[go: up one dir, main page]

JPS5967407A - Processing device for signal of engine rotational angle sensor - Google Patents

Processing device for signal of engine rotational angle sensor

Info

Publication number
JPS5967407A
JPS5967407A JP17737882A JP17737882A JPS5967407A JP S5967407 A JPS5967407 A JP S5967407A JP 17737882 A JP17737882 A JP 17737882A JP 17737882 A JP17737882 A JP 17737882A JP S5967407 A JPS5967407 A JP S5967407A
Authority
JP
Japan
Prior art keywords
signal
reference position
interrupt
ref
rotation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17737882A
Other languages
Japanese (ja)
Other versions
JPH0242163B2 (en
Inventor
Shuji Nishiyama
西山 周二
Takao Akatsuka
赤塚 隆夫
Minoru Bito
尾藤 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP17737882A priority Critical patent/JPS5967407A/en
Publication of JPS5967407A publication Critical patent/JPS5967407A/en
Publication of JPH0242163B2 publication Critical patent/JPH0242163B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To enable the prevention of a false operation even when an interrupt process is made to stand by a method wherein a timing at which a reference position signal is latched and delivered to CPU is determined according to a rotational angle signal delivered after a time when the reference position signal is actually generated. CONSTITUTION:The titled device comprises D type FF81 for memorizing the generation of a reference position (REF) signal, FF82 taking in an output Q1 of said FF81 at the timing of the subsequent rotational angle (CA) signal, and a NAND gate 83 clearing FF81 at an input stage when an output Q2 of FF82 reaches an H level while the CA signal continues. Since CPU takes only the Q2 output of a latch 8 into account, CPU10 generates no REF signal practically until a 0-th CA signal is generated. Therefore, even when on n+1-th CA interrupt is made to stand by a time passing over the timing whereat the REF signal is generated, said interrupt is never misread as the 0-th CA signal. As the result, a false operation of misreading the CA signal as the REF signal can be prevented even when the interrupt process of the CA signal is made to stand by.

Description

【発明の詳細な説明】 本発明は、フーンジン回転角の基準位置を安定して検出
するセンザ濡号の処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sensor signal processing device that stably detects a reference position of a rotation angle.

マイクロプロセッサ使用のエンジン制御システムではエ
ンジン回転角センサ(CAセンサ)が不可欠である。こ
のセンサはエンジン回転数および回転位置を示す回転角
信号(CA倍信号と、制御の開始位置を示す基準位置信
号(REF信号)を8 ’4E する。CAセセンには
各種の方式があるが、エンジンの回転に伴なう磁束変化
を利用する磁気検知方式が一般的である。第1図はこの
説明図で、■はクランク軸、2および3は該軸に取付け
られた有歯ロータ、4および5はロータ2および3の回
転に伴う磁束変化を電圧変化に変換する検出コイルであ
る。これらのロータおよびコイルがセンリ゛を構成し、
コイル4の出力が第2図(alに示ずREF信号、コイ
ル5の出力がfblに示すCA倍信号なる。実際には(
δ1. (blの波形を整形したtc+、 (diのパ
ルスをREF信号およびCA倍信号して用いる。
An engine rotation angle sensor (CA sensor) is essential in an engine control system using a microprocessor. This sensor generates a rotation angle signal (CA double signal) indicating the engine speed and rotational position, and a reference position signal (REF signal) indicating the control start position.There are various methods for CA sensor, but A magnetic detection method that utilizes changes in magnetic flux as the engine rotates is common.Figure 1 is an explanatory diagram of this system, where ■ is a crankshaft, 2 and 3 are toothed rotors attached to the shaft, and 4 and 5 are detection coils that convert magnetic flux changes accompanying the rotation of rotors 2 and 3 into voltage changes.These rotors and coils constitute a sensor,
The output of coil 4 is the REF signal shown in Fig. 2 (al), and the output of coil 5 is the CA multiplied signal shown in fbl.Actually, (
δ1. (tc+ which shaped the waveform of bl, (di pulse is used as REF signal and CA multiplied signal.

ロータ2に2箇所だけ歯2aを設りた場合、REF信号
はクランク角360°に1回発生ずる。
When the rotor 2 is provided with teeth 2a at only two locations, the REF signal is generated once every 360 degrees of crank angle.

これに対しロータ3には複数の歯3aが等角度で設LJ
られるので、i′Ji3aを24個設番ノた場合にCA
倍信号30°に1回の割合いで発生ずる。一般にREF
信号をそのまま基準位置として用いることはしない。こ
れはロータ2,3を軸Iに取付ける際の相対位置精度が
良くないためである。その代りに通電はRE F信号の
直後のCA倍信号基準位置とする。車両ではこの基準位
置が特定気筒の」−死点位置に対し一定角度となるよう
にセンサを装着する。REF信号を直接基準位置として
用いないとしても、通電の取りイ」り方法ではロータ2
の歯2aかロータ3の隣接する歯3a、3aの中間に位
置するように設定する。しかし、この場合も一定の取イ
λjり公差(たとえば±8°)が認められるので、υi
2aと3aの間が15°であるとは限らない。
On the other hand, the rotor 3 has a plurality of teeth 3a arranged at equal angles LJ.
Therefore, if 24 i'Ji3a are installed, CA
The double signal occurs once every 30 degrees. Generally REF
The signal is not used as it is as a reference position. This is because the relative position accuracy when attaching the rotors 2 and 3 to the shaft I is not good. Instead, the current is applied to the CA double signal reference position immediately after the REF signal. In a vehicle, the sensor is mounted so that this reference position is at a constant angle with respect to the dead center position of the specific cylinder. Even if the REF signal is not used directly as a reference position, the current energization method is suitable for rotor 2.
The tooth 2a of the rotor 3 is set to be located between the adjacent teeth 3a, 3a of the rotor 3. However, in this case as well, a certain tolerance λj is allowed (for example, ±8°), so υi
The angle between 2a and 3a is not necessarily 15°.

第3図はこのようなRE F信号およびCA倍信号ら基
準位置を求める従来の信号処理装置で、6゜7は検出コ
イル4.5に誘起される電圧波形を基準電圧refl+
 ref2で整形するコンパレーク、8はコンパレータ
6の出力REFでセットされるラッチ、9はコンパレー
タ7の出力CAでセットされる割込めフラグ、10はラ
ッチ8とフラグ9の内容から基準位置を求めるCPU 
(中央処理装置)である。第4図は動作を示すタイムヂ
ャ−1・で、CA倍信号イ」した番号・・・・・・n、
n4−1.0.1゜2・・・・・・は、基準位置を0と
した各CAの番号(CA−No)である。このCA−N
oはCPUl0内のソフトカウンタでイ」ずことができ
る。cpui。
Fig. 3 shows a conventional signal processing device that calculates a reference position from the RE F signal and the CA multiplied signal.
A comparator for shaping with ref2, 8 a latch set by the output REF of the comparator 6, 9 an interrupt flag set by the output CA of the comparator 7, 10 a CPU that calculates the reference position from the contents of the latch 8 and flag 9.
(Central processing unit). Figure 4 shows the timer 1, which shows the operation, and the number of the CA double signal is ``n'',
n4-1.0.1°2... is the number (CA-No) of each CA with the reference position being 0. This CA-N
o can be initialized using a soft counter in CPU10. cpui.

は割込みフラグ9がセットされた場合、それを■のタイ
ミングでクリアする。またラッチ8の内容は上記割込め
処理プログラムで監視しセソ1−されていれば■のタイ
ミングでクリアする。第5図はCA割込みの処理フロー
である。
When the interrupt flag 9 is set, it is cleared at the timing of ■. Further, the contents of the latch 8 are monitored by the above-mentioned interrupt processing program, and if it is set to 1-, it is cleared at the timing (2). FIG. 5 is a processing flow of CA interrupt.

かかる信号処理装置で、■REF位置のCA位置に対す
る相対精度が悪く、■他の割込み処理中にCA割込みが
発生しても前者の処理が完了するまで待機さゼられる、
■エンジン高回転時、という悪条件が重なると誤動作す
ることがある。これを第6図で説明する。同図は(n+
1)番目のCA倍信号REF信号の間が製造公差(±8
°)のJ&悪Mfテ] 5°−8°−7°に狭められた
場合を例としている。角度差が30°のCA倍信号時間
間1ζ?Aは回転数により異なり、0000rpmでは
833μsに短縮されるので、7°は190μsに相当
する。CPtJIOが他の割込め処理中に(n+1)番
目のCA倍信号発生ずると、CPU 10がそのフラグ
を見ることができるのは該他の割込み処理を終了した後
となる。このため他の割込み処理に例えば200μs要
すると、CA割込めを処理する前に既にREF信号が発
生し、r2 F、 Fう・ノチ8がセノ1−されている
。1ノLっで、CP U 10は(n→−1)番目のC
A倍信号、REF信号が発生した後のCへ信号(正電で
あればO番目)と見なしてしまうことになる。この誤動
作は角度制御に30゜の誤差を与える。
In such a signal processing device, (1) the relative accuracy of the REF position with respect to the CA position is poor; (2) even if a CA interrupt occurs during processing of another interrupt, it will wait until the processing of the former is completed;
■ Malfunctions may occur under adverse conditions such as when the engine is running at high speeds. This will be explained with reference to FIG. The figure shows (n+
1) The manufacturing tolerance (±8
)'s J & Bad Mf Te] The case where the angle is narrowed to 5° - 8° - 7° is taken as an example. CA multiplication signal time 1ζ with angle difference of 30°? A varies depending on the rotation speed, and is shortened to 833 μs at 0000 rpm, so 7° corresponds to 190 μs. If CPtJIO generates the (n+1)th CA multiplication signal while processing another interrupt, the CPU 10 can see the flag only after completing the other interrupt processing. For this reason, if processing other interrupts takes 200 μs, for example, the REF signal is already generated before processing the CA interrupt, and r2F, F8 is senored. In 1 L, CPU 10 is the (n→-1)th C
It will be regarded as the signal to C after the A-fold signal and the REF signal are generated (if it is positive, it will be the O-th signal). This malfunction causes a 30° error in angle control.

本発明は、REF信号に対するランチ回路を改良して」
二連した誤動作を防止しようとするものであり、その特
徴とするところはエンジン回転角センサから得られる回
転角信号で中央処理装置に割込みをかLJ、また該セン
サから得られる基準位置信号でランチ回路をセソl−L
、そして該中央処理装置による該回転角信号の割込み処
理時に該ラッチ回路から該基準位置信号のランチ出力が
生じていると判断されたときは、該別込みをかけた回転
角信号位置をエンジン回転角の基準位置とみなす信号処
理装置において、該ランチ回路が、核晶/−(へ位置信
号の発生を記憶する第1の回路と、該第1の回路の出力
を該基準位置信号発生後の所定の回転角信号に同期して
該中央処理装置側に出力する第2の回路とを備える点に
ある。
The present invention improves the launch circuit for the REF signal.
This is intended to prevent double malfunctions, and its characteristics are that the rotation angle signal obtained from the engine rotation angle sensor is used to interrupt the central processing unit, and the reference position signal obtained from the sensor is used to interrupt the central processing unit. Separate the circuit L-L
, and when it is determined that a launch output of the reference position signal is generated from the latch circuit during interrupt processing of the rotation angle signal by the central processing unit, the rotation angle signal position to which the separation is applied is set to the engine rotation. In a signal processing device that is regarded as a reference position of a corner, the launch circuit includes a first circuit that stores the generation of a position signal for the nucleus /-(; The present invention also includes a second circuit that outputs an output to the central processing unit in synchronization with a predetermined rotation angle signal.

第7図は本発明の原理説明図である。本発明ではREF
信号のランチタイミングを、REF信号の実際の発生時
点でなくその直後のCA倍信号発生時点まで遅らせる。
FIG. 7 is a diagram explaining the principle of the present invention. In the present invention, REF
The launch timing of the signal is delayed not to the actual generation time of the REF signal but to the generation time of the CA multiplied signal immediately thereafter.

同図の(C1はREF信号の発生時点でラッチする従来
の方式であるが、本発明−では(diのようにする。こ
のようにすると、(n+1)番目のCA割込みが他の割
込み処理によって待機させられていても(破線で示す)
、REF信号がラッチされるO番目のCA倍信号発生ず
る時点までには(n+1)番目OCA割込みは処理され
ているので、REF信号がラッチされた直後のCA倍信
号必ず0番目になる。
(C1 in the figure is a conventional method of latching at the time of generation of the REF signal, but in the present invention, it is changed to (di). In this way, the (n+1)th CA interrupt is processed by another interrupt process. Even if you are kept on standby (indicated by the dashed line)
, the (n+1)th OCA interrupt has been processed by the time the Oth CA multiplied signal is generated and the REF signal is latched, so the CA multiplied signal immediately after the REF signal is latched is always the zeroth CA multiplied signal.

次に第8図を参照して本発明の一実施例を説明する。同
図は第3図中゛ζ改良されるランチ8部分だりを示した
ものである。本例のラッチ8はIテEF信号の発生を記
イ意するためのDタイプフリップフロップ(第1の回1
za)81と、フリップフロップ81の出力Q+を次の
CA信月(ここでは0番目を考える)のタイミングで取
り込むDタイプのフリップフロップ(第2の回路)82
と、該CΔ他信号存続する期間にフリップフロップ82
の出力Q2(ラッチ出力)が)lレヘルとなったら入力
段のフリップフロップ81をクリア(CLR+)するナ
ントゲート83からなる。第9図はタイムチャートであ
る。CPLIIOはこのラッチ8のQ2出力だ4Jを見
る(Q+小出力見ない)ので、0番目のcA(g号が発
生ずるまではCPUl0にとってREF信号は発生して
いないに等しい。このため第6図の例のように実際にR
EF信号が発生ずるタイミングを越える時刻まで(n+
1)番目のCA割込みが待機させられていても、これを
0番目のCA倍信号みなず心配はない。
Next, an embodiment of the present invention will be described with reference to FIG. This figure shows the 8 portions of the lunch that are improved in Fig. 3. The latch 8 in this example is a D-type flip-flop (the first
za) 81 and a D-type flip-flop (second circuit) 82 that takes in the output Q+ of the flip-flop 81 at the timing of the next CA Shingetsu (here, consider the 0th circuit).
, the flip-flop 82 is activated during the period when the CΔ other signal remains
It consists of a Nant gate 83 that clears (CLR+) the flip-flop 81 at the input stage when the output Q2 (latch output) becomes )l level. FIG. 9 is a time chart. Since CPLIIO sees 4J, which is the Q2 output of latch 8 (it does not see Q+ small output), it is equivalent to the REF signal not being generated for CPU10 until the 0th cA (g) is generated. Therefore, as shown in FIG. Actually R as in the example
Until the time exceeding the timing at which the EF signal is generated (n+
1) Even if the th CA interrupt is put on standby, there is no need to worry as it is treated as the 0th CA multiplication signal.

尚、フリップフロップ82の出力Q 2 = Hが1番
目以降のC人別込み時にも残存していることばなγまし
くない(誤動作する)。第8図の例で02は、前段の出
力Q + = Lを受けて1番目OCA信号のタイミン
グでQ 2 = Lになる。このため1番目のCA倍信
号割込み処理時にQ 2 = Hとみなされれば誤動作
となる。しかし、フリップフロップ82のQ2出力が■
(からLへ切換わるのは速く (数10nsオーダ)、
これに対しCPUl0が1番目のCA割込のを受付けて
実際に処理に移るまでには通電lOμS程度の時間がか
かるので、それまでにはQ 2 = Lになっており、
問題はない。
Note that the output Q 2 =H of the flip-flop 82 does not remain even when the first and subsequent C persons are included (malfunction occurs). In the example of FIG. 8, 02 receives the output Q + = L from the previous stage and becomes Q 2 = L at the timing of the first OCA signal. Therefore, if it is assumed that Q 2 =H during the first CA multiplication signal interrupt processing, a malfunction will occur. However, the Q2 output of flip-flop 82 is
(Switching from to L is fast (on the order of several tens of ns),
On the other hand, it takes about 10 μS of power supply for CPU10 to accept the first CA interrupt and actually start processing, so by then Q 2 = L.
No problem.

フリップフロップ81.82のクリアはCPU10から
行なうこともできる。この場合はCA割込みの処理直後
に行なってもよいので、必ずしも1番目のCA倍信号タ
イミングまで待つ必要はない。但し、第8図のようにゲ
ート83を用いるとCPUl0の負担は軽くなり、また
クリア用のi/石ボートが1つ省略できる有利さはある
。また、基準位置を1番目のCA倍信号設定したりれば
フリップフロップ82を(i + 1 )段組イ続接続
ずればよい。
The flip-flops 81 and 82 can also be cleared from the CPU 10. In this case, it may be performed immediately after processing the CA interrupt, so it is not necessarily necessary to wait until the first CA multiplication signal timing. However, if the gate 83 is used as shown in FIG. 8, the burden on the CPU 10 will be lightened, and there is an advantage that one i/stone boat for clearing can be omitted. Furthermore, if the reference position is set to the first CA multiplied signal, the flip-flops 82 may be connected in (i + 1) stages.

第1O図は本例の信号処理装置によってR=I応じ得る
最高回転数の説明図である。同図はCA・肋−23のC
へ信号の発生直前に処理を開始した他の割込み処理の処
理時間が200μsで、それに続(CA−No=23の
C人別込め処理にも同じく200μsの処理時間がかか
ることを想定している。両者の処理時間の合h1値は4
00μsであるから、CA・Nδ−11とCA・N’i
5= Oの間が40Ott s以下になる回転数には対
応しきれない。しかしこの回転数Nは であるから、通電の機械的な限界とされる8000rp
mは十分にカバーできる値である。面、車両においてC
A割込みを待機させる他の割込み処理とは、他のチャン
ネルのセンザ出力をデジタル値に変換するA/D変換器
の終了を受けてそのデータをとり込み、さらにチャンネ
ルを切換える処理等である。
FIG. 1O is an explanatory diagram of the maximum rotational speed that can be achieved when R=I by the signal processing device of this example. The same figure shows CA/rib-23 C
It is assumed that the processing time for other interrupt processing that started immediately before the generation of the signal is 200 μs, and that the processing time for subsequent (CA-No = 23 C person separate processing) also takes 200 μs. .The total h1 value of both processing times is 4.
Since it is 00 μs, CA・Nδ−11 and CA・N′i
5 = It cannot cope with the rotation speed where the interval between O is less than 40Otts. However, this rotation speed N is 8000 rpm, which is considered to be the mechanical limit for energization.
m is a value that can be sufficiently covered. surface, vehicle C
Other interrupt processing that causes the A interrupt to wait is processing that receives the completion of an A/D converter that converts the sensor output of another channel into a digital value, captures that data, and further switches the channel.

以上述べたように本発明によれば、エンジン回転角セン
ザからの基準位置信号REFと回転角信%cAをCPU
に与えてこれらからエンジン回転角の基準位置を求める
信号処理装置において、基準位置信号REFをラッチし
てcpuに出力するタイミングを、実際に該基準位置信
号REFが発生した時刻以降の回転角信号CAによって
決定するようにしたので、該基準位置信号REFが発4
Lする直前の回転角信号CAの割込め処理が待機さ−d
られた場合にも該直前の回転角信号CAを基準位置と見
誤る誤動作は防止できる。
As described above, according to the present invention, the reference position signal REF and rotation angle signal %cA from the engine rotation angle sensor are transmitted to the CPU.
In a signal processing device that determines the reference position of the engine rotation angle based on the reference position signal REF, the timing at which the reference position signal REF is latched and output to the CPU is set based on the rotation angle signal CA after the time when the reference position signal REF is actually generated. Since the reference position signal REF is determined by
Interrupt processing of rotation angle signal CA immediately before L is on standby.-d
Even in the case where the rotation angle signal CA is changed, it is possible to prevent an erroneous operation in which the immediately preceding rotation angle signal CA is mistaken for the reference position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁気検出方式のエンジン回転角センザの構成図
、第2図はその出力波形図、第3図は従来のセンザ信号
処理装置の構成図、第4図はその動作波形図、第5図は
回転角信号の割込み処理を示すフローチャート、第6図
は他の割込み処理による誤動作のタイムチャー1・、第
7図は本発明の原理を示すタイムチャーI・、第8図は
本発明の一実施例を示す要g1構成図、第9図および第
10図番Jそのタイムチャートである。 図中、2〜5はエンジン回転角センザ、8は基準位置信
号のランチ回路、9は回転角信号の割込ijフラグ、1
0は中央処理装置、8Iは第1の回路、82は第2の回
路、83はクリア用の回路である。 出 願 人  富士通テン株式会社(他1名)代理人弁
理士  青 柳    稔 第1図 〜 」 !          i 基準イ11            基準位1第3図 第4図 基準位1 第5図 =’H・9    基準イ立1て゛4パラー/+・7ソ
7 第6図 ニア°′。 クリア■    −−一一一−−−t−−−−−−−−
−−−−−一一一一−−−第7図 CA制込み (e)  7っり・              −−
一・第8図 旦 第9図 第10図
Figure 1 is a configuration diagram of a magnetic detection type engine rotation angle sensor, Figure 2 is its output waveform diagram, Figure 3 is a configuration diagram of a conventional sensor signal processing device, Figure 4 is its operating waveform diagram, and Figure 5 The figure is a flowchart showing the rotation angle signal interrupt processing, Fig. 6 is a time chart 1 of malfunction due to other interrupt processing, Fig. 7 is a time chart I showing the principle of the present invention, and Fig. 8 is a time chart of the present invention. FIG. 9 and FIG. 10 are time charts showing the main g1 configuration diagram and FIG. 10 showing one embodiment. In the figure, 2 to 5 are engine rotation angle sensors, 8 is a reference position signal launch circuit, 9 is a rotation angle signal interrupt ij flag, 1
0 is a central processing unit, 8I is a first circuit, 82 is a second circuit, and 83 is a clearing circuit. Applicant Fujitsu Ten Ltd. (and 1 other person) Representative Patent Attorney Minoru Aoyagi Figure 1~”! i Reference A 11 Reference position 1 Fig. 3 Fig. 4 Reference position 1 Fig. 5 = 'H・9 Reference A position 1 ゛4 para/+・7 So 7 Fig. 6 Near°'. Clear■ ---111---t----
-----1111---Figure 7 CA control (e) 7ri・---
Figure 1, Figure 8, Figure 9, Figure 10

Claims (1)

【特許請求の範囲】[Claims] エンジン回転角センサからiMられる回転角信号で中央
処理装置に割込のをかり、また該センサから得られる基
準位置信号でランチ回路を七ソ;・シ、そして該中央処
理装置による該回転角信号の割込み処理時に該ランチ回
路から該基準位置信号のラッチ出力が生していると判断
されたときは、該割込のをかりた回転角信号位置をエン
ジン回転角の基準位置とみなす信号処理装置において、
該ランチ回路が、該基準位置信号の発生を記憶する第1
の回路と、該第1の回路の出力を該基準位置信号発生後
の所定の回転角信号に同期して該中央処理装置側に出力
する第2の回路とを備えるものであることを特徴とする
、エンジン回転角センサの信号処理装置。
The rotation angle signal received from the engine rotation angle sensor is used to interrupt the central processing unit, and the reference position signal obtained from the sensor is used to control the launch circuit. When it is determined that a latch output of the reference position signal is generated from the launch circuit during interrupt processing, the signal processing device considers the rotation angle signal position at which the interrupt occurs as the reference position of the engine rotation angle. In,
The launch circuit includes a first circuit that stores the occurrence of the reference position signal.
and a second circuit that outputs the output of the first circuit to the central processing unit in synchronization with a predetermined rotation angle signal after the reference position signal is generated. Signal processing device for engine rotation angle sensor.
JP17737882A 1982-10-08 1982-10-08 Processing device for signal of engine rotational angle sensor Granted JPS5967407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17737882A JPS5967407A (en) 1982-10-08 1982-10-08 Processing device for signal of engine rotational angle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17737882A JPS5967407A (en) 1982-10-08 1982-10-08 Processing device for signal of engine rotational angle sensor

Publications (2)

Publication Number Publication Date
JPS5967407A true JPS5967407A (en) 1984-04-17
JPH0242163B2 JPH0242163B2 (en) 1990-09-20

Family

ID=16029889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17737882A Granted JPS5967407A (en) 1982-10-08 1982-10-08 Processing device for signal of engine rotational angle sensor

Country Status (1)

Country Link
JP (1) JPS5967407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106362A (en) * 1986-10-23 1988-05-11 Honda Motor Co Ltd Ignition control device for internal combustion engine
US11498306B2 (en) 2017-06-07 2022-11-15 Ihi Corporation Sound-absorbing panel and manufacturing method for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113908A (en) * 1979-02-15 1980-09-02 List Hans Device for measuring rotational angle of machine shaft
JPS56137105A (en) * 1980-03-27 1981-10-26 Shimadzu Corp Angle display device for measure position in measuring device for dimension of rotary material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113908A (en) * 1979-02-15 1980-09-02 List Hans Device for measuring rotational angle of machine shaft
JPS56137105A (en) * 1980-03-27 1981-10-26 Shimadzu Corp Angle display device for measure position in measuring device for dimension of rotary material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106362A (en) * 1986-10-23 1988-05-11 Honda Motor Co Ltd Ignition control device for internal combustion engine
US11498306B2 (en) 2017-06-07 2022-11-15 Ihi Corporation Sound-absorbing panel and manufacturing method for same

Also Published As

Publication number Publication date
JPH0242163B2 (en) 1990-09-20

Similar Documents

Publication Publication Date Title
JP2535518B2 (en) Data processing system
US5390224A (en) Clock control apparatus
JP2001214790A (en) Engine control device
JPS5967407A (en) Processing device for signal of engine rotational angle sensor
EP2667199B1 (en) Semiconductor data processing apparatus and engine control apparatus
JP2002501651A (en) Difference capture timer
US5367699A (en) Central processing unit incorporation selectable, precisa ratio, speed of execution derating
JPH08214585A (en) Motor control device
JPH061279B2 (en) Digital speed detector
US5088035A (en) System for accelerating execution of program instructions by a microprocessor
JP3315780B2 (en) Noise removal device and period measurement device
JP2978820B2 (en) Information processing device activation method
JPH10255489A (en) Microcomputer
JPH0117177B2 (en)
JPH09114541A (en) Interrupt generation time confirmation circuit, processor
SU1171797A1 (en) Signature analyser
SU1310815A1 (en) Microprogram control device
KR100314805B1 (en) A booting circuit for pipeline-controlled processor
JP3329639B2 (en) Ignition control backup device
SU788363A1 (en) Digital frequency multiplier
SU1087999A1 (en) Device for checking microinstruction sequence
SU1275292A1 (en) Angular velocity digital meter
JPH01124769A (en) Speed detecting device
JPS6170466A (en) Rotational frequency detector
JPS61193224A (en) Multiphase clock sequence abnormality detection device