applications, but can also be used for various purposes by imparting heat resistance and other mechanical and chemical properties by selecting the metal and carbide powder and controlling the composite ratio of the two appropriately. I can do it.
第1図は末完、すJによる鋳造要イぬの具体例を示す断
面説明図、第2図〔I〕および(1)は鋳型内の金属〆
湯中Jおける炭化物粒子の混在状況の経時変化を模式〔
i、に示す縦断面図、第3図は鋳造体の縦断面説明図、
第4図は複合鋳物の挨合組!&を模式的に示す!卯図、
第5図は!型の形状例を示す縦断面説FJ′1図、第6
図は複合鋳物の光学顕微鏡組織を示す図面代用写真であ
る。
I:鋳捏(,4:ホッパー、7:炭化物投入装置7/f
、M:金属、P:炭化物粒子。
代理人 弁理士 宮 崎 新八部
=327−
第6図
□ 手□続補正書
1、事、件の表示
昭和 57年 特 許 顕示14.31’2・Oi2、
発明の名称 複合鋳物の製造方法、。
3、 補正をする者 ・事件と
の関係 特許出願人 44、代理人
5、補正命令の日付 (自発)
(1)明細料第6頁11行、「鋳造される。」の次に下
記事項を加入、
「溶湯および粉末の鋳型内への注入は、両者を同時に開
始し、か?、同時に終了するようにしてもよく、あるい
はそれぞれの江木開始および終了時期がたがいに前核し
そもよい。要するに1.、鋳型内で両者が十分に廃合し
、炭化物粒□子表面が溶湯で被覆されるとともにミ炭化
物粒子が鋳型下部の製品部に十分沈降凝集し、かつ凝集
した粒子間隙に溶湯が満たされた状門5カ、号、られる
ように!宜制御すればよい。」 リ、層:□−□−
く2)明a+書i 10′貢3に′□8′行、「タンク
±ステンカーバイト・・・この復炭イL物物には、」と
あるを下記のとおり訂正、
rwa(比重15′7、融点’2800°Cう、W20
(比重17.2、融点2806℃)、あるではタングス
テン複炭化物(例えばタングステンチタン複炭化物)な
どのタングメチン炭化物が挙げられる。
ただし、この複炭化物は、組成により比重が大きく異な
り、例えばタングステンチタン複炭化物では、」。
(3)明細書第11頁5行、「選択される。」の次に下
記事項を加入、
[例えば、鉄系合金としては、後記実施例にも□
示されるよりなニハード鋳鉄をはじめ、低合金な°、
いしは高合金の各種鋳鉄、鋳鋼が使用される。Jo、、
、 九)明i第13WT5行、′「製品」とあるを
□「ロール形状(円柱体)の製品」に訂正。
(以」二 )
□
□Fig. 1 is a cross-sectional explanatory diagram showing a concrete example of the final casting process, and Fig. 2 (I) and (1) show the mixture of carbide particles in the metal molten metal in the mold over time. Schematic representation of change
Fig. 3 is a vertical cross-sectional view of the cast body;
Figure 4 is a group of composite castings! & is schematically shown! Uzu,
Figure 5 is! Vertical section diagram FJ'1 showing an example of the shape of the mold, No. 6
The figure is a photograph substituted for a drawing showing the structure of a composite casting under an optical microscope. I: Casting (, 4: Hopper, 7: Carbide charging device 7/f
, M: metal, P: carbide particles. Agent Patent Attorney Miyazaki Shin 8th Department = 327- Figure 6 □ Proceeding Amendment 1, Indication of Matters, 1982 Patent Disclosure 14.31'2・Oi2,
Title of the invention: Method for manufacturing composite casting. 3. Person making the amendment ・Relationship with the case Patent applicant 44, Agent 5, Date of amendment order (voluntary) (1) On page 6, line 11 of the specification fee, after “It will be minted”, write the following information: Added, ``Injection of the molten metal and powder into the mold may start and end at the same time, or the start and end times of each may be similar to each other.In short, 1. The two are sufficiently combined in the mold, the surfaces of the carbide particles are covered with molten metal, and the carbide particles are sufficiently settled and aggregated in the product part at the bottom of the mold, and the gaps between the aggregated particles are filled with molten metal. 5 points of the Ta-shaped gate, so that it can be done! You just have to control it accordingly." Li, layer: □-□- ku 2) Ming a + Book i 10' Tribute 3, line '□8', Part-time job...This recarbonized material has the following correction: rwa (specific gravity 15'7, melting point '2800°C, W20
(specific gravity 17.2, melting point 2806° C.), and tungmetine carbides such as tungsten double carbide (for example, tungsten titanium double carbide). However, the specific gravity of this double carbide differs greatly depending on the composition, for example, tungsten titanium double carbide. (3) On page 11, line 5 of the specification, the following information is added next to "Selected." [For example, as for iron-based alloys, □
Low-alloyed cast irons, including the more Nihard cast irons shown,
Various types of high-alloy cast iron and cast steel are used. Jo...
9) Mei No. 13 WT line 5, ``Product''
□Corrected to "roll-shaped (cylindrical) product". (hereinafter “2”) □ □
Claims (1)
末とを鋳型内に鋳造し、比重差により炭化物粒子を沈降
させることによシ、上部の実・質的に金属溶湯のみから
なる金属相と、その下部の金属溶湯と炭化物粒子が混在
してなる複合相とを形成して凝固させ、凝固後金、属相
部分を切断除去し、複合相部分を製品として得る□こと
を特徴とする・複合鋳物の製造方法。
・(2)炭化物粉末の投入を、溶湯の鋳造
開始と同時に始め、溶湯の全鋳造量の4/′5が鋳込捷
れる時点までに終了することを特徴とする上記第(1)
項に記載の複合鋳物の製造方法。 (3)複合相部分における金属と炭化物粒子の容積比が
1=1〜1:3となるごとき量の炭化物粉末を投入する
ことを特徴とする上記第(1)項tたは第(2)項に記
載の複合鋳物の製造方法6(4)金属〆湯の鋳造量と炭
化物粉末の投入量が重量比ヤ、2:1〜5:1であるこ
とを特徴とする上記□第(1)項ないしは第(3)項の
いづれか1つに記載の複合鋳物の製造方法。 (5)鋳型が予熱されてbることを特徴とする」二記第
(1)項ないしは第(4)項のいづれか1つに記載の複
合鉄iの製造方法。 □ (6)鋳型の予熱温度が500°C以上であ乞ことを特
徴とする上記第(5)項に記載の複合鋳物の製造方法0
′ □ (7)炭化物粉末が予熱されていることを特徴とする上
記第(1)項ないしけml(6)項あいづれか1つに□
記載め複合−物の製造方法。 (8)炭化物粉末の予熱温度が300°C以上であるこ
とを□特徴とする上記第(7)項に記載の複合鋳物□の
製造方法ム □ ・ (9)炭化物粉末がニッケル系めっきが施こされたもの
であることを特徴とする」二記第(7)項または第(8
)項に記載の複合鋳物の製造方淑。 □00
金i(鉄、ニッケル□もしくはコバルト、またけ鉄
系合金、ニッケル系合金、もしくは1、コバルト系合金
であると志を′j寺徴とする1−記載(1)宿ない “
□し第(9)“項め゛・い、づれ力<Lつ(記載の複合
鉄、物の東:造・・、:、、−・0π°ん(Is4’l
a・ny’、;=;薯九::Q、 f”>’ ;y二、
4451. ・び/捷だに1、クンゲス光ンチタンカー
バイトであることを特徴とず蔦−1f□記琵Oo)項に
記載の複合鋳物の製造方法。 0の □タングステンヂタンカーバイトの比重が10〜
17.2であることを特徴とする」−記載(11)項に
記載の複合鋳物の製造方法。[Scope of Claims] (1) Molten metal and carbide powder having a higher specific gravity than the molten metal are cast in a mold, and the carbide particles are precipitated due to the difference in specific gravity. A metal phase consisting only of molten metal and a composite phase consisting of a mixture of molten metal and carbide particles are formed and solidified, and after solidification, the metal and metal phase portions are cut and removed, and the composite phase portion is made into a product. A method for producing composite castings characterized by obtaining □.
- (2) The above-mentioned (1), characterized in that the introduction of the carbide powder starts at the same time as the start of casting of the molten metal, and ends by the time when 4/'5 of the total amount of the molten metal is cast.
A method for manufacturing a composite casting as described in section. (3) Item (1) t or item (2) above, characterized in that carbide powder is added in an amount such that the volume ratio of metal to carbide particles in the composite phase portion is 1 = 1 to 1:3. 6 (4) The method for manufacturing composite castings described in Item □ (1) above, characterized in that the casting amount of the metal molten metal and the amount of carbide powder input are in a weight ratio of 2:1 to 5:1. The method for manufacturing a composite casting according to any one of Items 1 to 3. (5) The method for producing composite iron i according to any one of Items (1) to (4) above, characterized in that the mold is preheated. □ (6) Method 0 for manufacturing a composite casting according to item (5) above, characterized in that the preheating temperature of the mold is 500°C or higher.
' □ (7) Any one of the above paragraphs (1) and (6), characterized in that the carbide powder is preheated.
Method of manufacturing the described composite article. (8) The method for manufacturing composite casting □ according to item (7) above, characterized in that the preheating temperature of the carbide powder is 300°C or higher □ - (9) The carbide powder is coated with nickel-based plating. Article 2 (7) or (8)
) The method for manufacturing composite castings described in section 2. □00
Gold i (iron, nickel □ or cobalt, iron-based alloy, nickel-based alloy, or 1, cobalt-based alloy as a sign of 1-description (1) does not exist.
□No. (9) Item ゛・I, Shifting Force<L〉 (Described composite iron, Monotono East: Construction...:,, -, 0π° (Is4'l
a・ny', ;=;薯9::Q, f''>';y2,
4451.・The method for producing a composite casting according to item 1, characterized in that it is made of titanium carbide. 0 □The specific gravity of tungsten ditankerite is 10~
17.2”--The method for producing a composite casting according to item (11).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14312082A JPS5933064A (en) | 1982-08-17 | 1982-08-17 | Production of composite casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14312082A JPS5933064A (en) | 1982-08-17 | 1982-08-17 | Production of composite casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5933064A true JPS5933064A (en) | 1984-02-22 |
Family
ID=15331377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14312082A Pending JPS5933064A (en) | 1982-08-17 | 1982-08-17 | Production of composite casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5933064A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6356958U (en) * | 1986-09-30 | 1988-04-16 | ||
US5080287A (en) * | 1986-10-24 | 1992-01-14 | Nippondenso Co., Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
US5156342A (en) * | 1986-10-24 | 1992-10-20 | Nippondenso Co. Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
US5161743A (en) * | 1986-10-24 | 1992-11-10 | Nippondenso Co., Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
JP2009507137A (en) * | 2005-09-07 | 2009-02-19 | エム キューブド テクノロジーズ, インコーポレイテッド | Metal matrix composite body and method for making the same |
SE1850230A1 (en) * | 2018-03-02 | 2019-09-03 | Niklas Jedefors | Casting with a primary and secondary material |
-
1982
- 1982-08-17 JP JP14312082A patent/JPS5933064A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6356958U (en) * | 1986-09-30 | 1988-04-16 | ||
US5080287A (en) * | 1986-10-24 | 1992-01-14 | Nippondenso Co., Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
US5156342A (en) * | 1986-10-24 | 1992-10-20 | Nippondenso Co. Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
US5161743A (en) * | 1986-10-24 | 1992-11-10 | Nippondenso Co., Ltd. | Electromagnetic fuel injection valve for internal combustion engine |
JP2009507137A (en) * | 2005-09-07 | 2009-02-19 | エム キューブド テクノロジーズ, インコーポレイテッド | Metal matrix composite body and method for making the same |
SE1850230A1 (en) * | 2018-03-02 | 2019-09-03 | Niklas Jedefors | Casting with a primary and secondary material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW493010B (en) | Beryllium-containing alloys of aluminum and semi-solid processing of such alloys | |
TW445184B (en) | Powder composition | |
JP2001517732A (en) | Metal and ceramic containing parts made from powder using a binder derived from salt | |
JP2000239770A (en) | Production of cast alloy and complex cylinder | |
JPH0798262B2 (en) | Method for producing metal product having hard wear resistant surface layer by impregnation and product thereof | |
US4034464A (en) | Method of aluminum cylinder head valve seat coating transplant | |
JPS58157944A (en) | Compound cylinder and casted alloy therefor | |
JPS5933064A (en) | Production of composite casting | |
US5678636A (en) | Titanium horseshoe | |
JPH03282187A (en) | Crucible and manufacture thereof | |
US6485553B1 (en) | Filler material and wax composition for use in investment casting | |
DE4107416A1 (en) | Producing partially wear-resistant iron or steel castings - by coating cores with hard material which becomes dispersed in the casting surface during casting | |
JPS5933065A (en) | Production of hollow cylindrical composite casting | |
US10913104B2 (en) | Nanoparticle based sand conditioner composition and a method of synthesizing the same | |
JPS60124458A (en) | Production of wear resistant composite casting | |
JPS6127165A (en) | Manufacturing method for wear-resistant composite castings | |
US2469908A (en) | Synthetic mold composition and method of making same | |
JPS6046859A (en) | Production of wear-resistant composite casting | |
JP2023010380A (en) | Casting method and casting using the same | |
JPS5838219B2 (en) | Method for manufacturing cast steel parts with wear resistance on the surface layer | |
US4028062A (en) | Aluminum cylinder head valve seat coating transplant | |
EP1452611B1 (en) | Method of producing products made from carbide-reinforced, structural metal materials | |
JPS5933066A (en) | Manufacturing equipment for hollow cylindrical composite castings | |
JPS5982153A (en) | Manufacturing method for composite castings | |
JPS59127962A (en) | Manufacturing method for hollow composite castings |