[go: up one dir, main page]

JPS5971005A - Forming method of optical waveguide - Google Patents

Forming method of optical waveguide

Info

Publication number
JPS5971005A
JPS5971005A JP57182646A JP18264682A JPS5971005A JP S5971005 A JPS5971005 A JP S5971005A JP 57182646 A JP57182646 A JP 57182646A JP 18264682 A JP18264682 A JP 18264682A JP S5971005 A JPS5971005 A JP S5971005A
Authority
JP
Japan
Prior art keywords
substrate
waveguide
optical waveguide
ion
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57182646A
Other languages
Japanese (ja)
Other versions
JPH0711608B2 (en
Inventor
Mamoru Miyawaki
守 宮脇
Shigetaro Ogura
小倉 繁太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57182646A priority Critical patent/JPH0711608B2/en
Publication of JPS5971005A publication Critical patent/JPS5971005A/en
Publication of JPH0711608B2 publication Critical patent/JPH0711608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To diffuse an ion in a substrate and to form an optical waveguide by applying heat to a solid material contg. a seed ion to be diffused on a substrate. CONSTITUTION:Mg(NO3)26H2O, C6H5COOH, etc. are placed on a substrate 1 of a ferrodielectric crystal having an excellent piezoelectric property such as LiNbO3 or glass such as BK7, and a uniform luminous flux 2 is irradiated onto the same from a laser light source 3, a beam splitter 6 and a lens 4. The surface on the substrate 1 is locally heated by the flux 12, and an ion exchange progresses thereon, then the refractive index near the surface increases and a waveguide is formed. The rate of generating harmful gas is suppressed low as compared with the case of heating the entire part. When the refractive index on the surface changes, the reflectivity and transmittance on the substrate surface of the flux 12 change and therefore if the fluctuation in the light intensity is observed with a detector, the state of the waveguide at the point of that time is monitored.

Description

【発明の詳細な説明】 本発明は元合成何元分波および光偏向等の機能を有する
光回路用の導波路の作成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a waveguide for an optical circuit having functions such as elemental synthesis, multi-element demultiplexing, and optical deflection.

従来、圧電性のすぐれた導波路基板として、強にTi膜
を電子銃又はスパッタリング等の方法で形成し、さらに
熱炉中で1000℃近辺で数時間処理し、厚の導波路を
形成する。しかし、上記導波路作筆た にあっては、1000℃近辺の高温処理工程が含まれ凸 ていること1又1上記導波路に対する入力元強度が1〜
2mW(波長0.6328μm)時)を越えると、導波
路に光学損傷が生じる( R,L、Ho1rnan、 
Appl。
Conventionally, as a waveguide substrate with excellent piezoelectricity, a strong Ti film is formed using a method such as an electron gun or sputtering, and then treated in a thermal furnace at around 1000° C. for several hours to form a thick waveguide. However, in the production of the above-mentioned waveguide, a high-temperature treatment process at around 1000°C is involved, and the input source strength to the above-mentioned waveguide is 1 to 1.
If it exceeds 2 mW (at wavelength 0.6328 μm), optical damage will occur in the waveguide (R, L, Ho1rnan,
Appl.

Pbys、Letl 、32,280(1978))と
いう欠点を有していた。
Pbys, Letl, 32, 280 (1978)).

一方)上記導波路の光学損傷を低減させる方法として、
200℃〜400℃程度に加熱した強酸もしくは、水酸
化物もしくは、溶融塩中に基板を浸すものがある。(J
、Jackel、 Appl、Pbys、 14.tJ
、 37 。
On the other hand) as a method to reduce the optical damage of the above waveguide,
There are methods in which the substrate is immersed in a strong acid, hydroxide, or molten salt heated to about 200°C to 400°C. (J
, Jackel, Appl, Pbys, 14. tJ
, 37.

739 、 (1980)) 例えば溶融塩としては、TlNOx 、 AgN0++
等があげられるが、基板を溶融塩に完全に浸す必要のた
め、加熱によシ有害性ガスNOz等が大量に発生すると
いう問題点を有していた。
739, (1980)) For example, as the molten salt, TlNOx, AgN0++
However, since it is necessary to completely immerse the substrate in the molten salt, there is a problem in that a large amount of harmful gases such as NOz are generated due to heating.

本発明の目的は、上述した従来の光導波路の作成方法に
伴う欠点を除去した、新たなる光導波路の作成方法を提
供することにある。
An object of the present invention is to provide a new optical waveguide manufacturing method that eliminates the drawbacks associated with the conventional optical waveguide manufacturing methods described above.

本発明に係る光導波路作成方法においては、導波路を形
成すべき基板上に拡散すべきイオン種を含む固体材料を
設け、該固体材料に熱を与えることによりイオンを基板
内に拡散させて光導波路を形成するものである。
In the optical waveguide manufacturing method according to the present invention, a solid material containing ion species to be diffused is provided on a substrate on which a waveguide is to be formed, and the ions are diffused into the substrate by applying heat to the solid material to guide the optical waveguide. It forms a wave path.

前記熱を与える手段としては、例えばレーザビーム等の
光照射が最も簡便である。更に固体材料を溶かせる為の
熱を与える前に、基板全体を予備的に加熱して、成る一
定の温度、もちろんイオン種が溶解しない温度まで上昇
させておくと、効率良(光導波路が作成できる。
The simplest means for applying the heat is, for example, light irradiation such as a laser beam. Furthermore, before applying heat to melt the solid material, it is better to preheat the entire substrate to a certain temperature, of course to a temperature at which the ion species do not dissolve (the optical waveguide can be created). can.

本発明の光導波路作成方法においては、作成工夫の少な
い光導電波路を形成することが可能である。以下、本発
明に関して詳述する。
In the optical waveguide fabrication method of the present invention, it is possible to form a photoconductive waveguide with few fabrication techniques. The present invention will be explained in detail below.

第1図において、1はその表面に光導波路が形成される
基板、2はイオン種を形成する固体材料で、前記基板1
の上に設けられる。基板1としては、圧電性のすぐれた
強誘電体結晶であるLiNb0g。
In FIG. 1, 1 is a substrate on which an optical waveguide is formed, 2 is a solid material that forms ion species, and the substrate 1
is installed on top of the The substrate 1 is LiNb0g, which is a ferroelectric crystal with excellent piezoelectricity.

LiTa0a  結晶やBK7等のガラスでも良い。2
とL テill: Mg(NOs ) +B5HzO、
CaHsCOOI4 、 TlNOs 、 AgNOs
LiTa0a crystal or glass such as BK7 may also be used. 2
and L till: Mg(NOs) +B5HzO,
CaHsCOOI4, TlNOs, AgNOs
.

IGNOs 、 NaN0a  等があげられる。Examples include IGNOs, NaN0a, etc.

第2図は本発明に係る方式の一実施例を示す図で、6は
レーザー光源、4及び5はレンズ、6はビームスプリッ
タ−17及び8は光検出器、9は加熱炉、10は炉9に
あけられた光に対する窓である。前記光源としては、基
板材料に対して吸収性の高い波長のレーザーが望ましく
、例えばArgHe−Ne 、 YAG 、 C02v
−ザー等があげられる。
FIG. 2 is a diagram showing an embodiment of the method according to the present invention, in which 6 is a laser light source, 4 and 5 are lenses, 6 is a beam splitter, 17 and 8 are photodetectors, 9 is a heating furnace, and 10 is a furnace. It is a window for light opened at 9. The light source is preferably a laser with a wavelength that is highly absorbent to the substrate material, such as ArgHe-Ne, YAG, C02v.
- Ther etc. can be mentioned.

レーザー光源6から出射した光線11は、ビームスグリ
ツタ−6を通シ、レンズ4にょし一様な強度をもつ光束
12に拡大される。光束12は、拡散種を含む固体2を
上積した基板10表表面体に照射され、固体2が融解す
ると、光束12の一部は反射し又、その一部は透過する
。反射光はレンズ4の方へ戻り、ビームスプリッタ−6
で検出器7へ導かれる。一方、基板を透過した光束はレ
ンズ5でしぼられ検出器8へ入射する。
A beam 11 emitted from a laser light source 6 passes through a beam sinter 6 and is expanded into a beam 12 having uniform intensity by a lens 4. The light beam 12 is irradiated onto the surface of the substrate 10 on which the solid 2 containing the diffused species is stacked, and when the solid 2 melts, a part of the light beam 12 is reflected and a part is transmitted. The reflected light returns to lens 4 and beam splitter 6
is guided to the detector 7. On the other hand, the light beam transmitted through the substrate is squeezed by the lens 5 and enters the detector 8.

基板10表面は、光束12にょシ局所的に加熱され)イ
オン交換が進み、懺面近傍の屈折率が増大して導波路が
形成される。有害性ガスの発生率は)基板全体を加熱す
る場合に比べて低(おさえられる。又、熱バイアスとし
て、炉9によシあらかじめ適度に熱することを併用して
も差しつかえない。Ail記原理により表面の屈折率が
変化すると、光束120基板弐面上での反射率および透
過率が変化するので、検出器7もしくは8で光強度の変
動を観測すれば、その時点での導波路の状態がモニター
できる。
The surface of the substrate 10 is locally heated by the light beam 12), ion exchange progresses, the refractive index near the surface increases, and a waveguide is formed. The rate of generation of harmful gases is lower than that in the case of heating the entire substrate.Also, as a thermal bias, it is okay to heat the furnace 9 appropriately in advance. According to the principle, when the refractive index of the surface changes, the reflectance and transmittance on the second surface of the light beam 120 substrate change, so if the fluctuation of the light intensity is observed with the detector 7 or 8, the state of the waveguide at that point can be determined. can be monitored.

以上の方法によシ所定の導波路厚のグラナ−型の導波路
が作製できる。
By the above method, a Granar type waveguide having a predetermined waveguide thickness can be manufactured.

を 次に本発明お実施例によシ詳細に説明するが、本発明は
この実施例に限定されるものではない。
Next, the present invention will be explained in detail with reference to embodiments, but the present invention is not limited to these embodiments.

実施例1 第2図を参照し、X −cut LiNb0i単結晶の
y−2面を面精度がニュートリング数本以内に収まるよ
う両面研摩した。基板の寸法はy、z方向でそれぞれ1
インチ、1/2インチで厚さは1mmであった。研摩後
基板を超音波洗浄した後にエタノール蒸気中で充分乾燥
し、この上にTlN0aの粉体な約2g基板上面に一様
にドクターブレードによシ上積した。この上積した基板
を低温加熱炉中にセットし約100℃の温度に昇温し炉
の窓からCowレーザー元(出力2Qwatt)をSi
レンズによシ基板全う 面に光が当るように調整したとこる数分以内で基板上に
上積したTA!NOsが融け、この状態でCOsレーザ
ー光を約60分間照射することによりeイオンの内部拡
散によυ基板上にTEoモードの導波路が形成できた。
Example 1 Referring to FIG. 2, both sides of the y-2 plane of an X-cut LiNb0i single crystal were polished so that the surface accuracy was within a few Neutlings. The dimensions of the board are 1 in each of the y and z directions.
inch, 1/2 inch, and the thickness was 1 mm. After polishing, the substrate was ultrasonically cleaned, thoroughly dried in ethanol vapor, and about 2 g of TlN0a powder was evenly deposited on the top surface of the substrate using a doctor blade. The stacked substrates were placed in a low-temperature heating furnace, heated to approximately 100°C, and a Cow laser source (output 2 Qwatts) was applied to the silicon through the furnace window.
After adjusting the lens so that the light hits the entire surface of the board, the TA was piled up on the board within a few minutes! NOs was melted, and a COs laser beam was irradiated for about 60 minutes in this state to form a TEo mode waveguide on the υ substrate due to internal diffusion of e ions.

プリズムカップリング法によシ作成した導波路の伝播損
失を測定したところ、1.Odb/cmの値を得た。又
ブ0学損傷の閾値向上に関しても50チの向上が観測さ
れ、本発明による導波路作成が従来法によシ優れている
ことが判明した。
When we measured the propagation loss of the waveguide created by the prism coupling method, we found that: 1. Values in Odb/cm were obtained. Furthermore, an improvement of 50 degrees was observed in terms of the threshold value for optical damage, indicating that the waveguide fabrication method according to the present invention is superior to the conventional method.

以上説明したように、本発明による光導波路作禍 製方法によ、!lll光学損傷の少ないかつ光伝搬損失
の低い光導波路が可能になるばかりでな(、従来の高温
に熱した融液中に基板を浸たし作製する方法に較べて、
低温処理が可能になシ、有害性ガスの発生率も抑制でき
る。
As explained above, the method for fabricating an optical waveguide according to the present invention! This not only makes it possible to create an optical waveguide with less optical damage and lower optical propagation loss (compared to the conventional method of fabricating a substrate by immersing it in a melt heated to a high temperature),
Low-temperature processing is possible, and the generation rate of harmful gases can also be suppressed.

又、導波路作製時に導波路の状態をモニターできるため
、励起するモードの数を制御することや弾性!(1m波
との相互作用を強(する導波路厚に卸制御することも可
能である。
In addition, since the state of the waveguide can be monitored during waveguide fabrication, it is possible to control the number of excited modes and improve elasticity! (It is also possible to control the waveguide thickness so that the interaction with the 1 m wave is strong.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明に係る光導波路の作成方法
の一実施例を示す為の図。 1・・・・・基板、2・・・・・拡散イオン種を含む固
体16・・・・・光源、4.5・・e・拳レンズ、6Φ
・・・Φビームスグリツター17,8@・・・・光検出
器、9・・・会・加熱炉、10・・・・・窓、11,1
2・・・・・光束。 出願人 キャノン株式会社 殻・r′、′−; 84 酬 第2ρ 19−
FIGS. 1 and 2 are diagrams illustrating an embodiment of a method for producing an optical waveguide according to the present invention. 1...Substrate, 2...Solid containing diffused ionic species 16...Light source, 4.5...e-fist lens, 6Φ
...Φ Beam Gritter 17,8@...Photodetector, 9...Member/Heating Furnace, 10...Window, 11,1
2... Luminous flux. Applicant Canon Co., Ltd. shell r','-; 84 Fee No. 2ρ 19-

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に拡散すべきイオン種を形成する固体を設
け、該イオン種が基板内に拡散するだけの熱を与えるこ
とによシ光導波路を形成することを特徴とする光導波路
の作成方法。
(1) Creation of an optical waveguide characterized in that an optical waveguide is formed by providing a solid that forms ionic species to be diffused on a substrate and applying enough heat to diffuse the ionic species into the substrate. Method.
(2)前記イオン種に光を照射して、イオン種を基板内
に拡散させる特許請求の範囲第1項記載の光導波路の作
成方法。
(2) The method for producing an optical waveguide according to claim 1, wherein the ion species are irradiated with light to diffuse the ion species into the substrate.
JP57182646A 1982-10-18 1982-10-18 How to create an optical waveguide Expired - Lifetime JPH0711608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57182646A JPH0711608B2 (en) 1982-10-18 1982-10-18 How to create an optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57182646A JPH0711608B2 (en) 1982-10-18 1982-10-18 How to create an optical waveguide

Publications (2)

Publication Number Publication Date
JPS5971005A true JPS5971005A (en) 1984-04-21
JPH0711608B2 JPH0711608B2 (en) 1995-02-08

Family

ID=16121940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57182646A Expired - Lifetime JPH0711608B2 (en) 1982-10-18 1982-10-18 How to create an optical waveguide

Country Status (1)

Country Link
JP (1) JPH0711608B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894447A (en) * 1972-03-13 1973-12-05
JPS54161350A (en) * 1978-06-10 1979-12-20 Nippon Telegr & Teleph Corp <Ntt> Production of thin film optical element
JPS5627848A (en) * 1979-08-10 1981-03-18 Mitsubishi Electric Corp Balanced air circulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4894447A (en) * 1972-03-13 1973-12-05
JPS54161350A (en) * 1978-06-10 1979-12-20 Nippon Telegr & Teleph Corp <Ntt> Production of thin film optical element
JPS5627848A (en) * 1979-08-10 1981-03-18 Mitsubishi Electric Corp Balanced air circulator

Also Published As

Publication number Publication date
JPH0711608B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JPH02501864A (en) Optical waveguide manufacturing method and its products
JPS6353729A (en) Integrated optical head
US4799750A (en) Optical function element and a method for manufacturing the same
US4793675A (en) Element having light waveguides and method of making same
US20200348578A1 (en) Optical wavelength converter and method for manufacturing optical wavelength converter
US5313543A (en) Second-harmonic generation device and method of producing the same and second-harmonic generation apparatus and method of producing the same
US6999668B2 (en) Method for manufacturing optical waveguide device, optical waveguide device, and coherent light source and optical apparatus using the optical waveguide device
JPH077135B2 (en) Optical waveguide, optical wavelength conversion element, and method for manufacturing short wavelength laser light source
JPS5971005A (en) Forming method of optical waveguide
JPS6151776B2 (en)
JPS59165008A (en) Formation of optical waveguide
JPS60133405A (en) Formation of pattern
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
RU2064686C1 (en) Method of making device for introduction of radiation into optical waveguide
JPS6170507A (en) Production for thin film optical element
JPS6145202A (en) optical waveguide
JP2000047277A (en) Second harmonic generating element
JPH11271552A (en) Operating point control method for optical waveguide device
JP2002341393A (en) Manufacturing method for optical waveguide device
JPS59171908A (en) Forming method of thin film optical structure
JPS5991404A (en) Thin film optical waveguide and its manufacture
JPS6170539A (en) Thin film type optical element and its manufacture
JPS6159403A (en) Manufacture of optical waveguide lens
JPS60133406A (en) Formation of pattern
JPH07109444B2 (en) Method of manufacturing waveguide type planar optical circuit