[go: up one dir, main page]

JPS5974234A - Production of cold-rolled steel sheet for deep drawing having excellent formability - Google Patents

Production of cold-rolled steel sheet for deep drawing having excellent formability

Info

Publication number
JPS5974234A
JPS5974234A JP16299783A JP16299783A JPS5974234A JP S5974234 A JPS5974234 A JP S5974234A JP 16299783 A JP16299783 A JP 16299783A JP 16299783 A JP16299783 A JP 16299783A JP S5974234 A JPS5974234 A JP S5974234A
Authority
JP
Japan
Prior art keywords
cold
temperature
annealing
steel sheet
recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16299783A
Other languages
Japanese (ja)
Inventor
Shuji Nakai
中居 修二
Seiichi Sugisawa
杉沢 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16299783A priority Critical patent/JPS5974234A/en
Publication of JPS5974234A publication Critical patent/JPS5974234A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce easily a cold-rolled steel sheet for deep drawing having excellent formability by subjecting the cold-rolled steel sheet to continuous annealing at the heat pattern under specific conditions thereby depositing fine AlN in the texture. CONSTITUTION:A billet of an aluminum killed steel contg. <0.10% C, <0.20% Si, 0.10-0.40% Mn, <0.03% P, 0.02-0.15% Al, 0.0025-0.020% N is hot-rolled to a plate material which is coiled in a 600-300 deg.C temp. range. The hot rolled coil is pickled and descaled, and is then cold-rolled at 40-80% draft, whereby a steel sheet having a required thickness is obtd. Such sheet is heated and held for 10-60sec in a temp. range of 350 deg.C- recrystallization temp., in succession to which the sheet is held for a short time in a temp. range of the recrystallization temp. -800 deg.C whereby the recrystallization annealing is accomplished. Such a sheet is subjected to an overaging treatment at 250-450 deg.C. The cold-rollled steel sheet for deep drawing having excellent formability is obtd.

Description

【発明の詳細な説明】 この発明は、成形性のすぐれた深絞り用冷延鋼板の製造
法に関す否。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cold-rolled steel sheets for deep drawing with excellent formability.

冷延鋼板の製造法は、周知のごとく、熱間圧延機で圧延
した鋼帯をダウンコイラで巻取った後、酸洗−冷間圧延
一表面清浄一焼なまし・・・・・・・・・・の各処理工
程を経て冷延鋼板を製造しているが、その材質としては
近年リムド鋼に変って、アルミキルド鋼が使用されるよ
うになってきた。これは、高強度鋼であると共に成分偏
析にもとづくコイル内の特性変動が少なく、しかも時効
劣化し難い特徴を有するのみならず、バッチ式焼なまし
法ではその材質中に固溶している窒素を焼なまし処理工
程中に微細なAI!Nとして析出させて成形性(深絞り
性)の指数として用いられるランクフォード値(以下r
値と称す)を非常に高いレベルに持ちきたすことができ
るためである。
As is well known, the manufacturing method for cold-rolled steel sheets involves rolling a steel strip in a hot rolling mill, winding it up in a down coiler, and then pickling, cold rolling, surface cleaning, and annealing. Cold-rolled steel sheets are manufactured through various processing steps, and in recent years the material used has changed from rimmed steel to aluminum-killed steel. This is a high-strength steel with little variation in properties within the coil due to component segregation, and is resistant to aging. Fine AI during the annealing process! The Lankford value (r
This is because it can bring the value (referred to as "value") to a very high level.

ところが、連続焼なまし法においては、このアルミギル
ド鋼の特徴であるところの微細なA/?Nの析出による
r値の向上が一般的に離しい。これは昇熱速度が速いた
め、微細AJNの析出後、再結晶が進行するという順序
が逆又はこれに近い状態になることによる。これは、連
続焼なまし法において、AI!Nとしての析出効果が全
く得られない上に、再結晶粒成長・をも阻害しているた
めである。
However, in the continuous annealing method, the fine A/? which is a characteristic of this aluminum guild steel. Generally, the r-value improves significantly due to N precipitation. This is because the heating rate is fast, so the order in which recrystallization proceeds after precipitation of fine AJN is reversed or close to this order. This is AI! in the continuous annealing method. This is because not only no precipitation effect as N can be obtained, but also recrystallized grain growth is inhibited.

そこで、連続焼なまし法における、このr値の向上につ
いては近年、下記に示すような方法が提案されている。
Therefore, in recent years, the following methods have been proposed for improving the r value in the continuous annealing method.

1、ダウンコイラでの巻取りを、高温巻取りとすること
によυ、炭化物の凝集及びAJNの大型析出物の析出を
施し、r値の向上と再結晶粒成長を図ったもの。
1. Winding with a down coiler is performed at a high temperature to cause agglomeration of carbides and precipitation of large precipitates of AJN, thereby improving the r value and growing recrystallized grains.

2、連続炉での再結8焼なまし温度を通常よシ昇温させ
、その鋼板の組織をフェライト+オーステナイト領域ま
で昇温しで集合組織の改善を図り。
2. Reconsolidation in a continuous furnace 8 The annealing temperature is raised to a higher than usual temperature, and the texture of the steel sheet is raised to the ferrite + austenite region, thereby improving the texture.

r値の向上を目指したもの。The aim is to improve the r value.

3、チタンを添加することにより7値の向上を図ったも
のがある、 しかし、上記1.の高温巻取シを行うと、脱スケール性
や表面性状の悪化、結晶粒の粗大化、形状不良などが生
じ、冷延母材としては格落ちする場合が多くなる。又、
2.の再結8焼なまし温度を上げると、連続炉に要する
燃料原単位が増大し、能率の低下をきたすと共にコスト
アップとなる。又3・のチタンを添加すると、チタンは
炭素と結合す不ため、チタンの添加時はその際に真空脱
炭処理も施さねばならず、その処理とチタンの使用によ
り、コストアップとなるなどの欠点があった。
3. Some products have attempted to improve the value of 7 by adding titanium. However, 1. When high-temperature winding is performed, descaling properties and surface properties deteriorate, coarsening of crystal grains, poor shape, etc. occur, and the quality of the material is often degraded as a cold-rolled base material. or,
2. If the annealing temperature is increased, the fuel consumption rate required for a continuous furnace will increase, resulting in a decrease in efficiency and an increase in cost. Also, if titanium is added in 3., titanium will not bond with carbon, so when adding titanium, vacuum decarburization treatment must be performed at that time, and this treatment and the use of titanium will increase costs. There were drawbacks.

この発明は、これらの方法をとらず、連続焼なまし過程
でのヒートパターンを一部変えることによシ、上記の欠
点を解消し得る成形性のすぐれた深絞シ用冷延鋼板の製
造法を提案するものである。
The present invention does not use these methods, but instead partially changes the heat pattern during the continuous annealing process to produce a cold-rolled steel sheet for deep drawing with excellent formability that can overcome the above-mentioned drawbacks. It proposes a law.

すなわち、この発明は炭素0.10−以下、けい素0.
20チ以下、マンガン0.10〜0.40%、りん0.
03チ以下、アルミニウム0.02〜0.15%、窒素
0.0025〜0.02チ、残部実質的に鉄よりなる鋼
を、通常の熱間圧延を施して600°C以下300°C
以上でコイルに巻取り、酸洗後圧工率40%以上80チ
以下で冷間圧延を行った後、350°C以上再結晶温度
以下温度域に短時間保持して再結8焼なましを行い、次
いで250〜450°Cの温度域で過時効処理を施すこ
とを要旨とするものである− 以下、この発明について詳細に説明する。第1図に示す
ように18はこの発明法の再結8焼なまし過程における
ヒートパターンの曲線を示し、1bは従来法の再結8焼
なまし過程におけるヒートパターンの曲線を示すもので
、連続炉に−おいてコイルを連続的に巻き戻し、銅帯の
状態で焼なまし炉の中を通過させながら連続焼なましを
行うが、抽入された銅帯を、いったん350“C以上〜
再結晶温度以下の温度範囲である焼なまし予熱温度域(
PreRA)で10〜60秒程度の程度間予熱保持する
。この焼なまし予熱温度域(PreRA)を施すことに
よシ、冷延鋼板中の窒素NをAJNとして微細に析出す
るようにしたものである。
That is, the present invention has a carbon content of 0.10- or less and a silicon content of 0.1- or less.
20 or less, manganese 0.10-0.40%, phosphorus 0.
0.03 inch or less, aluminum 0.02 to 0.15%, nitrogen 0.0025 to 0.02 inch, and the balance substantially iron, subjected to normal hot rolling to 300 °C below 600 °C.
The above is wound into a coil, and after pickling, cold rolling is performed at a rolling ratio of 40% to 80 mm, and then annealing is carried out by holding for a short time in a temperature range of 350°C or higher and below the recrystallization temperature. The gist of this invention is to perform an overaging treatment in a temperature range of 250 to 450°C.The present invention will be described in detail below. As shown in FIG. 1, 18 shows the heat pattern curve in the reconsolidation 8 annealing process of the present invention, and 1b shows the heat pattern curve in the reconsolidation 8 annealing process of the conventional method. The coil is continuously unwound in a continuous furnace, and the copper strip is passed through the annealing furnace for continuous annealing. ~
Annealing preheating temperature range, which is the temperature range below the recrystallization temperature (
Preheat for about 10 to 60 seconds. By applying this annealing preheating temperature range (PreRA), nitrogen N in the cold rolled steel sheet is finely precipitated as AJN.

すなわち、アルミキルド鋼は冷延後の再結8焼なまし初
期段階においてAJNを微細に析出させやすく、これに
より再結8集・合組織を改善し、高7値の得られること
が知られている。そこで1発明者は連続焼なまし法にお
いて、AI!Nの析出しやすい温度域に短時間保持する
ことによシ、l’Nを十分析出させて集合組織を改善し
、7値を向上せしめ、成形性の向上を図るものである。
In other words, it is known that aluminum killed steel tends to cause AJN to precipitate finely in the initial stage of reconsolidation 8 annealing after cold rolling, which improves the reconsolidation 8 texture and obtains a high 7 value. There is. Therefore, one inventor developed AI! in the continuous annealing method. By keeping the temperature in a temperature range where N is easy to precipitate for a short time, a sufficient amount of l'N is extracted, the texture is improved, the 7 value is improved, and the formability is improved.

そして、その後の温度過程は通常のヒートパターンと同
様の熱処理を施す。すなわち、A、変態点近傍の再結8
焼なまし温度域(RA)(温度は後述する)まで昇温し
て20〜120秒程度保持程度この間に再結晶、粒成長
の過程を経て軟化させ、成形加工性を向上させるもので
ある。次いで、250〜450℃の過時効処理温度域(
OA)  まで降温してこの250〜450℃の温度で
2〜4分間保持し、時効の発生原因となる固溶炭素を減
少させる方法である。
Then, the subsequent temperature process is performed in the same manner as in a normal heat pattern. That is, A, recombination near the transformation point 8
The temperature is raised to the annealing temperature range (RA) (the temperature will be described later) and held for about 20 to 120 seconds, during which time it is softened through the process of recrystallization and grain growth, thereby improving moldability. Next, an overaging treatment temperature range of 250 to 450°C (
This is a method in which the temperature is lowered to 250 to 450° C. for 2 to 4 minutes to reduce the amount of solid solution carbon that causes aging.

上記焼なまし予熱温度域(PreRA)を350℃以上
〜再結晶温度以下としたのは、350℃未満ではAJN
の析出に必要な熱量が得られず、又再結晶温度を越える
とこの発明の目的とする微細AJNの析出後再結晶させ
、集合組織を改善するのが困難となるからである。した
がって、l’N″f:効率的に析出させるため焼なまし
予熱温度(PreRA)は450〜550℃が好ましく
、又その時間は10秒以上保持すれば十分AJN’i析
出さぜることができる。なおこのAJNの析出時間は長
いほど好ましいが、設備長さの増大につながることから
、実質的には60秒ぐらいが上限となる。
The above annealing preheating temperature range (PreRA) was set from 350℃ or higher to recrystallization temperature or lower because AJN
This is because the amount of heat necessary for precipitation cannot be obtained, and if the temperature exceeds the recrystallization temperature, it becomes difficult to recrystallize fine AJN after precipitation and improve the texture, which is the object of the present invention. Therefore, l'N''f: For efficient precipitation, the annealing preheating temperature (PreRA) is preferably 450 to 550°C, and if the temperature is maintained for 10 seconds or more, sufficient AJN'i precipitation can occur. Although it is preferable that the AJN precipitation time be as long as possible, the practical upper limit is about 60 seconds since this leads to an increase in the length of the equipment.

上記再結8焼なまし温度域(RA )は、再結晶温度以
上800℃以下、又は通常と同じ700〜850℃の範
囲のいずれでもよいが、炉の燃料原単位を前照してでき
るだけ低い方がよい。この点に関し、後述する下値の向
上により、再結晶温度以上〜850℃以下で再結8焼な
ましが可能となり、好ましくは650〜750℃がよい
。又、その保持時間は長い方がよいが、設備上許容範囲
内の20〜120秒程度で十程度結8焼なまし処理効果
が得られる、又、過時効処理温度(OA)は、通常と同
じ250〜450℃の時効処理に適した温度範囲でよく
、その時間も同じく通常の2〜4分の時効処理時間で十
分である。
The above-mentioned recrystallization 8 annealing temperature range (RA) may be above the recrystallization temperature and below 800°C, or within the same range of 700 to 850°C as usual, but it is as low as possible considering the fuel consumption rate of the furnace. It's better. In this regard, due to the improvement in the lower value described below, recrystallization 8 annealing is possible at a temperature from the recrystallization temperature to 850°C, preferably from 650 to 750°C. In addition, the longer the holding time, the better, but about 20 to 120 seconds, which is within the allowable range of equipment, will give about 10% of the annealing effect. The same temperature range of 250 to 450°C suitable for aging treatment is sufficient, and the usual aging treatment time of 2 to 4 minutes is also sufficient.

上記炉内における焼なましの予熱操作は、炉内の温度調
整を行うことによシ容易にこの発明の焼なまし予熱過程
を設けることができる、このように、再結8焼なまし時
のヒートパターンを一部変えるのみで、成品の7値が向
上し、成形性がすぐれ、ひずみ時効の発生を抑制した高
品質の成品を製造することができる。この下値の向上に
伴い、下記に示す種々の問題も解消される。
The preheating operation for annealing in the above-mentioned furnace can be easily performed by adjusting the temperature in the furnace, thereby providing the preheating process of the present invention. By only partially changing the heat pattern, it is possible to produce a high-quality product with improved 7 value, excellent formability, and suppressed strain aging. Along with this improvement in the lower value, various problems described below will also be resolved.

すなわち、ダウンコイラでの750℃程度の高温巻取シ
を要せず、コイルの巻取温度を660℃以下にしても確
実に7値の向上を図ることができるいしたがって、高温
巻取りにより生じる脱スケール性、表面性状の悪化や結
晶粒の粗大化、形状不良などを抑制することができ、最
適なる冷延母材を得ることができる。
In other words, it is possible to reliably improve the value of 7 even if the coil winding temperature is lower than 660°C without requiring high-temperature winding of about 750°C in a down coiler. It is possible to suppress scaling, deterioration of surface properties, coarsening of crystal grains, poor shape, etc., and it is possible to obtain an optimal cold-rolled base material.

又、再結8焼なまし温度域(RA)は、通常集合組織の
改善を図って7値を向上し得るように、短時間内に70
0〜850℃まで昇温しているが、この発明法において
は予熱段階を新たに設けて下値を向上し得るものである
から、再結8焼なまし温度域(RA)を650〜750
℃程度まで下げることができる。このため、連続炉にお
ける燃料原単位を確実に低減できる。又、チタンの添加
や異空脱炭処理なども要せず、きわめて簡単かつ的確に
7値の向上を得ることができる。
In addition, the re-annealing temperature range (RA) is usually 70% within a short time so that the texture can be improved and the 7 value can be improved.
Although the temperature is raised to 0 to 850°C, in this invention method, a new preheating stage is provided to improve the lower temperature, so the reconsolidation 8 annealing temperature range (RA) is increased to 650 to 750°C.
It can be lowered to about ℃. Therefore, the fuel consumption rate in the continuous reactor can be reliably reduced. Moreover, there is no need for addition of titanium or different atmosphere decarburization treatment, and it is possible to obtain an improvement in the value of 7 very easily and accurately.

又、この発明の冷延鋼板は、例えば連続鋳造法又は造塊
法により製造したアルミキルド鋼冷延鋼板が対象となる
Further, the cold-rolled steel sheet of the present invention is an aluminium-killed cold-rolled steel sheet manufactured by, for example, a continuous casting method or an ingot-forming method.

この発明において、鋼の化学成分を限定したのは次の理
由による。
In this invention, the chemical composition of the steel is limited for the following reason.

炭素は、絞り性を向上させるため低い方が望ましく、炭
素が0.10チを越えると強度上昇に伴なう延性の低下
及び粗粒化による絞シ性延性の劣化が著しくなるため、
0.10%以下とした。
A lower carbon content is desirable in order to improve drawability, and if the carbon content exceeds 0.10 mm, a decrease in ductility due to increased strength and a significant deterioration in drawability due to coarse grains will occur.
It was set to 0.10% or less.

けい素は、0.20−を越えると、鋼板表面に焼なまし
時に着色し、又スケールによる表面欠陥となるため0.
20−以下がよい。
If silicon exceeds 0.20, the steel sheet surface will be colored during annealing, and surface defects due to scale will occur.
20- or less is better.

マンガンは、絞シ性を向上させるため低い方が望ましい
が、0.10%未満では赤熱脆性の危険があり、又製造
も困難である。0.40%を越えると、再結晶集合組織
が劣化し、絞シ性の著しい低下をきタスので、マンガン
は0.10〜0.4(lが好ましい。
A lower amount of manganese is desirable in order to improve the drawability, but if it is less than 0.10%, there is a risk of red heat embrittlement and manufacturing is also difficult. If it exceeds 0.40%, the recrystallized texture deteriorates and the drawability is significantly reduced, so manganese is preferably 0.10 to 0.4 (l).

りんは、0.03%を越えると、その固溶強化により延
性が低下するので、0.03S以下とする。
When phosphorus exceeds 0.03%, ductility decreases due to solid solution strengthening, so the content is set to 0.03S or less.

アルミニウムは、Aj?Nの析出に必要で、0.02%
未満では効果が少なく、0.15チを越えるとスラブ加
熱時のl’Nの固溶化が不完全となり、再結晶粒の微細
化により延性が低下するため、0.02〜0.15チと
した。
Aluminum is Aj? Necessary for N precipitation, 0.02%
If it is less than 0.15 inch, there will be little effect, and if it exceeds 0.15 inch, the solid solution of l'N will be incomplete during slab heating, and the ductility will decrease due to the refinement of recrystallized grains. did.

窒素は、伸びを向上させるためには少ない方がよいが、
0.0025%未満ではAj?Nの析出が不十分であり
、0.02%を越えると伸びが低下し、アルミニウムと
相撲ってスラブ加熱時のl’Nの固溶化が不完全となる
ため、0.0025〜0.02%とした。
It is better to have less nitrogen in order to improve elongation, but
Aj below 0.0025%? Precipitation of N is insufficient, and if it exceeds 0.02%, elongation decreases and it competes with aluminum, resulting in incomplete solid solution of l'N when heating the slab. %.

又、熱間仕上圧延後の巻取温度を600℃以下300℃
以上としたのは、600℃を越えると巻取後の冷却中に
大型のAJNが析出してしまい1本来の目的であるとこ
ろの(PreRA)での微細なAJNの析出が不可能と
なり、300℃以下では巻取時の銅帯強度が高く、巻取
が困難となり製造上の不具合を生じたシ、水冷却のため
の水量を増大または能率の低下をきたすとともに、 3
00℃以下としても絞シ性向上に対する効果は変らない
からである。
In addition, the coiling temperature after hot finish rolling should be 600℃ or less and 300℃.
The reason for this is that if the temperature exceeds 600°C, large AJN will precipitate during cooling after winding, making it impossible to precipitate fine AJN in (PreRA), which is the original purpose. ℃ or lower, the strength of the copper strip during winding is high, making winding difficult and causing manufacturing defects, increasing the amount of water for cooling, or reducing efficiency.
This is because even if the temperature is below 00°C, the effect on improving the drawing property remains the same.

又、酸洗して表面を脱、スケール処理した鋼板を、圧下
率40チ以上80%以下で冷間圧延を行なうのは、通常
の冷延鋼板と同様で成品の寸法精度、形状性の向上の他
再結晶集合組織を改善するためであシ、80%以上の圧
下は圧延全荷重が大きくなり作業性の低下、板厚精度平
担などの劣化をもたらし、又冷延鋼板として必要な板厚
精度、形状性を確保するためには40%以上の圧下率が
必要であり、又40チ以下では良好な絞υ性が得られな
いからである。
In addition, the steel plate that has been pickled to remove the surface and undergo scale treatment is cold-rolled at a rolling reduction of 40 inches or more and 80% or less, as with ordinary cold-rolled steel plates, which improves the dimensional accuracy and shape of the finished product. In addition, reduction of more than 80% increases the total rolling load, resulting in decreased workability and poor plate thickness accuracy, and also reduces the plate required for cold-rolled steel sheets. This is because a rolling reduction ratio of 40% or more is required to ensure thickness accuracy and shapeability, and good drawing properties cannot be obtained with a thickness of 40 inches or less.

〔実施例〕〔Example〕

次に、深絞シ用冷延鋼板の製造過程を例にとってこの発
明法と従来法とを比較した実施結果を第1表に示し、か
つその成品の組成と焼なまし処理条件とを併せて示した
Next, Table 1 shows the results of a comparison between the method of this invention and the conventional method, taking the manufacturing process of cold-rolled steel sheets for deep drawing as an example, and also shows the composition of the product and annealing treatment conditions. Indicated.

すなわち、上記第1表よシ、この発明の試料属1〜屋3
は、従来法の試料A4 、A5に比べて、引張強さは大
差ないが、いずれも7値を大幅に向上することができた
。これにより、成形性がすぐれた深絞り用冷延鋼板が得
られることがわかる。
That is, according to Table 1 above, samples 1 to 3 of this invention
Compared to samples A4 and A5 of the conventional method, the tensile strength was not much different, but both were able to significantly improve the 7 value. It can be seen that this results in a cold-rolled steel sheet for deep drawing with excellent formability.

この発明は上記のごとく、連続節なまし法において高温
度まで急熱せずに、予熱過程を有する再結晶焼なまし処
理を施すことによシ、アルミキルド鋼の深絞シ用冷延鋼
板の製造に最も適した再結晶焼なましとなり、成形性が
すぐれ、深絞り用の冷延鋼板を容易に製造できるもので
ある。
As described above, this invention produces cold-rolled steel sheets for deep drawing of aluminium-killed steel by performing recrystallization annealing treatment with a preheating process without rapidly heating to high temperatures in the continuous annealing method. It is the most suitable recrystallization annealing method, has excellent formability, and can easily produce cold-rolled steel sheets for deep drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の再結晶焼なまし過程のヒートパター
ンを示す図表である。 Pre几A・・・・・・焼なまし予熱温度域、RA・・
・・・、再結晶焼なまし温度域、OA・・・・・・過時
効処理温度域、la・・・・この発明法の再結晶焼なま
し過程におけるヒートパターンの曲線例、1b・・・・
従来法の再結晶焼なまし過程におけるヒートパターンの
曲線例。
FIG. 1 is a chart showing the heat pattern of the recrystallization annealing process of the present invention. Pre-A...Annealing preheating temperature range, RA...
..., Recrystallization annealing temperature range, OA... Overaging treatment temperature range, la... Curve example of heat pattern in the recrystallization annealing process of this invention method, 1b...・・・
An example of a heat pattern curve in the conventional recrystallization annealing process.

Claims (1)

【特許請求の範囲】[Claims] 炭素o、ios以下、けい素0.20%以下、マンガン
0.10〜0.40%、りん0.03%以下、アルミニ
ウム0.02〜0.15チ、窒素0.0025〜0.0
20%、残部は実質的に鉄及び不可避的不純物よりなる
鋼を通常の熱間圧延を施して600°C以下300°C
以上の温度でコイルに巻取シ、酸洗後圧工率401以上
80チ以下で冷間圧延を行った後、350°C以上再結
晶温度以下の温度域に10〜60秒予熱保持し、引続き
再結晶温度以上800°C以下の温度域に短時間保持し
て再結晶部なましを行い1次いで250〜450°Cの
温度域で過時効処理を施すことを特徴とする成形性のす
ぐれた深絞り用冷延鋼板の製造法。
Carbon o, ios or less, silicon 0.20% or less, manganese 0.10-0.40%, phosphorus 0.03% or less, aluminum 0.02-0.15%, nitrogen 0.0025-0.0
20%, the balance being substantially iron and unavoidable impurities, is subjected to normal hot rolling to a temperature of 600°C or less and 300°C.
After winding into a coil at the above temperature, cold rolling at a rolling ratio of 401 to 80 inches after pickling, preheating and holding for 10 to 60 seconds at a temperature range of 350 ° C or more and below the recrystallization temperature, Excellent formability characterized by subsequent holding for a short time in a temperature range above the recrystallization temperature and below 800°C to annealing the recrystallized part, and then overaging in a temperature range of 250 to 450°C. A manufacturing method for cold-rolled steel sheets for deep drawing.
JP16299783A 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability Pending JPS5974234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16299783A JPS5974234A (en) 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16299783A JPS5974234A (en) 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55094336A Division JPS593527B2 (en) 1980-07-09 1980-07-09 Manufacturing method of cold-rolled steel sheet for deep drawing with excellent formability

Publications (1)

Publication Number Publication Date
JPS5974234A true JPS5974234A (en) 1984-04-26

Family

ID=15765232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16299783A Pending JPS5974234A (en) 1983-09-05 1983-09-05 Production of cold-rolled steel sheet for deep drawing having excellent formability

Country Status (1)

Country Link
JP (1) JPS5974234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64221A (en) * 1987-04-10 1989-01-05 Signode Corp Method for continuously treating cold-rolled carbon-manganese steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927422A (en) * 1972-07-10 1974-03-11
JPS593527A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Input/output device device number setting and display method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927422A (en) * 1972-07-10 1974-03-11
JPS593527A (en) * 1982-06-30 1984-01-10 Fujitsu Ltd Input/output device device number setting and display method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64221A (en) * 1987-04-10 1989-01-05 Signode Corp Method for continuously treating cold-rolled carbon-manganese steel

Similar Documents

Publication Publication Date Title
JPS6116323B2 (en)
JPS5974237A (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS5974234A (en) Production of cold-rolled steel sheet for deep drawing having excellent formability
JP3194120B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing
JPS6114216B2 (en)
JPS5974236A (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH06240358A (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPS5858413B2 (en) Manufacturing method for high-tensile galvanized steel sheets with excellent formability
JP2807994B2 (en) Manufacturing method of cold rolled steel sheet for deep printing
JPH02415B2 (en)
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPS593527B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent formability
JPS5974235A (en) Production of cold-rolled steel sheet for deep drawing having excellent formability
JP2001073074A (en) Soft cold rolled steel sheet excellent in flattening degree and its production
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH01188630A (en) Method for producing cold-rolled steel sheets with excellent press formability
JPS5857491B2 (en) Method for producing thermosetting cold-rolled steel sheet for deep drawing
CN115287429A (en) Method for producing cold-rolled low-carbon steel and cold-rolled low-carbon steel
JPS5956528A (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH0639622B2 (en) Method for producing soft cold-rolled steel sheet by continuous annealing excellent in deep drawability and non-aging at room temperature