[go: up one dir, main page]

JPS5974235A - Production of cold-rolled steel sheet for deep drawing having excellent formability - Google Patents

Production of cold-rolled steel sheet for deep drawing having excellent formability

Info

Publication number
JPS5974235A
JPS5974235A JP16299883A JP16299883A JPS5974235A JP S5974235 A JPS5974235 A JP S5974235A JP 16299883 A JP16299883 A JP 16299883A JP 16299883 A JP16299883 A JP 16299883A JP S5974235 A JPS5974235 A JP S5974235A
Authority
JP
Japan
Prior art keywords
cold
temperature
steel sheet
sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16299883A
Other languages
Japanese (ja)
Inventor
Shuji Nakai
中居 修二
Seiichi Sugisawa
杉沢 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16299883A priority Critical patent/JPS5974235A/en
Publication of JPS5974235A publication Critical patent/JPS5974235A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce easily a cold-rolled steel sheet for deep drawing having excellent formability by subjecting the cold-rolled steel sheet to continuous annealing at the heat pattern under specific conditions thereby depositing the N contained therein as fine AlN. CONSTITUTION:A billet of an aluminum killed steel contg. <0.10% C, <0.20% Si, 0.10-0.40% Mn, <0.03% P, 0.02-0.15% Al, 0.0025-0.020% N is hot-rolled to a plate material which is coiled in a 600-300 deg.C temp. range. The hot-rolled coil is pickled and descaled and is then cold-rolled at 40-80% draft, whereby a steel sheet having a required thickness is obtd. Such sheet is heated and held for 10-60sec in a temp. range of 350 deg.C- recrystallization temp., in succession to which the sheet is held for a short time in a temp. range of the crystallization temp. -800 deg.C whereby the recrystallization annealing is accomplished. The sheet is then quickly cooled down to <=200 deg.C. The sheet is reheated and is subjected to an overaging treatment at 250-450 deg.C, whereby the cold-rolled steel sheet for deep drawing having excellent formability is obtd.

Description

【発明の詳細な説明】 この発明は、成形性にすぐれた深絞り用冷延鋼板の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cold-rolled steel sheet for deep drawing with excellent formability.

冷延鋼板の製造法は、周知のごとく、熱間圧延機で圧延
した鋼帯をダウンコイラで巻取った後、酸洗→冷間圧延
→表面清浄→焼なまし・・・・・の各処理工程を経て冷
延鋼板を製造しているが、その材質としては近年リムド
鋼に変って、アルミキルド鋼が使用されるようになって
きた。これは、高強度鋼であると共に成分偏析にもとづ
くコイル内の特性変動が少なく、しかも時効劣化し難い
特徴を有するのみならず、バッチ式焼なまし法ではその
材質中に固溶している窒素を焼なまし処理工程中に微細
なAINとして析出させて成形性(深絞り性)の指数と
して用いられるランクフォード値(以下Y値と称す)を
非常に高いレベルに持ちきたすことができるtこめであ
る。
As is well known, the manufacturing method for cold-rolled steel sheets involves the following processes: pickling, cold rolling, surface cleaning, annealing after rolling a steel strip in a hot rolling mill and winding it up in a down coiler. Cold-rolled steel sheets are manufactured through a process, and in recent years the material used has changed from rimmed steel to aluminum-killed steel. This is not only a high-strength steel with little variation in properties within the coil due to component segregation and resistance to aging deterioration, but also has the advantage of not only being a high-strength steel, but also having the characteristics of being resistant to aging deterioration. is precipitated as fine AIN during the annealing process, and can bring the Lankford value (hereinafter referred to as Y value), which is used as an index of formability (deep drawability), to a very high level. It is.

ところが、連続焼なまし法においては、このアルミキル
ド鋼の特徴であるところの微細なAINの析出によるY
値の向上が一般的に難しい。これは昇熱速度が速いため
、微細At’Nの析出後、再結晶が進行するという順序
が逆又はこれに近い状態になることによる。これは、連
続焼なまし法において、AINとしての析出効果が全く
得られない上に、再結晶粒成長をも阻害しているためで
ある。
However, in the continuous annealing method, Y due to the precipitation of fine AIN, which is a characteristic of this aluminum killed steel,
It is generally difficult to improve the value. This is because the heating rate is fast, and the order in which recrystallization proceeds after the precipitation of fine At'N is reversed or close to this order. This is because, in the continuous annealing method, not only no precipitation effect as AIN is obtained, but also recrystallized grain growth is inhibited.

そこで、連続焼なまし法における、このT値の向上につ
いては近年、下記に示すような方法が提案されている。
Therefore, in recent years, the following methods have been proposed for improving the T value in the continuous annealing method.

1、ダウンコイラでの巻取りを、高温巻取りとすること
にまり、炭化物のN[及びAfNの大型析出物の析出を
施し、T値の向上と再結晶粒成長を図ったもの。
1. High-temperature winding was chosen for the down coiler, and large precipitates of carbide N and AfN were precipitated to improve the T value and grow recrystallized grains.

2、連続炉での再結晶焼なまし温度を通常より昇温させ
、その鋼板の組織をフェライト十オーステナイト領域ま
で昇温しで集合組織の改善を図り、Y値の向上を1指し
たもの。
2. The recrystallization annealing temperature in a continuous furnace is raised higher than usual to improve the texture of the steel sheet to the ferrite decaustenite region, thereby improving the Y value.

3、チタンを添加することによりY値の向上を図ったも
のがある。
3. There are some products in which the Y value is improved by adding titanium.

しかし、上記1.の高温巻取りを行うと、脱スケール性
や表面性状の悪化、結晶粒の粗大化、形状不良などが生
じ、冷延母材としては格落ちする場合が多くなる。又、
2.の再結晶焼なまし温度を上げると、連続炉に要する
燃料原単位が増大し、能率の低下をきたすと共にコスト
アップとなる。又、3、のチタンを添加すると、チタン
は炭素と結合するため、チタンの添加時はその際に真空
脱炭処理も施さねばならず、その処理とチタンの使用に
より、コストアップとなるなどの欠点があった。
However, above 1. When high-temperature winding is performed, descaling properties and surface properties deteriorate, coarsening of crystal grains, poor shape, etc. occur, and the quality of the cold-rolled base material is often degraded. or,
2. If the recrystallization annealing temperature is increased, the fuel consumption required for a continuous furnace will increase, resulting in a decrease in efficiency and an increase in cost. In addition, when titanium is added in step 3, titanium combines with carbon, so when adding titanium, a vacuum decarburization treatment must be performed at that time, and this treatment and the use of titanium increase costs. There were drawbacks.

この発明は、これらの方法をとらず、連続焼なまし過程
でのヒートパターンを一部変えることにより、上記の欠
点を解消し得る成形性のすぐれた深絞り用冷延鋼板の製
造法を提案するものである。
This invention proposes a method for producing cold-rolled steel sheets for deep drawing with excellent formability that eliminates the above-mentioned drawbacks by partially changing the heat pattern during the continuous annealing process without using these methods. It is something to do.

すなオ〕ち、この発明は炭素0.10%以下、けい素0
.20%以下、マンガン0.10〜0.40%、りん0
.03%以下、アルミニウム0.02〜0.15%、窒
素0.0025〜002%、残部実質的に鉄よりなる州
を、通常の熱間圧延を施して600’C以下300°C
以上でコイルに巻取り、酸洗後圧工率40%以−1:、
80%以下で冷間圧延を行った後、350°C以上再結
晶温度以下好ましくは450〜550°Cの温度域に1
0〜60秒予熱保持し、引続き再結晶温度以上800’
C以下の温度域に短時間保持して再結晶焼なましを行い
、次いで200℃以下に急冷した後、再加熱して250
〜450°Cの温度域で過時効処理を施すことを要旨と
するものである。
In other words, this invention uses less than 0.10% carbon and 0 silicon.
.. 20% or less, manganese 0.10-0.40%, phosphorus 0
.. 0.03% or less, aluminum 0.02-0.15%, nitrogen 0.0025-002%, and the balance substantially iron, and then subjected to normal hot rolling to 300°C below 600'C.
After winding into a coil and pickling, the pressing ratio is 40% or more -1:
After cold rolling at a temperature of 80% or less, 1
Preheat and hold for 0 to 60 seconds, then continue to heat to 800' above the recrystallization temperature.
Recrystallization annealing is performed by holding the temperature in a temperature range below 200°C for a short time, then rapidly cooling it to below 200°C, and then reheating it to 250°C.
The gist of this is to perform overaging treatment in a temperature range of ~450°C.

以下、この発明について詳細に説明する。第1図、第2
図に示すように、1a12aはこの発明法の再結晶焼な
まし過程におけるヒートパターンの曲線を示し、lb、
2bは従来法の再結晶焼なまし過程におけるヒートパタ
ーンの曲線を示すもので、連続炉においてコイルを連続
的に巻き戻し、銅帯の状態で焼なまし炉の中を通過させ
ながら連続焼なましを行うが、仙人された銅帯を、いっ
たん350°C以上〜再結晶温度以下の温度範囲である
焼なまし予熱温度域(Pr eRA)  でio〜60
秒程度の程度間予熱保持する。この焼なまし予熱温度域
(preRA)を施すことにより、冷延鋼板中の窒素N
 ’e fi、1Nとして微細に析出するようにしたも
のである。
This invention will be explained in detail below. Figures 1 and 2
As shown in the figure, 1a12a shows the heat pattern curve in the recrystallization annealing process of this invention method, lb,
2b shows the heat pattern curve in the recrystallization annealing process of the conventional method, in which the coil is continuously unwound in a continuous furnace and continuously annealed while passing through the annealing furnace in the form of a copper strip. However, once the copper strip has been cured, it is heated in an annealing preheating temperature range (PreRA) of io to 60°C, which is a temperature range of 350°C or higher and below the recrystallization temperature.
Preheat and hold for about seconds. By applying this annealing preheating temperature range (preRA), nitrogen N in the cold rolled steel sheet can be reduced.
'e fi, 1N so that it is finely precipitated.

すなわち、アルミキルド鋼は冷延後の再結晶焼なまし初
期段階においてAI!Nを微細に析出させやすく、これ
により再結晶集合組織を改善し、高r値の得られること
が知られている。そこで、発明者は連続焼なまし法にお
いて、AINの析出しやすい温度域に短時間保持する(
とにより、AINを十分析出させて集合組織を改善し、
Y値を向」二せしめ、成形性の向上を図るものである。
In other words, aluminum killed steel has AI! during the initial stage of recrystallization annealing after cold rolling. It is known that N is easily precipitated finely, thereby improving the recrystallized texture and obtaining a high r value. Therefore, in the continuous annealing method, the inventor held the temperature in a temperature range where AIN easily precipitates (
By this, ten AINs are generated and the collective structure is improved.
The purpose is to increase the Y value and improve moldability.

そして、その後の温度過程は通常のヒートパターンと同
様の熱処理を施す。すなわち、A1変態点近傍の再結晶
焼なまし温度域(RA)  (温度は(−′1述する)
まで昇温しで20〜120秒程度保持程度この間に再結
晶、粒成長の過程を経て軟化させ、成形加工性を向上さ
せるものである。次いで、200°C以下に急冷後回加
熱して250〜450°Cの過時効処理温度域で2〜4
分間保持し、時効の発生原因となる固溶炭素を誠少させ
る方法である。
Then, the subsequent temperature process is performed in the same manner as in a normal heat pattern. In other words, the recrystallization annealing temperature range (RA) near the A1 transformation point (temperature is (-'1))
The temperature is raised to 20 to 120 seconds and held for about 20 to 120 seconds. During this time, the material is softened through the process of recrystallization and grain growth, thereby improving moldability. Next, it is rapidly cooled to 200°C or less and then heated for 2 to 4 hours in an overaging treatment temperature range of 250 to 450°C.
This is a method to minimize the amount of solid solution carbon that causes aging.

又、過時効処理においては、設備の都合上バッチ炉で過
時効処理を行ういわゆるボストアニール法であっても基
本的にはなんら差異がないため、ボストアニールを適用
してもよい。すなわち、第2図に示すように、再結晶焼
なまし温度域(RA、 )から急冷した後、バッチ式加
熱炉を用いて250〜450°Cの過時効処理温度域(
OA)に再加熱し、コ−ルドスポット(最冷点)におい
て30分以上保持するものである。
Further, in the over-aging treatment, even if the over-aging treatment is carried out in a batch furnace due to the equipment, there is basically no difference in the so-called Bosto annealing method, and therefore Bosto annealing may be applied. That is, as shown in Fig. 2, after rapid cooling from the recrystallization annealing temperature range (RA,
OA) and held at the cold spot for 30 minutes or more.

上記焼なまし予熱温変域(preRA)を350°C以
上〜再結晶温度以下としたのは、350°C未満ではA
INの析出に必要な熱量が得られず、又再結晶温度を越
えるとこの発明の目的とする微細AINの析出後再結晶
させ、集合4織を改善するのが困難となるからである。
The reason why the annealing preheating temperature range (preRA) was set from 350°C or higher to the recrystallization temperature is that if it is lower than 350°C,
This is because the amount of heat necessary for precipitation of IN cannot be obtained, and if the temperature exceeds the recrystallization temperature, it becomes difficult to recrystallize fine AIN after precipitation and improve the aggregated 4-weave, which is the object of the present invention.

したがって、AINを効率的に析出させる1こめ焼なま
し予熱温度(PreRA)は450〜550°Cが好ま
しく、又その時間は10秒以上保持ずれば十分AINを
析出させることができる。なお、このAINの析出時間
は長いほど好ましいが、設備長さの増大につながること
から、実質的には60秒ぐらいが上限となる。
Therefore, the preheating temperature (PreRA) for one-time annealing to efficiently precipitate AIN is preferably 450 to 550°C, and AIN can be sufficiently precipitated by holding the temperature for 10 seconds or more. The longer the AIN precipitation time is, the more preferable it is, but since this leads to an increase in the length of the equipment, the practical upper limit is about 60 seconds.

一ヒ記再結晶焼なまし温度域(RA)は、再結晶温度以
上800°C以下、又は通常と同じ700〜850’O
O) 範囲のいずれでもよいが、炉の燃料原単位を考慮
してできるだけ低い方がよい。この点に関し、後述する
r値の向上により、再結晶温度以上〜850°C以下で
再結晶焼なましが可能となり、好ましくは650−75
0’Cがよい。又、その保持時間は長い方がよいが、設
備上許容範囲内の20〜120秒程度で十程度結晶焼な
まし処理効果が得られる。
The recrystallization annealing temperature range (RA) is above the recrystallization temperature and below 800°C, or the same as normal 700-850°C.
O) Any value within the range is acceptable, but it is better to keep it as low as possible considering the fuel consumption rate of the furnace. In this regard, by improving the r value, which will be described later, recrystallization annealing becomes possible at temperatures above the recrystallization temperature and below 850°C, preferably at 650-75°C.
0'C is good. Further, although the longer the holding time is, the longer the holding time is, the better, but a crystal annealing treatment effect of about 10% can be obtained with a holding time of about 20 to 120 seconds, which is within the allowable range in terms of equipment.

又、過時効処理潤度(OA)は、通常と同じ250〜4
50°Cの時効処理に適した温度範囲でよく、その時間
も同じく通常の2〜4分の時効処理時間で十分である。
In addition, the over-aging treatment moisture content (OA) is the same as normal, 250 to 4.
A temperature range suitable for aging treatment of 50° C. may be used, and a normal aging treatment time of 2 to 4 minutes is sufficient.

上記炉内におけるν゛^なまじの予熱操作は、炉内の温
度調整を行うことにより容易にこの発明のi、IThな
まし予熱31L Y?を設けることができる。
The ν゛^-like preheating operation in the above-mentioned furnace can be easily performed by adjusting the temperature inside the furnace. can be provided.

このように、再結結節なまし時のヒートパターンを一部
変えるのみで、成品のT値が向上し、成形性がすぐれ、
ひずみ時効の発生を抑制したにを品質の成品を製造する
ことができる。この〒値の向上に伴い、下記に示す種々
の間h:口も解消される。
In this way, by only partially changing the heat pattern during re-knot annealing, the T value of the finished product improves, the formability is excellent,
It is possible to produce high quality products by suppressing the occurrence of strain aging. Along with this improvement in the 〒 value, the various intervals h:mouth shown below are also eliminated.

すなわち、ダウンコ1うでの750°C稈度の高温巻取
りを要せず、コイルの巻取温度を660°C以下にして
も確実にY@の向上を1フjることができる。したがっ
て、高温巻取りにより生じる脱スケール性、表面性状の
悪化や結晶粒の粗大化、形状不良などを抑制することが
でき、最適なる冷延母材を得ることができる。
That is, it is not necessary to wind the coil at a high temperature of 750°C in the downcoat 1 arm, and even if the coil winding temperature is set to 660°C or less, it is possible to reliably improve Y@ by 1 degree. Therefore, it is possible to suppress descaling properties, deterioration of surface properties, coarsening of crystal grains, poor shape, etc. caused by high-temperature winding, and it is possible to obtain an optimal cold-rolled base material.

又、再結晶焼なまし温度域(RA)は、通常集合組織の
改魯を図ってT値を向上し得るように、短時間内に70
0〜850°Cまで昇温しでいるが、この発明法におい
ては予熱段階を新1こに設けてY値を向上し得るもので
あるから、再結晶焼なまし温度域(RA)を650〜7
50°C程度まで下げることができる。このため、連続
炉における燃料原単位を確実に低減できる。又、チタン
の添加や真空脱炭処理なども要せず、きわめて簡単かつ
的確にY値の向上を得ることができる。
In addition, the recrystallization annealing temperature range (RA) is usually 70°C within a short period of time to improve the T value by modifying the texture.
Although the temperature is increased from 0 to 850°C, in this invention method, a preheating stage is provided at the new stage to improve the Y value, so the recrystallization annealing temperature range (RA) is increased to 650°C. ~7
The temperature can be lowered to around 50°C. Therefore, the fuel consumption rate in the continuous reactor can be reliably reduced. Furthermore, the Y value can be improved very simply and accurately without the need for addition of titanium or vacuum decarburization.

又、この発明の冷延鋼板は、例えば連続鋳造法又は造塊
法により製造したアルミキルド鋼冷延鋼板が対象となる
Further, the cold-rolled steel sheet of the present invention is an aluminium-killed cold-rolled steel sheet manufactured by, for example, a continuous casting method or an ingot-forming method.

この発明において、鋼の化学成分を限定したのは次の理
由による。
In this invention, the chemical composition of the steel is limited for the following reason.

炭素は、絞り性を向上させるため低い方が望ましく、炭
素が0.10%を越えると強度上昇、に伴う延性の低下
及び粗粒化による絞り性紙性の劣化が著しくなるため、
0.10%以下とした。
A lower carbon content is desirable in order to improve drawability, and if carbon exceeds 0.10%, the strength will increase, resulting in a decrease in ductility and deterioration in drawability due to coarse grains.
It was set to 0.10% or less.

けい素は、0.20%を越えると、鋼板表面に焼なまし
時に着色し、又スケールによる表面欠陥となるため0.
20%以下がよい。
If silicon exceeds 0.20%, the surface of the steel sheet will be colored during annealing, and surface defects due to scale will occur.
20% or less is preferable.

マンガンは、絞り性を向上させるため低い方が望ましい
が、0.10%未満では赤熱脆性の危険があり、又製造
も困難である。0.40%を越えると、再結晶集合組織
が劣化し、絞り性の著しい低下をきたすので、マンガン
は0.10〜0.40%が好ましい。
A lower amount of manganese is desirable in order to improve drawability, but if it is less than 0.10%, there is a risk of red heat embrittlement and manufacturing is also difficult. If it exceeds 0.40%, the recrystallized texture will deteriorate and the drawability will be significantly reduced, so the manganese content is preferably 0.10 to 0.40%.

りんは、0.03%を越えると、その固溶強化により延
性が低下するので、0.03%以下とする。
When phosphorus exceeds 0.03%, ductility decreases due to solid solution strengthening, so the content is set to 0.03% or less.

アルミニウムは、AZNの析出に必要で、0.02%未
満では効果が少なく、0.15%を越えるとスラブ加熱
時のAINの固溶化が不完全となり、再結晶粒の微細化
により延性が低下すル1コめ、0.02〜0.15%と
した。
Aluminum is necessary for the precipitation of AZN, and if it is less than 0.02%, it will have little effect, and if it exceeds 0.15%, the solid solution of AIN will be incomplete during slab heating, and the ductility will decrease due to the refinement of recrystallized grains. The content was set at 0.02 to 0.15% for the first round.

窒素は、伸びを向上させるためには少ない方がよいが、
0.0025%未満ではAINの析出が不十分であり、
0.02%を越えると伸びが低下し、アルミニウムと相
撲ってスラブ加熱時のAZNの固溶化が不完全となるた
め、0.0025〜0.02%とした。
It is better to have less nitrogen in order to improve elongation, but
If it is less than 0.0025%, precipitation of AIN is insufficient,
If it exceeds 0.02%, the elongation decreases and the AZN competes with aluminum, making the solid solution of AZN incomplete during heating of the slab, so it is set at 0.0025 to 0.02%.

又、熱間仕上圧延後の巻取温度を600°C以下300
°C以上としrこのは、600°Cを越えると巻取後の
冷却中に大型のAjl’Nが析出してしまい、本来の目
的であるところの(PreRA)での微細なAINの析
出が不可能となり、300°C以下では巻取時の鋼帯強
度が高く、巻取が困難となり製浩ヒの不具合を生じtこ
り、水冷却のための水量を増大または能率の低下をきた
すとともに、300°C以下としても絞り性向上に対す
る効果は変らないからである。
In addition, the coiling temperature after hot finish rolling should be 600°C or less.
If the temperature exceeds 600°C, large Ajl'N will precipitate during cooling after winding, and the original purpose of (PreRA) will be that fine AIN will not be precipitated. At temperatures below 300°C, the strength of the steel strip during winding is high, making winding difficult and causing problems in the manufacturing process, increasing the amount of water for cooling and reducing efficiency. This is because even if the temperature is 300°C or lower, the effect of improving the drawability remains the same.

又、酸洗して表面を脱スケール処理した鋼板を、圧下率
40%以上80%以下で冷間圧延を行なうのは、通常の
冷延鋼板と同様で成品の寸法精度、形状性の向上の他再
結晶集合組織を改善するためであり、80%以上の圧下
&実圧延全荷重が大きくなり作業性の低下、板厚精度平
担などの劣化をもたらし、又冷延鋼板として必要な板厚
精度、形状性を確保するためには40%以上の圧下率が
必要であり、又40%以下では良好な絞り性が得られな
いからである。
In addition, cold rolling a steel plate whose surface has been descaled by pickling at a reduction rate of 40% to 80% is the same as for ordinary cold rolled steel plates, and improves the dimensional accuracy and shape of the finished product. This is to improve the recrystallization texture, and the rolling load of 80% or more and the total rolling load increase, resulting in decreased workability and deterioration of plate thickness accuracy, etc., and the required plate thickness for cold rolled steel sheets. This is because a rolling reduction ratio of 40% or more is required to ensure accuracy and shapeability, and good drawability cannot be obtained with a reduction ratio of 40% or less.

〔実施例〕〔Example〕

次に、深絞り用冷延鋼板の製造過程を例にとってこの発
明法と従来法とを比較しfコ実施結果を第1表に示し、
かつその成品の組成と焼なまし処理条件とを併せて示し
tこ。
Next, taking the manufacturing process of cold-rolled steel sheets for deep drawing as an example, we compared the method of this invention and the conventional method, and the results of implementation are shown in Table 1.
In addition, the composition of the product and annealing treatment conditions are also shown.

第   1   表 すなわち1、上記第1表より、この発明の試料^1−1
ti 3は、従声法の試料44 v A 5に比べて、
引張強さは大差ないが、いずれもT値を大幅に向上する
ことができた。これにより、成形性がすぐれた深絞り用
冷延鋼板が得られることがわかる。
From Table 1, that is, Table 1 above, the sample of this invention ^1-1
ti 3 is compared to sample 44 v A 5 of subtone method,
Although there was not much difference in tensile strength, both were able to significantly improve the T value. It can be seen that this results in a cold-rolled steel sheet for deep drawing with excellent formability.

この発明は上記のごとく、連続焼なまし法において高温
度まで急熱せずに、予熱過程を有する再結晶焼なまし処
理を施すことにより、アルミキルド銅の深絞り用冷延鋼
板の製造に最も適した再結晶焼なましとなり、成形性が
すぐれ、深絞り用の冷延鋼板を容易に製造できるもので
ある。
As mentioned above, this invention is most suitable for producing cold-rolled steel sheets for deep drawing of aluminium-killed copper by performing recrystallization annealing treatment with a preheating process without rapidly heating to high temperatures in the continuous annealing method. The result is recrystallization annealing, excellent formability, and easy production of cold rolled steel sheets for deep drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の再結晶焼なまし過程のヒートパター
ンを示す図表、第2図はこの発明の他の再結晶焼なまし
過程のヒートパターンの実施例を示す図表である。 preRA・・・焼なまし予熱温度域、h・・・再結晶
焼なまし温度域、OA・・・過時効処理温度域、1a、
2a・・・この発明法の再結晶焼なまし過程におけるヒ
ートパターンの曲線例、xb、2’b・・・従来法の再
結晶焼なまし過程におけるヒートパターンの曲線例。 出願人  住友金属工業株式会社 代理人  押  1) 良  欠間°′)1
FIG. 1 is a chart showing a heat pattern of the recrystallization annealing process of the present invention, and FIG. 2 is a chart showing an example of the heat pattern of another recrystallization annealing process of the invention. preRA... annealing preheating temperature range, h... recrystallization annealing temperature range, OA... overaging treatment temperature range, 1a,
2a... An example of a curve of a heat pattern in the recrystallization annealing process of this invention method, xb, 2'b... An example of a curve of a heat pattern in the recrystallization annealing process of the conventional method. Applicant Sumitomo Metal Industries Co., Ltd. Agent Press 1) Good Interval°')1

Claims (1)

【特許請求の範囲】[Claims] 炭素0.1091;以下、けい素0.20%以下、マン
ガン0.10〜0.40%、りん0.03%以下、アル
ミニウム0.02〜0.15%、窒素0.0025〜0
.020%、残部は実質的に鉄及び不可避的不純物より
なる鋼を通常の熱間圧延を施して600″C以下300
’c以上の温度でコイルに巻取り、酸洗後圧工率40%
以上80%以下で冷間圧延を行った後、350’C以上
再結晶温度以下の温度域に10〜60秒予熱保持し、引
続き再結晶温度以上soo’c以下の温度域に短時間保
持して再結晶焼なましを行い、次いで200″C以下ま
で急冷し、再加熱後250〜450″Cの温度域で過時
効処理を施すことを特徴とする成形性のすぐれた深絞り
用冷延鋼板の製造法。
Carbon 0.1091; silicon 0.20% or less, manganese 0.10-0.40%, phosphorus 0.03% or less, aluminum 0.02-0.15%, nitrogen 0.0025-0
.. 020%, the remainder consisting essentially of iron and unavoidable impurities, is subjected to normal hot rolling to a temperature of 600"C or less.
Winding into a coil at a temperature of 'c or higher, pressure reduction rate of 40% after pickling
After performing cold rolling at a temperature of 80% or less, the preheating is held at a temperature range of 350'C or above and below the recrystallization temperature for 10 to 60 seconds, and then held for a short time at a temperature range above the recrystallization temperature and below soo'c. Cold rolling for deep drawing with excellent formability, characterized in that it is recrystallized annealed at 200°C, then rapidly cooled to below 200″C, and after reheating is subjected to overaging treatment in a temperature range of 250 to 450″C. Manufacturing method of steel plate.
JP16299883A 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability Pending JPS5974235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16299883A JPS5974235A (en) 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16299883A JPS5974235A (en) 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55094336A Division JPS593527B2 (en) 1980-07-09 1980-07-09 Manufacturing method of cold-rolled steel sheet for deep drawing with excellent formability

Publications (1)

Publication Number Publication Date
JPS5974235A true JPS5974235A (en) 1984-04-26

Family

ID=15765252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16299883A Pending JPS5974235A (en) 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability

Country Status (1)

Country Link
JP (1) JPS5974235A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927422A (en) * 1972-07-10 1974-03-11
JPS593527A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Input/output device device number setting and display method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927422A (en) * 1972-07-10 1974-03-11
JPS593527A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Input/output device device number setting and display method

Similar Documents

Publication Publication Date Title
JPS6116323B2 (en)
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JPS6114213B2 (en)
JPS631374B2 (en)
JPS5974237A (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPH07242995A (en) Low carbon aluminum killed cold rolled steel sheet for deep drawing and method for producing the same
JPH0222446A (en) Manufacture of high formability aluminum alloy hard plate
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JPS5974236A (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS6114216B2 (en)
JPS5974235A (en) Production of cold-rolled steel sheet for deep drawing having excellent formability
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JPS5858413B2 (en) Manufacturing method for high-tensile galvanized steel sheets with excellent formability
JPS5974234A (en) Production of cold-rolled steel sheet for deep drawing having excellent formability
JPS5913030A (en) Manufacturing method for Al-killed cold-rolled steel sheet with excellent deep drawability
JPS5980727A (en) Manufacture of cold rolled steel sheet with high drawability by continuous annealing
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPS5857491B2 (en) Method for producing thermosetting cold-rolled steel sheet for deep drawing
JPS593527B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent formability
JPS5956528A (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPS6046165B2 (en) A method for producing high-strength cold-rolled steel sheets with high bake hardenability, excellent aging resistance, and press workability by continuous annealing.