[go: up one dir, main page]

JP2006176830A - Method for concentrating and recovering metallic nickel from powder containing elemental nickel - Google Patents

Method for concentrating and recovering metallic nickel from powder containing elemental nickel Download PDF

Info

Publication number
JP2006176830A
JP2006176830A JP2004371073A JP2004371073A JP2006176830A JP 2006176830 A JP2006176830 A JP 2006176830A JP 2004371073 A JP2004371073 A JP 2004371073A JP 2004371073 A JP2004371073 A JP 2004371073A JP 2006176830 A JP2006176830 A JP 2006176830A
Authority
JP
Japan
Prior art keywords
nickel
concentrating
powder
metallic nickel
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004371073A
Other languages
Japanese (ja)
Other versions
JP4777642B2 (en
Inventor
Hiroshi Igarashi
弘 五十嵐
Takayuki Matsumura
孝之 松村
Shinichi Miyake
新一 三宅
Yoshisato Takesono
嘉識 竹園
Yoshinori Masaki
儀憲 正木
Toru Tateishi
亨 立石
Koji Matsui
宏司 松井
Sueyoshi Okura
末代史 大倉
Koichiro Kanefuji
▲紘▼一郎 金藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nippon Sanso Holdings Corp
Original Assignee
Daido Steel Co Ltd
Nippon Sanso Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nippon Sanso Holdings Corp filed Critical Daido Steel Co Ltd
Priority to JP2004371073A priority Critical patent/JP4777642B2/en
Publication of JP2006176830A publication Critical patent/JP2006176830A/en
Application granted granted Critical
Publication of JP4777642B2 publication Critical patent/JP4777642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】 ニッケル元素を含有する粉体から、金属浴を生成することなく、高純度の金属ニッケルを粉体状で回収することのできるニッケル元素を含有する粉体からの金属ニッケルの濃縮回収方法を提供。
【解決手段】 ニッケル元素を含有する粉体を、500℃以上の高温還元気流中に供給し、該高温還元気流中で還元反応を生じさせ、前記粉体中において局所的に金属ニッケルを濃化させる。
【選択図】 図1
PROBLEM TO BE SOLVED: To concentrate and recover metallic nickel from powder containing nickel element capable of recovering high-purity metallic nickel in powder form without generating a metal bath from powder containing nickel element Provide.
SOLUTION: Powder containing elemental nickel is supplied into a high-temperature reducing gas flow at 500 ° C. or more, causing a reduction reaction in the high-temperature reducing gas stream, and metallic nickel is locally concentrated in the powder. Let
[Selection] Figure 1

Description

本発明は、ニッケル元素を含有する粉体から金属ニッケルを濃縮回収する方法であって、金属浴を生成することなく、粉体状のままで低コストで不純物の極めて少ない高純度金属ニッケルを濃縮回収する方法に関する。   The present invention is a method for concentrating and recovering metallic nickel from a powder containing elemental nickel, and concentrates high-purity metallic nickel with a very low amount of impurities at low cost without generating a metal bath. It relates to the method of recovery.

従来より、ステンレス製鋼工場やメッキ工場からは、ダスト、スラッジ等のニッケル元素を含んだ廃棄物が多く排出されている。これらの一部は製鋼原料としてリサイクルされているが、依然として多くのものが埋め立て処分されている。リサイクルが困難な理由は、この廃棄物中にリン等の不純物が混入しており、これら不純物が製品に混入し悪影響を及ぼすためである。   Conventionally, many wastes containing nickel elements such as dust and sludge have been discharged from stainless steel factories and plating factories. Some of these are recycled as steelmaking raw materials, but many are still landfilled. The reason why it is difficult to recycle is that impurities such as phosphorus are mixed in the waste, and these impurities are mixed into the product and have an adverse effect.

このような廃棄物の一種である、金属酸化物を主体とするダストから金属を得る方法として、粉粒状とした金属酸化物を、反応炉内においてバーナからの高温火炎中に供給し、加熱・溶融させ、反応炉内に供給した還元剤で、溶融した金属酸化物と還元剤とを溶湯内で還元反応させて金属を得る方法が提案されている(例えば、特許文献1参照)。
特開平9−310126号公報
As a method for obtaining metal from metal oxide-based dust, which is a kind of such waste, powdered metal oxide is supplied into a high-temperature flame from a burner in a reaction furnace, and heated and heated. There has been proposed a method in which a metal is obtained by reducing a molten metal oxide and a reducing agent in a molten metal with a reducing agent that is melted and supplied into a reaction furnace (for example, see Patent Document 1).
JP-A-9-310126

しかしながら、特許文献1に係る方法を用いると、ダスト、スラッジ等に含まれる金属酸化物から金属を得ることができるが、溶鋼(溶湯)として金属生成物を得るため、金属中にリン、硫黄等の不純物が混入し、製鋼原料としてリサイクルするのが困難になるという問題があった。さらに、高融点の金属および酸化物(スラグ)の溶融物を炉内で維持するために、特にスラグに接する部位の耐火物が大きく損傷するため、炉体の耐用性が低く、高コストになるという問題もあった。   However, when the method according to Patent Document 1 is used, metal can be obtained from metal oxides contained in dust, sludge, etc., but in order to obtain a metal product as molten steel (molten metal), phosphorus, sulfur, etc. in the metal There is a problem that it becomes difficult to recycle as a steelmaking raw material. Further, in order to maintain a high melting point metal and oxide (slag) melt in the furnace, particularly the refractory in contact with the slag is greatly damaged, so the durability of the furnace body is low and the cost is high. There was also a problem.

本発明は、上記従来技術の問題点に鑑み、ニッケル元素を含有する粉体から、金属浴を生成することなく、高純度の金属ニッケルを粉体状で回収することのできるニッケル元素を含有する粉体からの金属ニッケルの濃縮回収方法を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention contains a nickel element that can recover high-purity metallic nickel in powder form from a powder containing nickel element without generating a metal bath. An object is to provide a method for concentrating and recovering metallic nickel from powder.

かかる課題を解決するため、
請求項1にかかる発明は、ニッケル元素を含有する粉体を、500℃以上の高温還元気流中に供給し、該高温還元気流中で還元反応を生じさせ、前記粉体中において局所的に金属ニッケルを濃化させることを特徴とする金属ニッケルの濃縮回収方法である。
To solve this problem,
According to the first aspect of the present invention, a powder containing nickel element is supplied into a high-temperature reducing gas stream at 500 ° C. or more, and a reduction reaction is caused in the high-temperature reducing gas stream, and a metal is locally contained in the powder. A method for concentrating and recovering metallic nickel, characterized in that nickel is concentrated.

請求項2にかかる発明は、前記高温還元気流が、バーナにより発生させた還元火炎気流である請求項1記載の金属ニッケルの濃縮回収方法である。   The invention according to claim 2 is the method for concentrating and recovering metallic nickel according to claim 1, wherein the high-temperature reducing air stream is a reducing flame air stream generated by a burner.

請求項3にかかる発明は、前記ニッケル元素を含有する粉体を、前記バーナから供給する請求項2記載の金属ニッケルの濃縮回収方法である。   The invention according to claim 3 is the method for concentrating and recovering metallic nickel according to claim 2, wherein the powder containing the nickel element is supplied from the burner.

請求項4にかかる発明は、前記ニッケル元素を含有する粉体と、燃料とを予め混合した混合流体を、前記バーナの噴出孔から噴出させ、該混合流体の周囲から支燃性ガスを噴出させることで、該混合流体を包み込むように高温還元気流を形成させる請求項3記載の金属ニッケルの濃縮回収方法である。   According to a fourth aspect of the present invention, a mixed fluid in which the nickel element-containing powder and fuel are mixed in advance is ejected from the ejection hole of the burner, and a combustion-supporting gas is ejected from around the mixed fluid. The method for concentrating and recovering metallic nickel according to claim 3, wherein a high-temperature reducing air flow is formed so as to wrap the mixed fluid.

請求項5にかかる発明は、前記燃料の流量を、前記燃料が完全燃焼するのに充分な前記支燃性ガスの流量に対して、40体積%以上95体積%以下とする請求項4記載の金属ニッケルの濃縮回収方法である。   The invention according to claim 5 is characterized in that the flow rate of the fuel is 40% by volume or more and 95% by volume or less with respect to the flow rate of the combustion-supporting gas sufficient for the fuel to completely burn. This is a method for concentrating and recovering metallic nickel.

請求項6にかかる発明は、前記混合流体の周囲から噴出させる前記支燃性ガスを2系統以上に分割し、前記混合流体の周囲を内側から外側に向かって2重以上に包み込むように噴出させる請求項4又は5に記載の金属ニッケルの濃縮回収方法である。   The invention according to claim 6 divides the combustion-supporting gas to be ejected from the periphery of the mixed fluid into two or more systems, and causes the periphery of the mixed fluid to be ejected so as to be wrapped more than twice from the inside to the outside. The method for concentrating and recovering metallic nickel according to claim 4 or 5.

請求項7にかかる発明は、前記混合流体の周囲から噴出させる前記支燃性ガスを、旋回流とする請求項4乃至6のいずれか一項記載の金属ニッケルの濃縮回収方法である。   The invention according to claim 7 is the method for concentrating and recovering metallic nickel according to any one of claims 4 to 6, wherein the combustion-supporting gas ejected from the periphery of the mixed fluid is a swirl flow.

請求項8にかかる発明は、前記高温還元気流中に、固体炭素物質をさらに添加する請求項1乃至7のいずれか一項記載の金属ニッケルの濃縮回収方法である。   The invention according to claim 8 is the method for concentrating and recovering metallic nickel according to any one of claims 1 to 7, wherein a solid carbon substance is further added to the high-temperature reducing gas stream.

請求項9にかかる発明は、前記ニッケル元素を含有する粉体が、製鋼ダスト、スラッジ、廃触媒、廃棄物、ニッケル鉱石、及び酸化ニッケルからなる群から選ばれる1種以上である請求項1乃至8のいずれか一項記載の金属ニッケルの濃縮回収方法である。   The invention according to claim 9 is characterized in that the nickel element-containing powder is at least one selected from the group consisting of steelmaking dust, sludge, waste catalyst, waste, nickel ore, and nickel oxide. The method for concentrating and recovering nickel metal according to claim 8.

本発明の金属ニッケルの濃縮回収方法によれば、ニッケル元素を含有する粉体を高温還元気流中に供給し、粉体中において局所的に金属ニッケルを濃化させることにより、金属浴を生成することなく、高純度の金属ニッケルを粉体処理物として回収することができる。
また、本発明によれば、ニッケル元素を含有する廃棄物から低コストで不純物の極めて少ない高純度金属ニッケルを生成することができ、製鋼原料として廃棄物のリサイクルが可能となる。
According to the method for concentrating and recovering metallic nickel of the present invention, a powder containing nickel element is supplied into a high-temperature reducing gas stream, and the metallic nickel is locally concentrated in the powder to generate a metal bath. Therefore, high-purity nickel metal can be recovered as a powder-treated product.
Further, according to the present invention, high-purity metallic nickel with very few impurities can be produced from waste containing nickel element, and waste can be recycled as a steelmaking raw material.

以下、本発明に係る金属ニッケル濃縮回収装置とニッケル元素を含有する粉体からの金属ニッケルの濃縮回収方法について、図面に基づき詳細に説明する。   Hereinafter, the concentration recovery apparatus for metallic nickel according to the present invention and the method for concentration recovery of metallic nickel from powder containing nickel element will be described in detail with reference to the drawings.

[第1の実施形態]
図1は、本発明に係る金属ニッケル濃縮回収装置の一実施形態を示す概略ブロック図であり、(a)は第1の実施形態を、(b)は第2の実施形態を、(c)は第3の実施形態を示す概略図である。
[First Embodiment]
FIG. 1 is a schematic block diagram showing an embodiment of a metallic nickel concentration and recovery apparatus according to the present invention, where (a) shows the first embodiment, (b) shows the second embodiment, and (c). These are the schematic diagrams which show 3rd Embodiment.

図1(a)に示すように、本実施形態の金属ニッケル濃縮回収装置は、ニッケル元素を含有する粉体(原料粉体)を一定量で炉に供給する原料供給装置と、高温還元ガス発生装置と、炉と、炉の排ガスを固気分離して、生成した粉体処理物を回収するための集塵装置とから基本的に構成されている。   As shown in FIG. 1 (a), the metallic nickel concentration recovery apparatus of the present embodiment includes a raw material supply device that supplies a certain amount of powder (raw material powder) containing nickel element to a furnace, and high-temperature reducing gas generation. The apparatus basically includes an apparatus, a furnace, and a dust collector for recovering the generated powder processed product by solid-gas separation of the furnace exhaust gas.

原料粉体となるニッケル元素を含有する粉体とは、酸化物、水酸化物、硫化物、塩化物等の形態あるいはそれらが混在したニッケル化合物を含んだ物質であり、製鋼工程やメッキ工程で発生するダスト、スラッジ等や、ニッケル元素を含んだ廃触媒等の廃棄物や、高純度酸化ニッケル等が挙げられる。そのなかでも、製鋼ダスト、スラッジ、廃触媒、廃棄物、ニッケル鉱石、及び酸化ニッケルからなる群から選ばれる1種以上であるのが好ましく、従来法ではリサイクルが困難な点からメッキスラッジであるのがより好ましい。このニッケル元素を含有する粉体(原料粉体)は、ニッケル元素以外の元素として、他の金属元素やリン、硫黄等の不純物を含有していても構わない。そのなかでも、ニッケル元素の濃度は、2質量%以上が好ましく、10質量%以上であるのがより好ましい。   The powder containing nickel element as the raw material powder is a substance containing a nickel compound in the form of oxides, hydroxides, sulfides, chlorides, etc. or a mixture thereof, and is used in steelmaking and plating processes. Examples include generated dust, sludge, etc., waste such as a waste catalyst containing nickel element, and high purity nickel oxide. Among these, it is preferable that it is at least one selected from the group consisting of steelmaking dust, sludge, waste catalyst, waste, nickel ore, and nickel oxide. Is more preferable. This nickel element-containing powder (raw material powder) may contain other metal elements and impurities such as phosphorus and sulfur as elements other than the nickel element. Among these, the concentration of nickel element is preferably 2% by mass or more, and more preferably 10% by mass or more.

また、このニッケル元素を含有する廃棄物等が粉体状でない場合は、粉砕処理を行うことで適用することができる。原料粉体の粒径は、50μm以下であるのが好ましい。
この原料粉体は、原料供給装置により高温還元気流で満たされた炉内に供給される。原料粉体の供給は、一カ所あるいは複数箇所から導入することもできる。
Moreover, when the waste etc. which contain this nickel element are not a powder form, it can apply by performing a grinding | pulverization process. The particle size of the raw material powder is preferably 50 μm or less.
The raw material powder is supplied into a furnace filled with a high-temperature reducing airflow by a raw material supply device. The supply of the raw material powder can be introduced from one place or a plurality of places.

高温還元ガス発生装置は、高温還元気流を発生させるためのものであり、高温還元気流とは、500℃以上の高温で、一酸化炭素、水素、炭化水素系等の還元ガスのいずれか一種以上を含んだ気流をいう。この高温還元気流は、例えば、原料粉体が最初に接触する炉上部では、還元溶融反応を起こさせるため1500℃であるのが好ましく、炉下部の粉体処理物を回収する集塵装置近傍では、金属浴の発生を防止する点から、500〜600℃であるのが好ましい。   The high-temperature reducing gas generator is for generating a high-temperature reducing airflow, and the high-temperature reducing airflow is at least one of reducing gases such as carbon monoxide, hydrogen, and hydrocarbons at a high temperature of 500 ° C. or higher. An airflow containing This high-temperature reducing airflow is preferably 1500 ° C. in order to cause a reductive melting reaction in the upper part of the furnace where the raw material powder first contacts, and in the vicinity of the dust collector that collects the powder processed product in the lower part of the furnace In view of preventing the generation of a metal bath, the temperature is preferably 500 to 600 ° C.

原料粉体は、炉内に供給された後、500℃以上の高温還元気流と接触して、この高温還元気流中で還元反応を生じ、原料粉体粒子内に散在しているニッケル元素が、粒子内の一カ所あるいは複数箇所で濃化する。高温還元気流中で原料粉体を加熱・還元することにより、還元された金属ニッケルが粒子内で溶融・濃化し、球状化する。金属ニッケルとそれ以外の物質とが粒子内で分離するため、得られた粉体処理物は金属ニッケルを分離・回収しやすい形態となっている。   After the raw material powder is supplied into the furnace, it is brought into contact with a high-temperature reducing air flow of 500 ° C. or higher to cause a reduction reaction in the high-temperature reducing air current, and the nickel elements scattered in the raw material powder particles are Concentrates at one or more locations within the particle. By heating and reducing the raw material powder in a high-temperature reducing gas stream, the reduced metallic nickel is melted and concentrated in the particles and spheroidized. Since metallic nickel and other substances are separated in the particles, the obtained powder-treated product has a form in which metallic nickel can be easily separated and recovered.

高温還元気流中で還元反応して得られた粉体処理物は、排ガスと混合して炉内から排出されるため、これを固気分離して、バグフィルター等の集塵装置で生成した粉体処理物(金属ニッケルを含有する粉体)を回収する。この粉体処理物の粒径は、原料粉体とほとんど変わらず、ニッケルの溶融は粒子中でのみ起こるため、原料粉体同士が溶融・融着して粒径が大きくなることはない。   The powder processed product obtained by the reduction reaction in the high-temperature reducing airflow is mixed with the exhaust gas and discharged from the furnace, so this is separated into solid and powder and produced by a dust collector such as a bag filter. The treated product (powder containing metallic nickel) is collected. The particle size of the powder-treated product is almost the same as that of the raw material powder, and the melting of nickel occurs only in the particles. Therefore, the raw material powders are not melted and fused to increase the particle size.

金属ニッケルの濃化した粉体処理物を、金属ニッケルとその他の成分とに分離する工程を経ることで、高純度の金属ニッケルを得ることができる。また、排ガスは高温還元気流を発生するための燃料として再利用することができる。   High purity metallic nickel can be obtained by performing the process of separating the powder-treated product enriched with metallic nickel into metallic nickel and other components. Further, the exhaust gas can be reused as a fuel for generating a high-temperature reducing airflow.

本実施形態に係る金属ニッケルの濃縮回収方法によれば、ニッケル元素を含有する粉体を高温還元気流中に供給し、炉内の温度を制御して粉体中において局所的に金属ニッケルを濃化させることにより、金属浴を生成することなく、高純度の金属ニッケルを粉体処理物として回収することができる。
また、本実施形態に係る金属ニッケルの濃縮回収方法によれば、ニッケル元素を含有する廃棄物等から低コストで不純物の極めて少ない高純度金属ニッケルを生成することができ、製鋼原料として廃棄物のリサイクルができる。
According to the method for concentrating and recovering metallic nickel according to the present embodiment, powder containing nickel element is supplied into a high-temperature reducing gas stream, and the temperature inside the furnace is controlled to concentrate metallic nickel locally in the powder. By making it, high-purity metallic nickel can be recovered as a powder-treated product without generating a metal bath.
In addition, according to the method for concentrating and recovering metallic nickel according to the present embodiment, it is possible to produce high-purity metallic nickel with very few impurities at a low cost from waste containing nickel element, etc. Can be recycled.

[第2の実施形態]
図1(b)に示すように、本実施形態の金属ニッケル濃縮回収装置は、高温還元ガス発生装置の代わりにバーナを用いた以外は第1の実施形態と同様であるので、それらの説明は省略する。
[Second Embodiment]
As shown in FIG.1 (b), since the metallic nickel concentration collection | recovery apparatus of this embodiment is the same as that of 1st Embodiment except having used the burner instead of the high temperature reducing gas generator, those description is Omitted.

本実施形態では、高温還元ガス発生装置として、バーナを用いており、高温還元気流はバーナにより発生させた還元火炎気流である。この還元火炎気流は、バーナからの燃料と支燃性ガスとの燃焼反応により発生させてもよく、この燃料としては、炭化水素を含んだガス燃料、あるいは灯油、重油等の液体燃料を用いることができる。この燃料を燃焼させるための支燃性ガスとしては、炉内を高温にし、また一酸化炭素、水素等の分圧を高くして還元反応を促進させるため、純酸素もしくは酸素富化空気を用いることが好ましい。また、燃料および支燃性ガスは炉内に同時供給してもよい。   In this embodiment, a burner is used as the high-temperature reducing gas generator, and the high-temperature reducing airflow is a reducing flame airflow generated by the burner. This reduced flame air flow may be generated by a combustion reaction between the fuel from the burner and the combustion-supporting gas. As this fuel, a gas fuel containing hydrocarbons or a liquid fuel such as kerosene or heavy oil should be used. Can do. As the combustion-supporting gas for burning this fuel, pure oxygen or oxygen-enriched air is used in order to accelerate the reduction reaction by raising the temperature inside the furnace and increasing the partial pressure of carbon monoxide, hydrogen, etc. It is preferable. Further, the fuel and the combustion-supporting gas may be simultaneously supplied into the furnace.

支燃性ガスの流量は、上記燃料を完全に燃焼させるのに充分な量よりも少なくするのが好ましい。具体的には、燃料が完全燃焼するのに充分な支燃性ガスの流量に対して、40体積%以上95体積%以下であるのが好ましく、50体積%以上90体積%以下であるのがより好ましい。支燃性ガスの流量を40体積%以上95体積%以下とすることにより、原料粉体の加熱を充分とすることができ、かつ燃料を不完全燃焼させ、高温還元気流を発生させて適正な還元雰囲気を形成することができ、ニッケルの還元率を向上させることができる。   The flow rate of the combustion-supporting gas is preferably less than an amount sufficient to completely burn the fuel. Specifically, it is preferably 40% by volume or more and 95% by volume or less, and preferably 50% by volume or more and 90% by volume or less with respect to the flow rate of the combustion-supporting gas sufficient for complete combustion of the fuel. More preferred. By setting the flow rate of the combustion-supporting gas to 40% by volume or more and 95% by volume or less, the raw material powder can be heated sufficiently, and the fuel is incompletely burned to generate a high-temperature reducing airflow. A reducing atmosphere can be formed, and the reduction rate of nickel can be improved.

本実施形態では、原料粉体は、バーナから供給してもよい。原料粉体をバーナから供給するには、空気、窒素等のキャリアガスに原料粉体を混合させて供給するのが好ましく、バーナーの中心部から供給するのがより好ましい。原料粉体をバーナから供給することにより、原料粉体の加熱効率を高め、反応時間を短くすることができる。   In the present embodiment, the raw material powder may be supplied from a burner. In order to supply the raw material powder from the burner, the raw material powder is preferably mixed with a carrier gas such as air or nitrogen, and more preferably supplied from the center of the burner. By supplying the raw material powder from the burner, the heating efficiency of the raw material powder can be increased and the reaction time can be shortened.

図2は、本実施形態に係る原料粉体をバーナーから供給する型のバーナー先端部の断面図であり、図4は、本実施形態に係るバーナー先端部の平面図である。   FIG. 2 is a cross-sectional view of the tip of a burner of a type that supplies raw material powder from the burner according to this embodiment, and FIG. 4 is a plan view of the tip of the burner according to this embodiment.

図2及び図4に示すバーナー1は、バーナーの中心部に位置する、キャリアガスによる原料粉体流噴出孔2と、その周囲に設けられた燃料ガス噴出孔3と、さらにその周囲に設けられた支燃性ガス噴出孔4と、冷却水の流れる配管5と、最外部の水冷ジャケット6とから構成されている。燃料ガス噴出孔3および支燃性ガス噴出孔4は、マルチホール、スリット形状のいずれも可能であり、これらのガスは、原料粉体流を包み込むように、その噴出孔の中心軸をバーナー中心部へ向けて噴出させるのが好ましい。
また、原料粉体流噴出孔2は、バーナー中心部ではなくバーナ先端部の複数箇所に開孔させたり、噴出孔の中心軸の方向を、バーナー外周側に向けて噴出させるような構造にしてもよい。
The burner 1 shown in FIG. 2 and FIG. 4 is provided in the center part of the burner, the raw material powder flow injection hole 2 by carrier gas, the fuel gas injection hole 3 provided in the circumference | surroundings, and also the circumference | surroundings. The combustion-supporting gas injection hole 4, the piping 5 through which the cooling water flows, and the outermost water-cooling jacket 6 are formed. The fuel gas ejection hole 3 and the combustion-supporting gas ejection hole 4 can be either multi-holes or slit shapes, and these gases are centered on the burner so that the central axis of the ejection hole is wrapped around the raw material powder flow. It is preferable to eject toward the part.
Moreover, the raw material powder flow ejection holes 2 are structured so as to open at a plurality of locations at the tip of the burner instead of at the center of the burner, or to eject the direction of the central axis of the ejection hole toward the outer periphery of the burner. Also good.

[第3の実施形態]
図1(c)に示すように、本実施形態の金属ニッケル濃縮回収装置は、ニッケル元素を含有する粉体と燃料とを予め混合した混合流体を、バーナから噴出させる以外は第2の実施形態と同様であるので、それらの説明は省略する。
[Third Embodiment]
As shown in FIG.1 (c), the metallic nickel concentration collection | recovery apparatus of this embodiment is 2nd Embodiment except ejecting the mixed fluid which mixed the powder and fuel containing nickel element beforehand from a burner. Since they are the same as those described above, description thereof will be omitted.

本実施形態では、原料粉体と、燃料とを予め混合した混合流体を、バーナの噴出孔から噴出させ、該混合流体の周囲から支燃性ガスを噴出させることで、該混合流体を包み込むように高温還元気流を形成させるのが好ましい。燃料がガスの場合、原料粉体を搬送するためのキャリアガスとして利用し、灯油、重油等の液体燃料の場合、原料粉体と液体燃料を混合してスラリー状にし、ポンプでバーナに供給する方法がある。原料粉体と燃料とを予め混合することにより、炉内で原料粉体周囲の反応場がより高温の還元性雰囲気になり、還元効率をさらに高めることができる。   In the present embodiment, a mixed fluid in which raw material powder and fuel are mixed in advance is ejected from an ejection hole of a burner, and a combustion-supporting gas is ejected from around the mixed fluid so as to enclose the mixed fluid. It is preferable to form a high-temperature reducing air flow. When the fuel is a gas, it is used as a carrier gas for conveying the raw material powder. When it is a liquid fuel such as kerosene or heavy oil, the raw material powder and the liquid fuel are mixed to form a slurry and supplied to the burner by a pump. There is a way. By mixing the raw material powder and the fuel in advance, the reaction field around the raw material powder becomes a higher temperature reducing atmosphere in the furnace, and the reduction efficiency can be further increased.

また、原料粉体と燃料とを予め混合した混合流体とすることにより、該混合流体を支燃性ガスと反応させたときに、原料粉体の周囲の雰囲気を強還元性にすることができる。なお、バーナを使用する場合、支燃性ガスとして、酸素富化空気あるいは純酸素を用いることが好ましい。   In addition, by using a mixed fluid in which the raw material powder and the fuel are mixed in advance, the atmosphere around the raw material powder can be made strongly reducing when the mixed fluid is reacted with the combustion-supporting gas. . When using a burner, it is preferable to use oxygen-enriched air or pure oxygen as the combustion-supporting gas.

混合流体の周囲から噴出させる支燃性ガスの供給方法としては、2系統以上に分割し、前記混合流体の周囲を内側から外側に向かって2重以上に包み込むように噴出させるのが好ましい。支燃性ガスを2系統以上に分割して供給することにより、該混合流体中の雰囲気(温度・ガス組成)のコントロールをしやすくでき、また高温還元気流中で反応過程にある粒子の状態に必要な雰囲気のコントロールをしやすくできる。   As a method for supplying the combustion-supporting gas to be ejected from the periphery of the mixed fluid, it is preferable to divide into two or more systems and to eject the mixed fluid so as to wrap around the inside from the inside to the outside. By supplying the combustion-supporting gas in two or more systems, it is easy to control the atmosphere (temperature and gas composition) in the mixed fluid, and in the state of particles in the reaction process in the high-temperature reducing airflow. It is easy to control the required atmosphere.

また、混合流体の周囲から噴出させる支燃性ガスを、旋回流とするのが好ましい。支燃性ガスを旋回流で供給することにより、還元火炎気流中への粉体分散性を向上させることができ、加熱・還元反応を促進させることができる。   Moreover, it is preferable that the combustion-supporting gas ejected from the periphery of the mixed fluid is a swirling flow. By supplying the combustion-supporting gas in a swirling flow, the dispersibility of the powder in the reducing flame stream can be improved, and the heating / reduction reaction can be promoted.

図3は、本実施形態に係る原料粉体と燃料との混合流体をバーナーから供給する型のバーナー先端部の断面図であり、図4は、本実施形態に係るバーナー先端部の平面図である。   FIG. 3 is a cross-sectional view of the tip of a burner of a type that supplies a mixed fluid of raw material powder and fuel from the burner according to this embodiment, and FIG. 4 is a plan view of the tip of the burner according to this embodiment. is there.

図3及び図4に示すバーナー1は、バーナーの中心部に位置する、キャリアガスである燃料と原料粉体との混合流体噴出孔20と、その周囲に設けられた一次支燃性ガス噴出孔41と、さらにその周囲に設けられた二次支燃性ガス噴出孔42と、冷却水の流れる配管5と、最外部の水冷ジャケット6とから構成されている。一次支燃性ガス噴出孔41および二次支燃性ガス噴出孔42は、第2の実施形態と同様にマルチホール、スリット形状のいずれも可能であり、これらのガスは、混合流体を包み込むように、その噴出孔の中心軸をバーナー中心部へ向けて噴出させるのが好ましい。
支燃性ガスを一次、二次と2系統以上に分割し、それぞれを独立して制御可能な状態で噴出させることにより、さらに効果的に加熱・還元反応を行わせることができる。支燃性ガスの供給部に羽根を設けたり、一次支燃性ガス噴出孔の中心軸を周方向に傾けたりすることで、支燃性ガスを旋回流として噴出させることもできる。
なお、燃料に液体燃料を用いる場合は、混合流体を高圧で噴霧するか、あるいは圧縮空気等を用いて噴霧してもよい。
The burner 1 shown in FIG. 3 and FIG. 4 has a mixed fluid injection hole 20 of a carrier gas and a raw material powder located in the center of the burner, and a primary combustion-supporting gas injection hole provided in the periphery thereof. 41, a secondary combustion-supporting gas injection hole 42 provided in the periphery thereof, a pipe 5 through which cooling water flows, and an outermost water-cooling jacket 6. The primary combustion-supporting gas ejection holes 41 and the secondary combustion-supporting gas ejection holes 42 can be either multi-holes or slit shapes as in the second embodiment, and these gases wrap around the mixed fluid. Moreover, it is preferable to eject the central axis of the ejection hole toward the center of the burner.
By dividing the combustion-supporting gas into a primary system, a secondary system, and two or more systems, and ejecting each of them in an independently controllable state, the heating / reduction reaction can be performed more effectively. By providing vanes in the supply portion of the combustion-supporting gas, or by tilting the central axis of the primary combustion-supporting gas ejection hole in the circumferential direction, the combustion-supporting gas can be ejected as a swirling flow.
When liquid fuel is used as the fuel, the mixed fluid may be sprayed at a high pressure or may be sprayed using compressed air or the like.

また、高温還元気流は、微粉炭、コークスのような固体炭素物質を用いて発生させることもでき、その場合は、バーナの燃料を燃焼することで得られる還元性ガスあるいは別途供給される高温還元性ガスに固体炭素物質をさらに添加するのが好ましい。高温還元気流中に、固体炭素物質をさらに添加することにより、より強還元反応とすることができる。この固体炭素物質は、前記混合流体中の原料粉体より大きい粒径の粒子として、前記混合流体中に、もしくは、前記混合流体の噴出口近傍から、供給することができる。   Further, the high-temperature reducing air stream can also be generated using a solid carbon substance such as pulverized coal or coke. In that case, a reducing gas obtained by burning the burner fuel or a separately supplied high-temperature reducing gas can be used. It is preferable to further add a solid carbon material to the reactive gas. By further adding a solid carbon substance into the high-temperature reducing air stream, a stronger reduction reaction can be achieved. This solid carbon substance can be supplied as particles having a particle size larger than the raw material powder in the mixed fluid into the mixed fluid or from the vicinity of the jet outlet of the mixed fluid.

以下、実施例により、本発明をさらに詳しく説明する。本発明は、下記実施例に何ら制限されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.

本発明の一実施例として、図1(c)に示す第3の実施形態に係る金属ニッケル濃縮回収装置を用いて、図3に示す第3の実施形態に係る原料粉体と燃料との混合流体をバーナーから供給する型のバーナーを用いた場合を示す。   As an example of the present invention, the raw material powder and fuel according to the third embodiment shown in FIG. 3 are mixed using the metallic nickel concentration recovery apparatus according to the third embodiment shown in FIG. A case where a burner of a type that supplies fluid from a burner is used is shown.

原料粉体の供給はテーブルフィーダーを用い、キャリアガスとしてLPGを用いた。炉から排出した排ガスと、得られた金属ニッケルを含有する粉体とは、バグフィルターにより固気分離し、金属ニッケルを含有する粉体を回収するようにした。   The raw material powder was supplied using a table feeder, and LPG was used as a carrier gas. The exhaust gas discharged from the furnace and the obtained powder containing metallic nickel were solid-gas separated by a bag filter, and the powder containing metallic nickel was recovered.

表1に実施した運転条件を示す。燃料にはLPGを用い、これをキャリアガスとして原料粉体の供給にも用いた。支燃性ガスには、酸素を用いた。バーナの燃焼条件は、燃料を完全燃焼させるのに必要な酸素量に対し、40〜90%の供給量にて行った。原料粉体には、メッキスラッジを予備乾燥した2〜200μmの粒径を有するものを分級して用いた。   Table 1 shows the operating conditions. LPG was used as the fuel, and this was used as a carrier gas for supplying raw material powder. Oxygen was used as the combustion-supporting gas. The burner was burned at a supply rate of 40 to 90% with respect to the amount of oxygen required to completely burn the fuel. As the raw material powder, a powder having a particle size of 2 to 200 μm obtained by pre-drying plating sludge was used.

Figure 2006176830
Figure 2006176830

炉上部にバーナを設置し、炉下部にて、処理後の金属ニッケルを含有する粉体を回収するようにした。
この際、炉内壁温度は、原料粉体の投入側に当たるバーナ近傍で約1500℃、金属ニッケルを含有する粉体の回収側に当たる炉末端で約600℃とした。このため、炉底部に金属浴は生成しなかった。
A burner was installed in the upper part of the furnace, and the treated powder containing metallic nickel was collected in the lower part of the furnace.
At this time, the furnace inner wall temperature was about 1500 ° C. in the vicinity of the burner corresponding to the raw material powder input side and about 600 ° C. at the furnace end corresponding to the recovery side of the powder containing metallic nickel. For this reason, a metal bath was not generated at the bottom of the furnace.

原料粉体の元素分析は、蛍光X線分析装置で行った。表2に原料粉体の元素分析値(質量%)を示す。ニッケル元素濃度は、約13〜20質量%程度であった。これらのニッケルの形態は、主に水酸化ニッケルである。水酸化ニッケルは、加熱することで酸化ニッケルに変化する。したがって、金属ニッケルを得るためには、生成した酸化ニッケルを還元する必要がある。   Elemental analysis of the raw material powder was performed with a fluorescent X-ray analyzer. Table 2 shows the elemental analysis values (mass%) of the raw material powder. The nickel element concentration was about 13 to 20% by mass. These nickel forms are mainly nickel hydroxide. Nickel hydroxide changes to nickel oxide when heated. Therefore, in order to obtain metallic nickel, it is necessary to reduce the produced nickel oxide.

Figure 2006176830
Figure 2006176830

表1の運転条件で原料粉体を処理した後に得られた粉体処理物の粒径は、原料粉体の大きさとほとんど同じで変化無かった。この粉体処理物について、ニッケル総量中の酸化ニッケルと金属ニッケルの割合を、臭素メタノール法で分析した。この化学分析値を表3に示す。金属ニッケル量(質量%)をニッケル総量(質量%)で除したのが還元率(%)である。この結果から、原料粉体の粒径が小さいほど還元率、すなわちメタル化率が高く、粒径2〜6μmの原料粉体では95%以上の高い還元率を得られることがわかった。   The particle diameter of the processed powder obtained after processing the raw material powder under the operating conditions shown in Table 1 was almost the same as the size of the raw material powder and remained unchanged. About this powder processed material, the ratio of nickel oxide and metallic nickel in the total amount of nickel was analyzed by the bromine methanol method. The chemical analysis values are shown in Table 3. The reduction rate (%) is obtained by dividing the amount of metallic nickel (% by mass) by the total amount of nickel (% by mass). From this result, it was found that the smaller the particle size of the raw material powder, the higher the reduction rate, that is, the metallization rate, and a high reduction rate of 95% or more can be obtained with the raw material powder having a particle size of 2 to 6 μm.

Figure 2006176830
Figure 2006176830

次に、この粒径2〜6μmの原料粉体を処理して得られた粉体処理物を、走査型電子顕微鏡(Scanning Electron Microscope:SEM)で分析し、SEM画像を得た。図5は、原料粉体および粉体処理物のSEM画像であり、(a)は原料粉体のSEM画像、(b)はその粉体処理物のSEM画像、(c)は拡大した粉体処理物のSEM画像である。図5(c)から、処理後の粉体中の金属ニッケル粒子は、黒く示された原料粒子内に白い粒子として存在しているのがわかる。また、金属ニッケルは、その他の物質とは完全に分離した状態で処理後の粉体中に内含されていることがわかる。   Next, the processed powder obtained by processing the raw material powder having a particle diameter of 2 to 6 μm was analyzed with a scanning electron microscope (SEM) to obtain an SEM image. 5A and 5B are SEM images of the raw material powder and the processed powder, wherein FIG. 5A is an SEM image of the raw material powder, FIG. 5B is an SEM image of the processed powder, and FIG. 5C is an enlarged powder. It is a SEM image of a processed material. FIG. 5 (c) shows that the nickel metal particles in the powder after the treatment exist as white particles in the raw material particles shown in black. Moreover, it turns out that metallic nickel is contained in the powder after a process in the state isolate | separated completely from other substances.

また、面分析を行ったところ(画像は図示せず)、処理前の原料粉体中には、ニッケル元素がほぼ均一に分布しているのに対し、処理後の粉体中には、局所的にニッケル元素が濃化している部分があることがわかった。   Further, when surface analysis was performed (image is not shown), nickel element was distributed almost uniformly in the raw material powder before processing, whereas in the powder after processing, It was found that there was a part where nickel element was concentrated.

図6には、粉体処理物の電子プローブマイクロアナライザ(Electron Probe Micro Analyzer:EPMA)を用いた分析画像を示す。図6(a)は粉体処理物のSEM画像、(b)はSEM画像の中心にある粒子に対して行ったニッケル元素についてのEPMAの分析画像、(c)はリン元素についてのEPMAの分析画像である。図6より、処理後の粉体に含まれるニッケル元素、すなわち金属ニッケルの粒子中には、リンは含まれず、金属ニッケルの周囲に分布していることがわかった。このように、処理後の粉体中に高純度の金属ニッケルが濃縮していることがわかった。   FIG. 6 shows an analysis image of the powder processed product using an electron probe micro analyzer (EPMA). 6A is an SEM image of the processed powder, FIG. 6B is an EPMA analysis image of nickel element performed on the particles at the center of the SEM image, and FIG. 6C is an EPMA analysis of phosphorus element. It is an image. From FIG. 6, it was found that the nickel element contained in the treated powder, that is, metallic nickel particles, contained no phosphorus and distributed around the metallic nickel. Thus, it was found that high-purity metallic nickel was concentrated in the powder after the treatment.

本実施例では、原料中のニッケルの形態として水酸化ニッケルを用いたが、水酸化ニッケルは強熱されると酸化ニッケルに変化する。したがって、原料粉体中のニッケルの形態が酸化ニッケルであっても、同じ結果が得られるため、その他の形態にも応用することができる。   In this embodiment, nickel hydroxide is used as the form of nickel in the raw material, but nickel hydroxide changes to nickel oxide when ignited. Therefore, even if the form of nickel in the raw material powder is nickel oxide, the same result can be obtained, so that it can be applied to other forms.

以上の結果から、本発明によれば、ニッケル元素を含有する粉体を高温還元気流中に供給し、粉体中において局所的に金属ニッケルを濃化させることにより、金属浴を生成することなく、高純度の金属ニッケルを粉体処理物として回収することができた。   From the above results, according to the present invention, a powder containing nickel element is supplied into a high-temperature reducing gas stream, and the metallic nickel is locally concentrated in the powder without generating a metal bath. It was possible to recover high-purity nickel metal as a powder-treated product.

本発明に係る金属ニッケル濃縮回収装置の一実施形態を示す概略ブロック図であり、(a)は第1の実施形態を、(b)は第2の実施形態を、(c)は第3の実施形態を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows one Embodiment of the metallic nickel concentration collection apparatus which concerns on this invention, (a) is 1st Embodiment, (b) is 2nd Embodiment, (c) is 3rd. It is the schematic which shows embodiment. 第2の実施形態に係る原料粉体をバーナーから供給する型のバーナー先端部の断面図である。It is sectional drawing of the burner front-end | tip part of the type | mold which supplies the raw material powder which concerns on 2nd Embodiment from a burner. 第3の実施形態に係る原料粉体と燃料との混合流体をバーナーから供給する型のバーナー先端部の断面図である。It is sectional drawing of the burner front-end | tip part of the type | mold which supplies the mixed fluid of the raw material powder and fuel which concern on 3rd Embodiment from a burner. 第2及び第3の実施形態に係るバーナー先端部の平面図である。It is a top view of the burner tip part concerning the 2nd and 3rd embodiments. 原料粉体および粉体処理物のSEM画像であり、(a)は原料粉体のSEM画像、(b)はその粉体処理物のSEM画像、(c)は拡大した粉体処理物のSEM画像である。It is a SEM image of a raw material powder and a powder processed product, (a) is an SEM image of the raw material powder, (b) is an SEM image of the powder processed product, and (c) is an SEM of an enlarged powder processed product. It is an image. 粉体処理物の電子プローブマイクロアナライザを用いた分析画像であり、(a)は粉体処理物のSEM画像、(b)はSEM画像の中心にある粒子に対して行ったニッケル元素についてのEPMAの分析画像、(c)はリン元素についてのEPMAの分析画像である。It is the analysis image using the electron probe microanalyzer of a powder processed material, (a) is the SEM image of a powder processed material, (b) is EPMA about the nickel element performed with respect to the particle | grains in the center of a SEM image (C) is an EPMA analysis image of phosphorus element.

符号の説明Explanation of symbols

1 バーナー


1 Burner


Claims (9)

ニッケル元素を含有する粉体を、500℃以上の高温還元気流中に供給し、
該高温還元気流中で還元反応を生じさせ、前記粉体中において局所的に金属ニッケルを濃化させることを特徴とする金属ニッケルの濃縮回収方法。
Supplying powder containing nickel element in a high-temperature reducing air flow of 500 ° C. or higher,
A method for concentrating and recovering metallic nickel, characterized in that a reduction reaction is caused in the high-temperature reducing air stream to locally concentrate metallic nickel in the powder.
前記高温還元気流が、バーナにより発生させた還元火炎気流である請求項1記載の金属ニッケルの濃縮回収方法。   The method for concentrating and recovering metallic nickel according to claim 1, wherein the high-temperature reducing airflow is a reducing flame airflow generated by a burner. 前記ニッケル元素を含有する粉体を、前記バーナから供給する請求項2記載の金属ニッケルの濃縮回収方法。   The method for concentrating and recovering metallic nickel according to claim 2, wherein the powder containing the nickel element is supplied from the burner. 前記ニッケル元素を含有する粉体と、燃料とを予め混合した混合流体を、前記バーナの噴出孔から噴出させ、該混合流体の周囲から支燃性ガスを噴出させることで、該混合流体を包み込むように高温還元気流を形成させる請求項3記載の金属ニッケルの濃縮回収方法。   The mixed fluid in which the powder containing the nickel element and the fuel are mixed in advance is ejected from the ejection hole of the burner, and the combustion-supporting gas is ejected from around the mixed fluid, thereby enclosing the mixed fluid. The method for concentrating and recovering nickel metal according to claim 3, wherein a high-temperature reducing air stream is formed as described above. 前記燃料の流量を、前記燃料が完全燃焼するのに充分な前記支燃性ガスの流量に対して、40体積%以上95体積%以下とする請求項4記載の金属ニッケルの濃縮回収方法。   The method for concentrating and recovering metallic nickel according to claim 4, wherein the flow rate of the fuel is 40% by volume or more and 95% by volume or less with respect to the flow rate of the combustion-supporting gas sufficient for complete combustion of the fuel. 前記混合流体の周囲から噴出させる前記支燃性ガスを2系統以上に分割し、前記混合流体の周囲を内側から外側に向かって2重以上に包み込むように噴出させる請求項4又は5に記載の金属ニッケルの濃縮回収方法。   6. The combustion-supporting gas to be ejected from the periphery of the mixed fluid is divided into two or more systems, and the periphery of the mixed fluid is ejected so as to be wrapped in double or more from the inside toward the outside. A method for concentrating and recovering metallic nickel. 前記混合流体の周囲から噴出させる前記支燃性ガスを、旋回流とする請求項4乃至6のいずれか一項記載の金属ニッケルの濃縮回収方法。   The method for concentrating and recovering metallic nickel according to any one of claims 4 to 6, wherein the combustion-supporting gas ejected from the periphery of the mixed fluid is a swirling flow. 前記高温還元気流中に、固体炭素物質をさらに添加する請求項1乃至7のいずれか一項記載の金属ニッケルの濃縮回収方法。   The method for concentrating and recovering metallic nickel according to any one of claims 1 to 7, wherein a solid carbon substance is further added to the high-temperature reducing gas stream. 前記ニッケル元素を含有する粉体が、製鋼ダスト、スラッジ、廃触媒、廃棄物、ニッケル鉱石、及び酸化ニッケルからなる群から選ばれる1種以上である請求項1乃至8のいずれか一項記載の金属ニッケルの濃縮回収方法。


The powder containing the nickel element is at least one selected from the group consisting of steelmaking dust, sludge, waste catalyst, waste, nickel ore, and nickel oxide. A method for concentrating and recovering metallic nickel.


JP2004371073A 2004-12-22 2004-12-22 Method for concentrating and recovering metallic nickel from powder containing elemental nickel Expired - Fee Related JP4777642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371073A JP4777642B2 (en) 2004-12-22 2004-12-22 Method for concentrating and recovering metallic nickel from powder containing elemental nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371073A JP4777642B2 (en) 2004-12-22 2004-12-22 Method for concentrating and recovering metallic nickel from powder containing elemental nickel

Publications (2)

Publication Number Publication Date
JP2006176830A true JP2006176830A (en) 2006-07-06
JP4777642B2 JP4777642B2 (en) 2011-09-21

Family

ID=36731196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371073A Expired - Fee Related JP4777642B2 (en) 2004-12-22 2004-12-22 Method for concentrating and recovering metallic nickel from powder containing elemental nickel

Country Status (1)

Country Link
JP (1) JP4777642B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108605A (en) * 1974-12-12 1976-09-27 Asea Ab
JPS58171506A (en) * 1982-04-01 1983-10-08 Sumitomo Metal Mining Co Ltd Manufacture of fine metallic nickel powder
JPS5980739A (en) * 1982-10-29 1984-05-10 Tokyo Nickel Kk Fluidized reduction method of nickel oxide
JPH09291319A (en) * 1996-04-23 1997-11-11 Sumitomo Metal Mining Co Ltd Pre-treatment of raw material for ferronickel
JPH09310126A (en) * 1996-05-16 1997-12-02 Daido Steel Co Ltd Production for obtaining metal from metallic oxide
JP2005048257A (en) * 2003-07-30 2005-02-24 Inco Tnc Ltd Metal nickel, and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108605A (en) * 1974-12-12 1976-09-27 Asea Ab
JPS58171506A (en) * 1982-04-01 1983-10-08 Sumitomo Metal Mining Co Ltd Manufacture of fine metallic nickel powder
JPS5980739A (en) * 1982-10-29 1984-05-10 Tokyo Nickel Kk Fluidized reduction method of nickel oxide
JPH09291319A (en) * 1996-04-23 1997-11-11 Sumitomo Metal Mining Co Ltd Pre-treatment of raw material for ferronickel
JPH09310126A (en) * 1996-05-16 1997-12-02 Daido Steel Co Ltd Production for obtaining metal from metallic oxide
JP2005048257A (en) * 2003-07-30 2005-02-24 Inco Tnc Ltd Metal nickel, and its production method

Also Published As

Publication number Publication date
JP4777642B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4587333B2 (en) Method for roasting inclusions containing at least one of V, Mo and Ni and rotary kiln for roasting
CA1050765A (en) Method for making steel
US6270553B1 (en) Direct reduction of metal oxide agglomerates
US6001148A (en) Process for obtaining metal from metal oxide
SU980629A3 (en) Method for reducing pulverulent oxides in shaft reactor
US4571259A (en) Apparatus and process for reduction of metal oxides
WO2010007875A1 (en) Exhaust gas processing facility, and method for collecting dust by exhaust gas processing facility
US2973260A (en) Method for the treatment of iron ores
KR101842092B1 (en) Direct Reduced Copper Apparatus and Method therefor
JP5224490B2 (en) Processing method of smoke from furnace
RU2403289C2 (en) Method for separating metallic iron from oxide
JP4777642B2 (en) Method for concentrating and recovering metallic nickel from powder containing elemental nickel
US4180251A (en) Apparatus for recovering lead from battery mud
US4425659A (en) Metal oxide reduction furnace
US4654077A (en) Method for the pyrometallurgical treatment of finely divided materials
EA004020B1 (en) A method for recovery of metals
JP4400328B2 (en) Method for treating metal oxide
CN87107197A (en) Reclaim the method and apparatus of metal and metal alloy
US4732368A (en) Apparatus for the pyrometallurgical treatment of finely divided materials
US1916112A (en) Ore reduction process
CN207828339U (en) A kind of furnace burner combined device of direct gasification reduced iron
CN220432873U (en) Dust and ash treatment device for smelting reduction steelmaking
JPH07173549A (en) Method for recovering metallic zinc and metallic iron from dust containing zinc and iron
RU2158768C1 (en) Process for melting metal by direct reduction in metallurgical continuous-action reactor and vertical type continuous action metallurgical reactor
RU2166555C1 (en) Method of processing cinder of roasting of nickel concentrate from flotation separation of copper-nickel converter matte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110322

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

R150 Certificate of patent or registration of utility model

Ref document number: 4777642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees