[go: up one dir, main page]

JPS5980739A - Fluidized reduction method of nickel oxide - Google Patents

Fluidized reduction method of nickel oxide

Info

Publication number
JPS5980739A
JPS5980739A JP19015882A JP19015882A JPS5980739A JP S5980739 A JPS5980739 A JP S5980739A JP 19015882 A JP19015882 A JP 19015882A JP 19015882 A JP19015882 A JP 19015882A JP S5980739 A JPS5980739 A JP S5980739A
Authority
JP
Japan
Prior art keywords
fuel oil
furnace
reduction
nickel oxide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19015882A
Other languages
Japanese (ja)
Other versions
JPS5945741B2 (en
Inventor
Koichi Otsuka
大塚 孝一
Yoshinobu Katsumata
勝又 芳信
Haruo Ishiyama
石山 晴雄
Toru Mizukami
徹 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO NICKEL KK
Original Assignee
TOKYO NICKEL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO NICKEL KK filed Critical TOKYO NICKEL KK
Priority to JP19015882A priority Critical patent/JPS5945741B2/en
Publication of JPS5980739A publication Critical patent/JPS5980739A/en
Publication of JPS5945741B2 publication Critical patent/JPS5945741B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce NiO by a solid phase reduction to metallic Ni having high purity at a low cost by using kerosene contg. S in a small amt. as fuel in the stage of reducing NiO powder coated externally with MgO to Ni in a fluidized bed. CONSTITUTION:Powder of NiO of 35-70 mesh which is coated externally with MgO and contains <=0.005% S is charged into a reduction furnace 1 from the upper part thereof. The furnace 1 is beforehand maintained at 800-1,000 deg.C. Kerosene contg. <0.02% S is fed as fuel oil together with air at <=0.131 ratio of the amt. of NiO into the furnace according to the amt. of the NiO to be charged and the temp. in the furnace is maintained at the above-mentioned temp. The fuel oil is decomposed to generate reducing gas which reduces NiO to a powdery metal having high purity without melting the same. The formed Ni is prevented from sticking on the wall of the reduction furnace by the thin MgO coating layer and the Ni contg. an extremely small amt. of S is produced at a low cost without conglomeration of the powdery metallic Ni by the effect of said coating layer.

Description

【発明の詳細な説明】 本発明は酸化ニッケルの流動還元方法に係る。[Detailed description of the invention] The present invention relates to a method for fluid reduction of nickel oxide.

更に詳細には、酸化マグネシウム被覆酸化ニッケルを使
用し、低硫黄含有率の高品位還元ニッケルを得る方法に
関する。
More specifically, the present invention relates to a method of obtaining high-grade reduced nickel with a low sulfur content using magnesium oxide-coated nickel oxide.

ステンレス鋼、合金鋼等の特殊鋼製造技術の進歩並びに
省資源、省エネルギーの必要性から、安価かつ高品位の
ニッケルを安定して供給し得る方法の開発が望まれてい
る。
Due to advances in manufacturing technology for special steels such as stainless steel and alloy steel, as well as the need to conserve resources and energy, there is a desire to develop a method that can stably supply inexpensive, high-grade nickel.

従来、ニッケル源としては酸化ニッケル、電解ニッケル
、フェロニッケル、ニッケルメタル等多数のものが知ら
れているが、酸化ニッケル以外のニッケル源は大電力の
使用を必須としているために高価であシ、省エネルギー
の目的を達成することができない。
Conventionally, many sources of nickel have been known, such as nickel oxide, electrolytic nickel, ferronickel, and nickel metal, but nickel sources other than nickel oxide are expensive because they require the use of large amounts of electricity. The goal of energy conservation cannot be achieved.

一方、酸化ニッケルは安価であり、また安定して供給し
得るニッケル源であるが、このものが酸化物であるため
に、例えばステンレス鋼等を得るだめの溶解炉において
は、ニッケルと酸素とに分解するために余分な熱の使用
が必要とされ、電力原単位の上昇並びにクロムの損失等
をまねく恐れがある。
On the other hand, nickel oxide is a cheap and stable source of nickel, but because it is an oxide, nickel and oxygen are mixed together in melting furnaces used to produce, for example, stainless steel. Extra heat is required for decomposition, which may lead to increased power consumption and loss of chromium.

また、粉塵公害対策として設置された集塵機内の粉塵を
再使用する場合においても、その大部分が酸化物形状で
あるために使用量が制限され、かつその使用のために他
の酸化物の使用量が制約される可能性があったO これらの諸問題点を解決し、ニッケルを安価で安定して
供給し得るニッケル源の製造方法としては、酸化ニッケ
ルの溶解工程を経ずに、酸化ニッケルを直接還元するこ
とであシ、この種の方法として多数の提案がなされてい
る。例えば、流動炉中で水素または一酸化炭素等のガス
を用いて還元する方法、または回転移動床炉中で水素ま
たは天然ガス等により直接還元する方法などである。
Furthermore, even when reusing the dust in dust collectors installed as dust pollution countermeasures, the amount of dust used is limited because most of it is in the form of oxides, and the use of other oxides is limited. The production method of a nickel source that can solve these problems and stably supply nickel at low cost is to produce nickel oxide without going through the process of melting nickel oxide. Many proposals have been made for this type of method. For example, there is a method of reduction using hydrogen or a gas such as carbon monoxide in a fluidized bed furnace, or a method of direct reduction with hydrogen or natural gas or the like in a rotating moving bed furnace.

しかしながら、これら公知法のほとんどが還元されたニ
ッケル粒子間の付着団塊化並びに還元炉々壁上における
付着の問題を生じる。更に、水素ガス、−酸化炭素ガス
等は高価であシ、かつ取扱い上注窓を要する危険にガス
であるために大が力\りな設備を要し、また所定の温度
を維持するためにガスの予熱もしくは燃焼が必要となシ
、経費の増大、工程の複雑化という意味で不利である。
However, most of these known methods cause problems of adhesion agglomeration between the reduced nickel particles and adhesion on the walls of the reduction furnace. Furthermore, hydrogen gas, carbon oxide gas, etc. are expensive and dangerous gases that require a pouring window to handle, so they require large and powerful equipment. This is disadvantageous in that it requires preheating or combustion, which increases costs and complicates the process.

また、回転移動床炉を使用する場合には、ガスと被還元
物との接触が不充分となシ、多量の還元剤を必要とし、
かつ設備も大がかりとなる。
In addition, when using a rotating moving bed furnace, contact between the gas and the material to be reduced is insufficient, and a large amount of reducing agent is required.
Moreover, the equipment is also large-scale.

この粒子間の付着並びに炉壁への付着に関る問題を解決
するために、多くの解決策が提案されている。その1つ
は還元温度と粒径分布との相関々係に基いて、還元率及
び速度を最適範囲にすると共に、粒子の機械的問題を最
小化するというものであった。また、不活性粒子を供存
させ、これを機械的緩衝相として利用して、金属表面間
の接着の問題を回避しようとする提案もなされている。
Many solutions have been proposed to solve this problem of interparticle adhesion as well as adhesion to the furnace walls. One was to optimize the reduction rate and rate while minimizing particle mechanical problems based on the correlation between reduction temperature and particle size distribution. It has also been proposed to provide inert particles and use them as a mechanical buffer phase to avoid the problem of adhesion between metal surfaces.

しかしながら、効果的な付着防止を達成するためには、
多量の不活性粒子の存在が必要であるとされている。ま
た、このような方法は不活性粒子の偏析、流動還元時の
飛散等の問題を生じ、しかも後に不活性粒子を除くため
に選別工程を必要とし、取扱いが複雑化する。更に、少
量の極めて微細な不活性粒子と高純度の酸化ニッケルと
を使用して前記付着の問題を解決しようとする方法も知
られている(カナダ特許第869.475号)。しかし
、該カナダ特許は高純度の酸化ニッケルを使用するII
ISg−必要があシ、また還元剤として水素の使用を含
むので経済的に不利であシ、工程の複雑化をまぬがれな
い。
However, to achieve effective anti-fouling,
The presence of large amounts of inert particles is believed to be necessary. Furthermore, such a method causes problems such as segregation of inert particles and scattering during fluidized reduction, and furthermore requires a sorting step to remove the inert particles afterwards, making handling complicated. It is also known (Canadian Patent No. 869.475) to try to solve the adhesion problem by using small amounts of very fine inert particles and high purity nickel oxide. However, the Canadian patent describes II
ISg - is necessary, and since it involves the use of hydrogen as a reducing agent, it is economically disadvantageous, and the process is unavoidably complicated.

一方、特公昭55−9932号公報は前記付着の問題を
克服するために酸化ニッケル粒子上に凝集防止被覆を形
成することを提案している。該方法は硫黄含量0.00
5〜0.5%の非鉄金属酸化物粒子(例えば酸化ニッケ
ル、コバルト)および酸化カルシウム、マグネシアまた
はこれら酸化物に熱分解し得るイし金物である少なくと
も1種の添加剤から々る移動床を形成し、紋末を該非鉄
金属酸化物粒子を還元するのに充分な高温度で還元性雰
囲気と接触する工程を含み、凝集防止被覆は前記還元条
件下で形成される。
On the other hand, Japanese Patent Publication No. 55-9932 proposes forming an anti-agglomeration coating on nickel oxide particles in order to overcome the problem of adhesion. The method has a sulfur content of 0.00
A moving bed comprising 5 to 0.5% of non-ferrous metal oxide particles (e.g. nickel oxide, cobalt oxide) and at least one additive which is calcium oxide, magnesia or an insulator which can be thermally decomposed to these oxides. forming and contacting the coating with a reducing atmosphere at a temperature sufficient to reduce the non-ferrous metal oxide particles, the anti-agglomeration coating being formed under said reducing conditions.

しかしながら、特公昭55−9932号公報記載の方法
においても、 i 被覆された非鉄金属酸化物中の硫黄含有量が0・0
05%〜0・5%と高いので、燃料油を吹き込むことに
よシ流動還元を行う場合には、硫黄により燃料油の分解
が阻害される為に還元率が低下する: 1i1000℃以下の温度において被覆を行っているが
、このような条件下では被覆層の付着が不充分であると
共に被覆率も悪く、脱硫も不完全となり易い: 111  硫黄含有率の高い被覆酸化ニッケルを用いて
還元を行った場合には、ニッケル粒子が脆くなり、粉塵
の発生が多くなる: 等の欠点を有し、依然として改良の余地が残されている
However, even in the method described in Japanese Patent Publication No. 55-9932, the sulfur content in the coated nonferrous metal oxide is 0.0.
0.05% to 0.5%, so when fluid reduction is performed by injecting fuel oil, the reduction rate decreases because decomposition of the fuel oil is inhibited by sulfur: 1i Temperature below 1000°C However, under these conditions, the adhesion of the coating layer is insufficient, the coverage is poor, and desulfurization tends to be incomplete: 111 Reduction using coated nickel oxide with a high sulfur content If this is done, the nickel particles become brittle and more dust is generated.Therefore, there is still room for improvement.

このように状況の下で、本発明者等は前記公知方法を更
に改良すべく種々研究の結果新規な酸化ニッケル粒子の
被覆方法を見出し、本出願と同日付で別途特許出願した
Under these circumstances, the inventors of the present invention discovered a new method of coating nickel oxide particles as a result of various studies to further improve the known method, and filed a separate patent application on the same date as the present application.

この酸化ニッケルの被覆方法は、1000℃以上の高温
度下で酸化ニッケルまたはその先駆体の流動層中に可溶
性マグネシウム化合物溶液を吹込むことを特徴とするも
のである。
This nickel oxide coating method is characterized by blowing a soluble magnesium compound solution into a fluidized bed of nickel oxide or its precursor at a high temperature of 1000° C. or higher.

本発明者等はこの酸化マグネシウム被覆酸化ニッケルが
還元中におけるニッケル粒子間の付着団塊化並びに炉壁
への付着防止に極めて有効であること、更に極めて硫黄
含有量の少ない燃料油の使用によシ効果的な流動還元が
達成し得ることを見出し、本発明を完成するに至った。
The present inventors have discovered that this magnesium oxide-coated nickel oxide is extremely effective in preventing the adhesion of nickel particles from agglomeration and adhesion to the furnace wall during reduction, and that it is also highly effective in preventing the use of fuel oil with an extremely low sulfur content. The present inventors have discovered that effective fluidized reduction can be achieved, and have completed the present invention.

そこで、本発明の主な目的は還元酸化ニッケル粒子間の
付着並びにその炉壁への付着を効果的に回避し、経済的
かつ生産性よく高品位の還元ニッケルを得る方法を提供
することである。
Therefore, the main purpose of the present invention is to provide a method for obtaining high-grade reduced nickel economically and productively by effectively avoiding adhesion between reduced nickel oxide particles and their adhesion to the furnace wall. .

本発明の他の目的並びに特徴は以下の記載から一層明ら
かとなろう。
Other objects and features of the invention will become more apparent from the following description.

即ち、本発明は流動層にお込て低硫黄燃料油を吹込み、
800’C〜1000t::の範囲の高温度下で、低硫
黄含有率を有する酸化マグネシウム被覆酸化ニッケルを
流動還元する工程を含む、低硫黄含有率かつ高品位の還
元ニッケルを得る方法に係る。
That is, the present invention injects low sulfur fuel oil into a fluidized bed,
The present invention relates to a method for obtaining reduced nickel with a low sulfur content and high quality, which includes a step of fluidically reducing magnesium oxide-coated nickel oxide with a low sulfur content at a high temperature in the range of 800'C to 1000 t::.

まず、酸化ニッケル粒子の被覆は前に述べたような方法
に従って行われる。酸化ニッケル源としてはいかなる起
源のものでもよく、またその先駆体としては、特に硫化
ニッケルの脱硫の際の1次脱硫処理後のものを例示する
ことができる。使用できる可溶性マグネシウム化合物と
しては硫酸マグネシウム、チオ硫酸マグネシウム、酢酸
マグネシウム等を単独でもしくは混合物として使用し、
水溶液として使用することが通常は打首しい。使用する
液濃度は10〜25重量%の範囲が好ましく、該溶液は
酸化ニッケル基準で燐層されるマグネシウムの重量が0
.2〜0.3%となるような量で使用される。
First, the coating of nickel oxide particles is carried out according to the method described above. The nickel oxide source may be of any origin, and its precursor can be exemplified, particularly after primary desulfurization treatment during desulfurization of nickel sulfide. As soluble magnesium compounds that can be used, magnesium sulfate, magnesium thiosulfate, magnesium acetate, etc. can be used alone or as a mixture.
It is usually best to use it as an aqueous solution. The concentration of the solution used is preferably in the range of 10 to 25% by weight, and the solution is such that the weight of magnesium to be formed in the phosphorous layer is 0 based on nickel oxide.
.. It is used in an amount of 2-0.3%.

かぐして、硫黄含有率0.005%以下、マグネシウム
含量0.2%以上の被覆酸化ニッケル粒子を得ることが
でき、このものは冷却処理することなく、そのまま後の
還元工程に移すことができ、経済的に有利である。
By sniffing, coated nickel oxide particles with a sulfur content of 0.005% or less and a magnesium content of 0.2% or more can be obtained, and these can be directly transferred to the subsequent reduction step without cooling treatment. , economically advantageous.

本発明の還元方法は、炉床の羽目から空気を送込み、炉
内の装入物を流動化し、そこに燃料油を吹込んで部分燃
焼させることにより発生する熱で炉内の温度を所定範囲
内に維持し、かつ燃料油の部分燃焼に基き発生する還元
性ガスを利用して酸化ニッケルを還元する工程を含む。
The reduction method of the present invention involves blowing air through the lining of the hearth to fluidize the charge in the furnace, and then injecting fuel oil into it and causing partial combustion to generate heat to maintain the temperature in the furnace within a predetermined range. The process includes a step of reducing nickel oxide using a reducing gas generated by partially burning the fuel oil.

この方法を効率良〈実施するためには以下のような点に
注意する必要がある。
In order to implement this method efficiently, it is necessary to pay attention to the following points.

(a)  常に良好な流動状態を維持する、(b)  
還元性ガスが最も効率よく発生するように燃料油を分解
させる、 (C)  燃料油の分解を阻害する成分並びに還元を妨
害する恐れのある成分を、できるだけ少なくする。
(a) Maintain good flow conditions at all times; (b)
Decompose fuel oil so that reducing gas is generated most efficiently; (C) Reduce as much as possible the components that inhibit the decomposition of fuel oil and the components that may interfere with reduction.

これらの重要な要件にりいて更に詳細に説明すると、ま
ず(a)の要件は原料としての酸化ニッケルに関るもの
で、前述の通り、酸化ニッケルの還元によシ生ずるニッ
ケル粒子が付着団塊化したシ、炉壁に付着することが最
も大きな障害の原因である。しかしながら、この点は前
述の方法によシ酸化マグネシウム被覆を施した酸化ニッ
ケル粒子を使用することにより、効果的に防止できる。
To explain these important requirements in more detail, requirement (a) is related to nickel oxide as a raw material, and as mentioned above, the nickel particles produced by the reduction of nickel oxide adhere and form agglomerates. The biggest cause of trouble is that it sticks to the furnace walls. However, this problem can be effectively prevented by using nickel oxide particles coated with magnesium oxide by the method described above.

更に、この要件は吹込むべき空気の状態によっても影響
を受ける。このような吹込み空気に起因する炉床部分で
の不完全流動は炉床に設置すべき羽口数をできるだけ多
くすると共に羽口の吹出し方向を調整することによシ防
止できる。該羽口の吹出し方向は斜め下向きとすること
が望ましい。これは、羽口周辺の粒子を滞ることなく流
動させると同時に、羽口から流動層の粒子が逆流するの
を防止するためにも有効である。
Furthermore, this requirement is also influenced by the conditions of the air to be blown. Such incomplete flow in the hearth caused by blown air can be prevented by increasing the number of tuyere to be installed in the hearth as much as possible and by adjusting the blowing direction of the tuyere. It is desirable that the blowing direction of the tuyeres be directed diagonally downward. This is effective in allowing the particles around the tuyere to flow without stagnation and at the same time preventing the particles in the fluidized bed from flowing back from the tuyere.

また流動性を良くするためには、酸化ニッケルの粒度分
布を10メツシユ〜100メツシユの間とするのがよく
、望ましくは、35メツシユ〜70メツシユの間のもの
が良い。35メツシュ以上の粒子の割合が多くなればな
る程、均一流動になりにくくなり、また、70メツシユ
以下の粒子の割合が増えれば増える程ニッケル粒子の歩
留シが悪くなる。酸化ニッケルの粒度分布と吹込み空気
の空間速度とは関連があシ、上述した粒度分布において
吹込み空気の空間速度は約152 ctn/sec〜2
13 cm / seeの範囲とすることが望ましい。
In order to improve fluidity, the particle size distribution of nickel oxide is preferably between 10 mesh and 100 mesh, preferably between 35 mesh and 70 mesh. The greater the proportion of particles with a mesh size of 35 or more, the more difficult it becomes to achieve uniform flow, and the greater the proportion of particles with a mesh size of 70 or less increases, the worse the yield of nickel particles becomes. There is no relationship between the particle size distribution of nickel oxide and the space velocity of the blown air.In the above particle size distribution, the space velocity of the blown air is about 152 ctn/sec~2
A range of 13 cm/see is desirable.

これは空間速度が約152tYn/SeC以下になれば
流動状態が悪化し不均一な流動となりまた約213c7
n/SeC以上の空間速度では炉内粒子が吹込み空気に
同伴されるので歩留シが悪くなるためである。
This is because if the space velocity becomes less than about 152tYn/SeC, the flow condition deteriorates and the flow becomes uneven, and about 213c7
This is because at a space velocity of n/SeC or more, particles in the furnace are entrained in the blown air, resulting in poor yield.

次K (b)の要件、即ち還元性ガスが最も効率よく発
生するように燃料油を分解させるためには、まず燃料油
の液滴径をできる限シ微細化し得るような構造を有する
バーナー、例えば高圧気流式バーナー、油圧噴霧式バー
ナー等を使用し、充分な霧化を行うことである。更に、
燃料油の分解ガス化を促進するためには温度も重要なフ
ァクターであシ、所定の目的を達成するためには800
〜1000℃の範囲の温度が適している。800℃より
低い温度では、燃料油の分解ガス化の効率が悪く、スス
の発生が多くなシ、その結果還元速度が低下するので好
ましくない。また、1000℃より高い温度では、高温
度を維持するために必要とされる燃料油の消費量が増大
し、エネルギーの無駄となるばかりでなく、炉壁、羽目
、バーナー等の損耗率も大きくなるので好ましくない。
In order to meet the requirement of the next K (b), that is, to decompose fuel oil so that reducing gas is generated most efficiently, first, a burner having a structure that can make the droplet diameter of fuel oil as fine as possible, For example, sufficient atomization should be carried out using a high-pressure air flow burner, a hydraulic spray burner, or the like. Furthermore,
Temperature is also an important factor to promote cracking and gasification of fuel oil, and to achieve the specified purpose, 800
Temperatures in the range ˜1000° C. are suitable. A temperature lower than 800° C. is not preferable because the efficiency of decomposition and gasification of fuel oil is poor, a large amount of soot is generated, and as a result, the reduction rate decreases. Furthermore, at temperatures higher than 1000℃, the amount of fuel oil required to maintain the high temperature increases, which not only wastes energy, but also increases the rate of wear and tear on the furnace walls, siding, burners, etc. This is not desirable.

第3の(C)の要件、即ち燃料油の分解を阻害する成分
並びに還元を阻害する成分をできる限り少なくするため
には、酸化ニッケル中の並びに燃料油中の硫黄含有量を
最小化することである。また、温度調節のために水、ス
)チーム等を使用しないことも重要である。
In order to meet the third requirement (C), that is, to minimize the amount of components that inhibit the decomposition and reduction of fuel oil, the sulfur content in nickel oxide and in the fuel oil must be minimized. It is. It is also important not to use water, steam, etc. to adjust the temperature.

硫黄の存在は、実施例2に示す如く、たとえ微量であっ
ても還元工程において流動層に吹込まれる燃料油の分解
を阻害し、還元剤としての水素、−酸化炭素の発生効率
を低下させ、スス並びに還元には殆ど寄与しない炭化水
素の発生原因となる。
As shown in Example 2, the presence of sulfur, even in a small amount, inhibits the decomposition of the fuel oil blown into the fluidized bed in the reduction process and reduces the efficiency of generating hydrogen and carbon oxides as reducing agents. , soot, and hydrocarbons that hardly contribute to reduction.

また、硫黄の大部分は還元ニッケル中に残留するので、
還元ニッケルが特殊鋼等の製造原料として使用される場
合には、不純物として悪影響を及ぼす可能性が大きい。
Also, since most of the sulfur remains in the reduced nickel,
When reduced nickel is used as a raw material for producing special steel, etc., it is highly likely that it will have an adverse effect as an impurity.

本発明者等の研究によれば、還元すべき酸化ニッケル中
の硫黄含有率は0 、005%以下であることが望まし
いことがわかってbる。硫黄含有率がこれ以上である場
合には、燃料油の分解が阻害され、スス、炭化水素の発
生率が増大し、その結果還元効率も低下する。
According to research conducted by the present inventors, it has been found that the sulfur content in the nickel oxide to be reduced is desirably 0.005% or less. If the sulfur content is higher than this, the decomposition of the fuel oil will be inhibited, the generation rate of soot and hydrocarbons will increase, and as a result, the reduction efficiency will also decrease.

同様な理由から、燃料油も低硫黄含有率のものを使用す
ることが好ましく、また取扱い上危険の少ないものが好
ましいという理由から、灯油を使用することが最も望ま
しい。
For similar reasons, it is preferable to use fuel oil with a low sulfur content, and it is most desirable to use kerosene because it is less dangerous to handle.

本発明において燃料油の使用量は酸化ニッケルに対する
重量比で0.131以下である。これによって88係以
上の還元度で還元ニッケルを連続的に生産性よく得るこ
とができる。
In the present invention, the amount of fuel oil used is 0.131 or less in weight ratio to nickel oxide. Thereby, reduced nickel can be obtained continuously and with high productivity with a degree of reduction of 88 coefficients or higher.

本発明において使用する還元炉は特に制限されず、例え
ば置部型流動炉、上部コニカル型流動炉、下部コニカル
型流動炉等を使用することができ、回分式もしくは連続
式いずれの方法を採ることもできる。
The reduction furnace used in the present invention is not particularly limited, and for example, a bed type fluidized bed furnace, an upper conical type fluidized bed furnace, a lower conical type fluidized bed furnace, etc. can be used, and either a batch type or a continuous type method can be used. You can also do it.

以下、本発明の還元法を好ましい態様について添付図を
参照しつつ説明する。
Hereinafter, preferred embodiments of the reduction method of the present invention will be explained with reference to the attached drawings.

酸化マグネシウムで被覆した酸化ニッケルは還元炉lの
上部又は側面の投入孔から重力で落下させるか、もしく
は機械的に炉内に吹き込む。還元・戸1はあらかじめ8
00℃〜1000℃の温度に保持しておき、酸化ニッケ
ルの投入量に応じて燃料油量及び空気量を調節しながら
所定の温度に保つO 燃料油は炉床に近い炉側面からバーナーによって炉内に
吹き込む。
The nickel oxide coated with magnesium oxide is allowed to fall by gravity from an input hole at the top or side of the reduction furnace 1, or is mechanically blown into the furnace. Refund・Door 1 is 8 in advance
The temperature is maintained between 00°C and 1000°C, and the amount of fuel oil and air are adjusted according to the amount of nickel oxide added to maintain the specified temperature. Blow inside.

空気は最適な流動を得るために空間速度が約152〜2
13 Cm / secとなるような量で炉床羽口から
投入する。
Air should have a space velocity of approximately 152-2 for optimal flow.
Feed through the hearth tuyere in an amount such that 13 Cm/sec.

燃料油は炉温度が所定の温度になるように、酸化ニッケ
ルの投入量に合わせて投入するが、酸化ニッケルに対す
る重量比で0.131以下で充分である。
Fuel oil is added in accordance with the amount of nickel oxide added so that the furnace temperature reaches a predetermined temperature, but a weight ratio of 0.131 or less to nickel oxide is sufficient.

還元されたニッケルは冷却器2へ移送し、ここで窒素等
の不活性ガスもしくは炉排ガスにょシ雰囲気を調節した
状態で冷却する。
The reduced nickel is transferred to the cooler 2, where it is cooled under a controlled atmosphere of inert gas such as nitrogen or furnace exhaust gas.

冷却器2は特に制限を受けず例えば流動冷却炉、外部水
冷式回転移動床炉、水冷式ミキサー等を使用することが
できるが、還元された高温のニッケルが再酸化しないよ
うに雰囲気を調節する必要がある。
The cooler 2 is not particularly limited and can be, for example, a fluidized cooling furnace, an external water-cooled rotary moving bed furnace, a water-cooled mixer, etc., but the atmosphere must be adjusted so that the reduced high-temperature nickel does not re-oxidize. There is a need.

還元炉1および冷却器2からの排ガスは煙道4に集めら
れ、更に排ガス冷却洗浄装置3を通した後放出される。
The exhaust gases from the reduction furnace 1 and the cooler 2 are collected in a flue 4, further passed through an exhaust gas cooling and cleaning device 3, and then released.

かくして、本発明の方法に従えば以下の如き多くの効果
を達成することができる。
Thus, by following the method of the present invention, many effects can be achieved, such as the following.

1、 熱源および還元剤は燃料油の部分燃焼を利用する
ため、安全性が高く、安価であシ、水素ガス、−酸化炭
素ガス等に比べ気密保持にはそれ程厳密性が要求されな
い。
1. Since the heat source and reducing agent utilize partial combustion of fuel oil, they are highly safe, inexpensive, and require less strict airtightness than hydrogen gas, carbon oxide gas, etc.

2、 流動還元炉の炉内で燃料油のガス化と分解反応を
同時に行うことができるため特別の予熱室、燃焼室は不
要であり、燃料油を炉内に吹込むだけでよい。
2. Since the gasification and decomposition reactions of fuel oil can be performed simultaneously in the fluidized fluidized reduction furnace, there is no need for a special preheating chamber or combustion chamber, and it is sufficient to simply inject the fuel oil into the furnace.

3、 燃料油に灯油を選べば、硫黄含有量が少々く、又
、一般国民生活への影響を反映して価格は監視下にあり
、需給も政府及び消費者の管理下にあシ供給の安定性、
価格の公共性がある。
3. If you choose kerosene as your fuel oil, it will have a lower sulfur content, and its price will be monitored to reflect the impact on the lives of the general public, and supply and demand will be controlled by the government and consumers. Stability,
There is a public nature of price.

4、 溶解精錬に比較して、電力は極めて少ない。4. Compared to melting and refining, electricity is extremely low.

5 コストを総合的に見ると、燃料費が少々く・電力も
少0斤く、また溶解精錬において必要な造滓剤等の副資
材も不要であるため、非常に低コストである。
5. When looking at the cost comprehensively, the fuel cost is low, the electric power is low, and there is no need for auxiliary materials such as slag-forming agents required in melting and refining, so the cost is very low.

6、 設備に特殊力ものを必要とせず、流動焙焼炉を有
するところではそのまま利用でき、設備投資も非常に安
い。
6. No special power is required for the equipment, and it can be used as is in places that have a fluidized roasting furnace, and the equipment investment is very low.

Z 製品は粒状であるが、用途が広く、例えばAOD炉
への吹き込み、電解ニッケルの原料、電気炉に−1,−
けるスクラップ高配合操業等にも適する。
Although the Z product is granular, it has a wide range of uses, such as blowing into AOD furnaces, raw material for electrolytic nickel, and electric furnaces.
It is also suitable for operations with high scrap content.

8、 本方法では、流動還元時に発生するダストの量が
極めて少なく、歩留りが非常に良いばかりでなく、溶解
精錬に比較すると、ニッケルの損失が少なくまたダスト
として発生したニッケルもリサイクルで再使用できる。
8. In this method, the amount of dust generated during fluidized reduction is extremely small, and not only is the yield very high, but compared to melting and refining, there is less nickel loss, and the nickel generated as dust can be recycled and reused. .

9 還元操業が容易であり、装置規模に対する生産性が
大きい。
9. Reduction operation is easy and productivity is high for the equipment scale.

10、条件を選べば、燃料油のスチームによる改質も利
用でき、更にコストダウンが可能である。
10. If conditions are selected, it is also possible to reform fuel oil with steam, making it possible to further reduce costs.

次に実施例をあげて本発明を更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1と3は本方法を用いて実施した良好な例である
Examples 1 and 3 are good examples of implementation using this method.

実施例2では酸化ニッケル中の硫黄含有量が0 、00
5%の場合とそれ以上の場合との比較を示したが、硫黄
含有量が0.005%以上の場合は還元度も悪く、また
生産性も悪くなっている。
In Example 2, the sulfur content in nickel oxide was 0.00
A comparison between the case of 5% and the case of more than 5% is shown, and when the sulfur content is 0.005% or more, the degree of reduction is poor and the productivity is also bad.

これは、第8表の排ガス分析値から明らかな通り、硫黄
によって燃料油の分解が悪くなり、メタン等の炭化水素
が増加し、還元に必要々Co、H2が減少したためであ
る。
This is because, as is clear from the exhaust gas analysis values in Table 8, sulfur worsens the decomposition of fuel oil, increases hydrocarbons such as methane, and decreases Co and H2 necessary for reduction.

実施例 第1表に示す化学組成と第2表に示す粒度分布とを有す
る酸化マグネシウム被覆酸化ニッケルを使用し900℃
で流動還元を行った。このときの操業条件を第3表に示
す。
Example: Magnesium oxide coated nickel oxide having the chemical composition shown in Table 1 and the particle size distribution shown in Table 2 was used and heated at 900°C.
Fluid reduction was performed. The operating conditions at this time are shown in Table 3.

得られた還元ニッケルの化学組成及び粒度1分布を各々
第4表及び第5表に示す。
The chemical composition and particle size distribution of the obtained reduced nickel are shown in Tables 4 and 5, respectively.

第一−−酸化マー、7ノー゛イク4舅譚−一漁iヱクー
化−や四チー盛分−憾 76.79. i、ol  0
.110.390.0050.27第2表 酸化マグネ
シウム被覆酸化ニッケルの粒度分布係  29.16 
 68.23   2.15    0.46還元温度
      900℃ 空気比※’      0.383 燃料比※2     0.131 炉床面積fiり生産性  48.8)ン/m2・日還元
度       91.5係 ※1 空気比は、燃料油の完全燃焼に必要な空気量と投
入空気量との比である0 ※2 燃料比は投入した原料に対する燃料の重量比であ
る。
1st - oxidizer, 7 no iku 4 舅tan - one catch Ieku conversion - and four Qi servings - regret 76.79. i,ol 0
.. 110.390.0050.27 Table 2 Particle size distribution of nickel oxide coated with magnesium oxide 29.16
68.23 2.15 0.46 Reduction temperature 900℃ Air ratio *' 0.383 Fuel ratio *2 0.131 Hearth area fi productivity 48.8) n/m2・day reduction degree 91.5 ratio * 1 Air ratio is the ratio between the amount of air required for complete combustion of fuel oil and the amount of input air. 0 *2 Fuel ratio is the weight ratio of fuel to input raw materials.

係 95.501.220−140.520.0070
.3.7第5表 還元ニッケルの粒度分布 実施例2 第6表に示す化学組成を有する2種類の酸化マグネシウ
ム被覆酸化ニッケルを使用して、900℃で流動還元を
行った。このときの操業条件を第7表に、また排ガス分
析値を第8表に示す。
Contact 95.501.220-140.520.0070
.. 3.7 Table 5 Particle size distribution of reduced nickel Example 2 Using two types of magnesium oxide-coated nickel oxide having the chemical compositions shown in Table 6, fluidized reduction was carried out at 900°C. The operating conditions at this time are shown in Table 7, and the exhaust gas analysis values are shown in Table 8.

得られた還元ニッケルの化学組成を第9表に示すO 番f%  、N、i−、−Co   、Cu、−Fe、
、−、、、、、S−−、、M、g−176,791,0
10,110,390,0050,27276,781
,010,110,390,0+110.27第7表 
操業条件 番号           12 還元温度1:          900   900
空気比    0.3830.356 燃料比    0.1310.140 炉床面積当シ生産性トン/m2−8  48.8   
45.5還元度係          91.0  7
6.9実施例3 第10表に示す化学組成のマグネシウム被覆酸化ニッケ
ルを894℃で流動還元した。このときの操業条件を第
11表に示す。
The chemical composition of the obtained reduced nickel is shown in Table 9: O f%, N, i-, -Co, Cu, -Fe,
,-,,,,S--,,M,g-176,791,0
10,110,390,0050,27276,781
,010,110,390,0+110.27Table 7
Operating condition number 12 Reduction temperature 1: 900 900
Air ratio 0.3830.356 Fuel ratio 0.1310.140 Productivity tons per hearth area/m2-8 48.8
45.5 Reduction level 91.0 7
6.9 Example 3 Magnesium-coated nickel oxide having the chemical composition shown in Table 10 was fluidized at 894°C. The operating conditions at this time are shown in Table 11.

得られた還元ニッケルの化学組成を第12表に示す。The chemical composition of the obtained reduced nickel is shown in Table 12.

係 76.79 1.01 0.11 0.590.0
050.27還元温度      894℃ 空気比       0.392 燃料比      0.127 炉床面積濤シ生産性  50.1 トン/m2・日還元
度       88.7幅 郊 95.01.250.1.40.4B 0.007
0.33
Person in charge 76.79 1.01 0.11 0.590.0
050.27 Reduction temperature 894℃ Air ratio 0.392 Fuel ratio 0.127 Hearth area productivity 50.1 tons/m2・day reduction degree 88.7 Width 95.01.250.1.40.4B 0.007
0.33

【図面の簡単な説明】[Brief explanation of drawings]

添付図は本発明の方法を実施するための工程図の1例を
示す図である。
The attached drawing is a diagram showing an example of a process diagram for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】 (1)  流動層内に、低硫黄含有率の酸化マグネシウ
ム被覆酸化ニッケルを装入し、低硫黄含有率の燃料油を
吹き込み、部分燃焼させることによシ、800〜100
0℃の範囲内の高温度下で該酸化ニッケルを倣動還元す
る工程を含む、低硫黄含有率の高品位還元ニッケルを製
造する方法・(2)  前記燃料油の使用量が酸化ニッ
ケルに対する重量比で表わして0.131以下であるこ
とを特徴とする特許請求の範囲第(1)項記載の方法。 (3)  前記燃料油の硫黄含有率が0.02%以下で
あることを特徴とする特許請求の範囲第(1)または(
2)項記載の方法。 (4)  前記燃料油が灯油であることを特徴とする特
許請求の範囲第(3)項記載の方法。 (5)  前記マグネシウム被覆酸化ニッケルの硫黄含
有率が0.005%以下である、特許請求の範囲第10
〜(4)項のいずれか1項に記載の方法。
[Scope of Claims] (1) Magnesium oxide coated nickel oxide with a low sulfur content is charged into a fluidized bed, fuel oil with a low sulfur content is blown into the fluidized bed, and fuel oil with a low sulfur content is injected into the fluidized bed and partially combusted.
A method for producing high-grade reduced nickel with a low sulfur content, comprising a step of dynamically reducing the nickel oxide at a high temperature within the range of 0°C. (2) The amount of fuel oil used is based on the weight of nickel oxide. The method according to claim 1, wherein the ratio is 0.131 or less. (3) Claim No. (1) or (2) characterized in that the sulfur content of the fuel oil is 0.02% or less.
The method described in section 2). (4) The method according to claim (3), wherein the fuel oil is kerosene. (5) Claim 10, wherein the sulfur content of the magnesium-coated nickel oxide is 0.005% or less.
The method according to any one of (4) to (4).
JP19015882A 1982-10-29 1982-10-29 Fluid reduction method of nickel oxide Expired JPS5945741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19015882A JPS5945741B2 (en) 1982-10-29 1982-10-29 Fluid reduction method of nickel oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19015882A JPS5945741B2 (en) 1982-10-29 1982-10-29 Fluid reduction method of nickel oxide

Publications (2)

Publication Number Publication Date
JPS5980739A true JPS5980739A (en) 1984-05-10
JPS5945741B2 JPS5945741B2 (en) 1984-11-08

Family

ID=16253384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19015882A Expired JPS5945741B2 (en) 1982-10-29 1982-10-29 Fluid reduction method of nickel oxide

Country Status (1)

Country Link
JP (1) JPS5945741B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012584A1 (en) * 2003-07-30 2005-02-10 Inco Tokyo Nickel Company Limited Nickel metal and process for producing the same
JP2006176830A (en) * 2004-12-22 2006-07-06 Taiyo Nippon Sanso Corp Method for concentrating and recovering metallic nickel from powder containing elemental nickel
US10342885B2 (en) 2011-03-31 2019-07-09 Toyota Jidosha Kabushiki Kaisha Vehicular air cleaner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150912U (en) * 1984-09-07 1986-04-05

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005012584A1 (en) * 2003-07-30 2005-02-10 Inco Tokyo Nickel Company Limited Nickel metal and process for producing the same
KR100728795B1 (en) * 2003-07-30 2007-06-19 인코 도쿄 니켈 가부시키가이샤 Nickel metal and process for producing the same
AU2004261886B2 (en) * 2003-07-30 2007-10-18 Vale Japan Limited Nickel metal and process for producing the same
JP2006176830A (en) * 2004-12-22 2006-07-06 Taiyo Nippon Sanso Corp Method for concentrating and recovering metallic nickel from powder containing elemental nickel
US10342885B2 (en) 2011-03-31 2019-07-09 Toyota Jidosha Kabushiki Kaisha Vehicular air cleaner

Also Published As

Publication number Publication date
JPS5945741B2 (en) 1984-11-08

Similar Documents

Publication Publication Date Title
AU2009293900B2 (en) Process for producing molten iron
JPH0137449B2 (en)
JP2001506315A (en) Direct reduction of metal oxide nodules
JPS622602B2 (en)
JPS6055574B2 (en) Method for recovering nonvolatile metals from metal oxide-containing dust
CN115011746A (en) Based on CO 2 Circular total oxygen/high oxygen-enriched iron-smelting gas-making system and operation method
JPS5980739A (en) Fluidized reduction method of nickel oxide
CN102766724A (en) Method adopting oxygen lance to jet granulated powder limestone to make slag and steel in combined blown converter
CN105755196A (en) Clean and efficient steel metallurgy method
CN103667564B (en) Prepare the method for metal simple-substance
CN117431352A (en) A steel smelting system and method based on hydrogen-rich reducing gas injection
RU2005126707A (en) IMPROVED METHOD OF Smelting for iron production
Badr et al. Plasma Reduction of Iron Oxide by Methane Gas and its Process Up‐scaling
CN109628676B (en) A short-flow process for directly producing pure molten iron
JPH06505302A (en) Method for producing steel in a liquid bath and equipment for carrying out the method
RU2511419C2 (en) Method for liquid-phase obtaining of direct-reduced iron
US3511644A (en) Process for reducing and carburizing melting of metallic material in a rotary furnace
CN102653805B (en) Submerged arc plasma smelting ironmaking method
Strogonov et al. Liquid-Phase Reduction Reactor with a Carbon-Hydrogen Mixture
US3640701A (en) Direct reduction of oxides
RU2319749C2 (en) Method of the direct production of iron, in particular steels, and installation for its implementation
US3591155A (en) Rotary furnace for difficult to reduce oxides
CN115478122A (en) Ammonia-rich raw fuel for blast furnace iron making and blast furnace iron making method
SU715450A1 (en) Method of preparing sodium sulfide
DE69624819T2 (en) METHOD FOR DIRECTLY WINNING IRON AND STEEL