[go: up one dir, main page]

JPS596699B2 - 担持ルテニウム触媒 - Google Patents

担持ルテニウム触媒

Info

Publication number
JPS596699B2
JPS596699B2 JP51005505A JP550576A JPS596699B2 JP S596699 B2 JPS596699 B2 JP S596699B2 JP 51005505 A JP51005505 A JP 51005505A JP 550576 A JP550576 A JP 550576A JP S596699 B2 JPS596699 B2 JP S596699B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
manganese
chromium
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51005505A
Other languages
English (en)
Other versions
JPS5197591A (ja
Inventor
オスカル・バイセル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of JPS5197591A publication Critical patent/JPS5197591A/ja
Publication of JPS596699B2 publication Critical patent/JPS596699B2/ja
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、担持ルテニウム触媒及びその水素化触媒とし
ての使用法に関する。
通常の触媒担体にも適用しうるルテニウム触媒を4 ・
4’−ジアミノ−ジフェニルメタンの核水素化に使用
することは独国公開特許第1909342号から公知で
ある。
更に置換環式化合物の水素化に特に適当である塩基性炭
酸塩担体上のルテニウム触媒も独国特許公報第1542
392号から公知である。しかしながら公知のルテニウ
ム触媒は依然不利点を有し、例えば限られた活性及び選
択性しか示さない。従つて更に良好なルテニウム触媒が
必要である。今回、触媒担体がクロム及びマンガンの水
酸化物及び/又は水和酸化物及び/又はそれらの脱水生
成物からなる担持ルテニウム触媒は、良好な比質を有す
ることが発見された。
この触媒のルテニウム含量は、担持触媒に対しルテニウ
ムとして計算して一般に0.1〜10重量%、好ましく
は0.5〜5重量%である。
本発明による触媒担体において、元素マンガン及びクロ
ムの互いの重量比は一般に0.2:1乃至5:1、好ま
しくは0.5:1乃至3:1、特に0.8:1乃至2:
1である。本発明による触媒の調製は、それ自体公知の
方法に従つて行なうことができる。
適当には第1段階で触媒担体を調製し、第2段階でルテ
ニウムを触媒担体に適用する2段法で行なわれる。触媒
担体の調製は、それ自体公知の方法に従い、例えばクロ
ム塩及びマンガン塩を含有する溶液からアルカリ金属水
酸化物溶液又はアンモニアで水酸化クロム及び水酸化マ
ンガンを共沈させ、続いて可溶性成分を水洗することに
より行なわれる〔J.Amer.Chem.SOc.、
63、1385〜1386(1941)〕o更にそれは
、マンガン塩溶液からアルカリ金属炭酸塩又は炭酸アン
モニウムで炭酸マンガンを沈殿させ、アニオンがなくな
るまで水洗し、次いで水性懸濁液中高温、好ましくは7
0〜100℃でクロム酸水素アンモニウムと反応させる
ことによつても行なわれる(参照、独国公開特許第14
43901号)。
更なる可能性は、独国特許公報第1542370号に従
い、炭酸マンガンを三酸化クロムと反応させる調製法で
ある。言及しうる特に適当なクロム及びマンガン塩は硝
酸塩及び硫酸塩、並びにNH4Cr(SO4)2・12
H20である。
同様にアルカリ金属水酸化物及びアルカリ金属炭酸塩の
混合物を含む水溶液も沈殿剤溶液として使用しうる。好
ましくはアルカリ金属水酸化物及びアルカリ金属炭酸塩
として容易に入手しうるナトリウム化合物及びカリウム
化合物を使用する。本発明による触媒担体は、公知の方
法に従い、例えば炭酸マンガンを沈殿させる前にマンガ
ン塩溶液に次の担体を添加することにより、他の公知の
触媒担体、例えばAl2O3、SiO2、キーセルグー
ア、軽石又は酸化鉄と混合されていてもよい。
同様に、これらの担体物質の代りに、その水溶性前駆体
、例えば鉄塩及びアルミニウム塩を添加してもよい。一
般にこれらの担体物質の割合は50重量%を越えないで
あろう。選択すべき適当な量は数回の実験によつて容易
に決定できる。本発明による触媒担体は、その調製直後
、水で湿つた形で、又は約120℃までの高温で乾燥し
及び随時更なる熱処理後のいずれかにおいて第2段階で
使用しうる。
この目的に対しては、乾燥を常圧又は減圧で行なうこと
ができ、後者の場合には低乾燥温度を選択することがで
きる。
更なる熱処理は、適当には約200℃以上約450℃ま
での温度で、好ましくは250〜230℃の温度で行な
われる。
この熱処理は、クロム()化合物を用いて製造される触
媒の場合に特に有利である。乾燥又は更なる熱処理後、
本発明による触媒相体はそれ自体公知の方法によつて粉
砕、均一化及び成形してもよい。
触媒調製の第2段階、即ちルテニウムの触媒担体への適
用も公知の方法に従つて行なうことができる;この場合
、適当な出発物質は水溶性のルテニウム化合物、例えば
三塩化ルテニウム水和物である。
粉末触媒を調製するためには、ルテニウムを水溶液から
触媒担体上へ沈着させることにより、例えばアルカリ金
属水酸化物溶液又はアルカリ金属炭酸塩溶液で沈殿させ
ることにより有利に行なうことができる。
粒状触媒の調製の場合、可能な方法は例えば粉末担体を
錠剤にして成形した触媒にルテニウム塩溶液及び上述の
沈殿剤溶液をいずれかの順序で連続的に添加してルテニ
ウムを含浸させ、含浸後いずれの場合でも中間的に乾燥
を行ない、次いで生成したアルカリ金属塩を洗い出す方
法である。
しかしながら、加熱された糖衣錠製造ドラム中で2つの
溶液を連続的に成形触媒担体上に噴霧し、次いで担体を
洗浄することも可能である。含浸又はドラムコーテイン
グを何回で行なうかは、適用すべきルテニウムの量に依
存する。本発明による触媒は乾燥後直接使用できる。
しかしながら、使用に先立つてそれを約20〜約200
℃の温度下に水素で処理することも有利である。本発明
による触媒は、芳香族アミンの核水素化による脂肪族ア
ミンの製造に特に適当である。
本発明の触媒によつて付与される工業上の進歩は次のこ
とに基づいている。クロム及びマンガンの水酸化物及び
/又は水和された酸化物及び/又はその脱水生成物の触
媒担体が水素化触媒に対する適当な触媒担体であること
は特に驚くべきことである。
これはCr2O3/MnO触媒がn−ヘプタンの芳香族
化に対する脱水素触媒として用いられることがJ.Ch
em.SOc.、聾、1385〜1386(1941)
から公知であり、同様に酸化マンガン/酸化クロム触媒
が独国公開特許第1443901号からアルキル芳香族
の脱水素触媒として公知であるからである。独国特許公
報第1542370号も、酸化マンガン/酸化クロム触
媒が酸化触媒として用いるのに特に適当であることを開
示している。従つてその水素化触媒の触媒担体としての
適当性は全然予期されなかつた。独国公開特許第190
9342号によれば、4・4!−ジアミノージフエニル
メタンを通常のルテニウム触媒で水素化する場合、触媒
の使用量が4・4′−ジアミノジフエニルメタン1k9
当りルテニウム約15〜207に相当するが、約87%
の収率しか達成されない。
独国公開特許第2132547号の方法に従えば、水和
されたルテニウム()酸化物を触媒として用いると更に
良好な収率が得られるが、触媒の調製におけるかなりの
ルテニウムの損失を考慮すれば依然ルテニウムの使用量
が水素化すべき基質1k9当り57である。
更にこの水素化はかなりの量の溶媒の存在下に行なわれ
る。独国特許公報第1542392号によれば塩基性金
属炭酸塩担体のルテニウム触媒により高収率が得られる
が、この場合にも反応は溶液中で及び副反応を妨げるた
めにアンモニアを添加しながら行なわれる。
触媒の使用量も非常に高く、水素化すべき基質1k9当
りルテニウム57に相当する。反対に、本発明による担
持ルテニウム触媒は実質的により活性であり、ルテニウ
ムの使用量もより少量である。更に触媒は高温、例えば
240℃以上においてさえ非常に選択的であり、副反応
は実質的に起こらない。同様にその高選択性が故に、溶
媒及び/叉はアンモニアの存在下に行なうことは必要な
い。本発明による触媒は、芳香族アミンの核水素化に好
適に使用しうる。
この反応において、単核及び多核の多官能性芳香族アミ
ンの核水素化に関し公知のルテニウム触媒より特に有利
である。それ故に、本発明は高圧及び高温下に及び本発
明の触媒の存在下に芳香族アミンを接触水素化すること
による対応する脂環族アミンの製造に、本発明による触
媒を使用する方法にも関する。本発明の方法による可能
な出発化合物はアニリン及び置換アニリンである。従つ
て本方法は式 〔土式中、R1、R2及びR3は同一でも異なつてもよ
く、水素又はアルキル基を表わし、R4及びR5は同一
でも異なつてもよく、随時置換されていてもよいアルキ
ル、シクロアルキル、アラルキル又はアリール基を表わ
し、及びM.n及びpはそれぞれ数0又は1を表わす〕
の芳香族アミンの接触核水素化に役立つ。
アルキル基としては、炭素数1〜101好ましくは6ま
で、及び特に4までの直鎖及び分岐鎖アルキル基、例え
ばメチル、エチル、プロピル、イソプロピル、ブチル、
イソブチル、Tert−ブチル及び異性体ペンチル及び
ヘキシル基を挙げることができる。
シクロアルキル基としては、炭素数10までの随時置換
されていてもよいシクロアルキル基、好ましくはシクロ
ペンチル及びシクロヘキシルである。
アラルキル基とレこは、鎖中の炭素数が30まで、好ま
しくは6まで及び芳香族部分の炭素数が12までのもの
、例えばベンジル、ベンズヒドリル、フエニルエチル、
フエニルプロピル、フエニルイソプロピル、フエニルブ
チル、フエニルイソブチル及びフエニルトリメチルプロ
ピル、好ましくはベンジル及びフエニルイソプロピルを
挙げることができる。
芳香族基としては、炭素数14までのもの、好ましくは
フエニル及びナフチル、特にフエニルを挙げることがで
きる。
随時置換された基R4及びR5の置換基の例としては、
低級アルキル基、ヒドロキシル基及び好ましくはアミノ
基及びアルキルアミノ基を例示しうる。
従つて一般式の化合物の特別な基は式 〔上式中、R1、R2、M.n及びpは上述と同義であ
り、及びR6及びR7は同一でも異なつてもよくアルキ
ル基を表わす〕に相当する。
次のものは一般式の化合物の例として列挙しうる:アニ
リン、アルキルアニリン、例えばo−m一及びp−トル
イジン、キシリジン、例えば1・2・3−、1・2・4
一及び1・3・4一及び1・3・5−キシリジン、エチ
ルアニリン、プロピルアニリン、イソプロピルアニリン
、ブチルアニリン、イソブチルアニリン、Tert−ブ
チルアニリン、及び高級アルキル基で置換されたアニリ
ン、及び更にN−アルキルアニリン、例えばN−メチル
アニリン、N−エチルアニリン、N−プロピルアニリン
、N−イソプロピルアニリン、及び異性体N−ブチルア
ニリン、N−ペンチルアニリン及びN−ヘキシルアニリ
ン、o−、m一及びp−フエニレンジアミン及び2・4
−ジアミノトルエン。
言及しうる一般式1の化合物の更なる例は、4・4′−
ジアミノジフエニル、ビス一(4−アミノフエニル)−
メタン、ビス一(4−メチルアミノフエニル)−メタン
、3・3′・5・5′−テトラメチル−4・4′−ジア
ミノジフエニルーメタン、3・3′・5・5′−テトラ
エチル−4・47−ジアミノジフエニルーメタン、2・
2−ビス−(4−アミノフエニル)−プロパン、1・1
−ビス−(4−アミノフエニル)−シクロヘキサン、4
・4′・・l一トリアミノトリフエニルーメタン及び1
・3−ビス−(4−アミノフエニル)−1・1・3−ト
リメチル−プロピルである。式1の置換されたアニリン
の特別な群は、一般式〔上式中、R1、R2及びR3は
上述と同義であり、R8、R9及びRlOは同一でも異
なつてもよく、水素又はアルキル基を表わし、及びAは
好ましくは炭素数1〜6の随時置換されていてもよいア
ルキレン基を表わす〕に相当する。
更に好適な出発化合物群は、一般式 〔上式中、R1、R2、R3、R8、RO及びRlOは
上述と同義である]に相当する。
式Vの化合物としては、好適には次のものを列挙しうる
:α・α5−ビス−(4−アミノフエニル)m−ジイソ
プロピルベンゼン、α●α7ービス一(4−アミノフエ
ニル)−p−ジイソプロピルベンゼン、α・α′−ビス
−(4−メチルアミノフエニル)−p−ジイソプロピル
ベンゼン、α・α′一ビス一(4−メチルアミノフエニ
ル)−m−ジイソプロピルベンゼン及び上述の異性体化
合物の混合物。
一般に、本発明による方法は高温、150℃以上約35
0℃まで、好ましくは約180〜280℃の温度範囲で
行なわれる。
同様に、本方法は高圧で、一般に100バール以上の圧
力、特に180バール以上約1000バールまでの圧力
で行なわれる。一般に反応速度は圧力の上昇と共に増大
するが、圧力の上限は装置の性質によつてのみ決定され
る。一般に本発明による方法は溶媒を用いずに行なわれ
るが、溶媒の存在は害がない。
しかしこれは一般に有利性を与えない。一般に本発明に
よつて用いる触媒は、水素化すべき出発物質1kg当り
約0.005〜0,5y、好ましくは約0.01〜0.
27及び特に0.02〜0.1yである。
一般に本方法は通常の方法で、例えば攪拌機付きオート
クレーブ又は反応管中で不連続式又は連続式で行なわれ
る;本方法を行なうために行なわれる装置は本技術の一
部をなす。
例えば本方法をサップ相法(SumpphaseprO
cess)又はトリクル相法(Tricklephas
eprOcess)として行なうことができる。本方法
は不連続式で行なう場合、サップ相法として普通の方法
に従い、粉末触媒の存在下にオートクレーブ中で行なわ
れる。
本発明による方法を連続式で行なうことぱ特に有利であ
る。
これは、例えば泡鐘塔法に従い反応管カスケードを通し
て触媒を懸濁させた液体出発物質を水素と併流させる粉
末触媒を用いて、又はミ中央の核の水素化反応の速度は
同一の条件下に外側の核のそれよりも実質的に低く、反
応速度/時間図に重大な欠陥が見出される。中央の核の
水【例えばトリクル相法に従い反応管中の静置触媒上に
液体出発物質を流下させ、一方水素を並流又は向流で通
過させる粒状触媒を用いる普通の方法で行なわれる。有
利には、これらの方法では過剰の水素を通過させる。多
核芳香族アミンの場合、芳香族核の全部及び一部だけを
水素化する反応を志向することが可能である。
例えばα・α−ビス−(4−アミノシクロヘキシル)−
p−ジイソプロピルベンゼンは、ルテニウム含量1重量
%の本発明の触媒1重量%の存在下に化学量論的に必要
な水素量、即ち出発化合物1モル当り6モルの水素が捕
捉されるまでα・α−ビス−(4−アミノフエニル)−
p−ジイソプロピルベンゼンを250℃及び水素圧約2
00〜300バールで水素化する場合、殆んど定量的収
量で得られる。出発化合物1モル当り水素9モルが捕捉
されるまで水素化を上述の条件下に続ける場合、α・α
7ビス一(4−アミノシクロヘキシル)−1・4一ジイ
ソプロピルーシクロヘキサンが得られる。
素化に対しては、それ故に高温、高水素圧及び触媒の単
位量当り低生産量を選択することが得策である。従つて
本方法によれば、一般に式Vの化合物から好ましくは式
〔上式中、R1及びR2は上述と同義である。
の化合物を得ることが可能である。例えば温度、水素圧
、触媒濃度及び触媒単位量当りの生産量゛に関する最も
適当な反応条件は、各々の場合予備実験によつて容易に
決定しうる。式及びの化合物は従来公知でない。
それらは重縮合プラスチツク及びラツカ一、例えばポリ
尿素、ポリイミド、及び中でもポリアミド及びポリウレ
タンの製造に対する有用な中間体生成物である。
即ち、例えば第一ジアミンから製造される対応するポリ
アミドは、改良された硬度及び弾性(E−モジユラス)
、透明性、高ガラス転移温度、低水吸収性、改良された
通常の溶媒への溶解性及び改良された電気的性質、即ち
低誘電損失因子(Tgδ)及び高トラツキング抵抗性(
Trackirlgresistance)が特色であ
る。対比しうる改良された性質は、第一及び第二ジアミ
ンから製造されるポリウレタンによつても示される。そ
れらはその明色及び高黄変抵抗性に基づいてラツカ一の
分野に用いるのに特に適当である。更に、腐食的化学物
質にさらした時その劣化抵抗性は指摘すべきである。本
発明による方法の公知の水素化法に優る特別な利点は、
本方法が従米副反応を避けるために有利に存在させてい
た不活性な溶媒及びアンモニアの不存在下に行ないうる
ことである。
更に、本方法では従来法(独国公開特許第213254
7号)に比べ出発物質に対して実質的に少量のルテニウ
ムを用いることが可能なことである。更に、本発明によ
る方法は、従来法に相当するものよりも高温で行ないう
る。高温、即ち高反応速度を用いて不活性な溶媒又はア
ンモニアでの稀釈を避けることにより、本方法は高空間
一時間収率を与え、より少量のルテニウムしか使用しな
い。実施例 1 水15111MnS04・H2O3OOOyの溶液に、
水101中炭酸ナトリウム25007の溶液を攪拌しな
がら約10分間に亘つて添加した。
分離した沈殿を硫酸イオンがなくなるまで洗浄し、水1
01に懸濁させ、攪拌しながら85℃まで加熱した。こ
の懸濁準に水7000m1中クロム酸水素アンモニウム
53507の溶液を85℃で導入し、混合物を更に3時
間85℃で撹拌した。冷却後、暗色の沈殿を▲別し、少
量の水でゆすぎ、120℃で乾燥した。茶黒色粉末〔担
体(1)〕35107を得た。均一化された担体(1)
1007を水100m1に懸濁させ、0.05NHC1
200m1中塩化ルテニウム水和物(Ru含量:40.
3%)2.487の溶液を攪拌しながら室温で添加した
次いでPH値が9〜10となるまで1N水酸化ナトリウ
ム溶液約140m1を約5分に亘つて滴々に添加した。
更に5時間攪拌した後、触媒を分離し、塩素イオンがな
くなるまで水洗し、3時間110℃で乾燥した。茶黒色
の粉末〔触媒(1)〕937を得た。実施例 2担体(
1)300yを約30分間250〜260℃に加熱し、
茶黒色粉末〔担体(2)〕246yを得た。
均一化された担体(2)50yを水250m1に懸濁さ
せ、0.05NHC1100m1中三塩化ルテニウム水
和物1.247の溶液及びNNaOH85mlを上述の
如く連続的に添加した。
更に5時間攪拌まで水洗し、真空デシケータ一中で乾燥
した。黒茶色の粉末〔触媒(2)〕50.57を得た。
実施例 3水1600m111:IMnSO4・H2O
3387及びAl(NO3)3・9H2050yの溶液
に、水1200m1中Na2CO328lyの溶液を攪
拌しながら5分間に亘つて添加した。
沈殿を硫酸イオン及び硝酸イオンがなくなるまで洗浄し
、水1000m1中懸濁液として85℃まで暖めた。次
いで水750m1中(NH4)2Cr2075507の
溶液を5分間に亘つて添加し、混合物を更に90分間8
5℃で攪拌した。冷却後、暗色沈殿をP別し、水約10
00m1づ洗浄し、12時間12『Cで乾燥した。茶黒
色粉末〔担体(3a)〕353yを得た。担体(3a)
100.0yを約30分間250℃まで加熱した。
茶黒色粉末〔担体(3b)〕78.07を得た。均一化
された担体(3b)10.07を水50m1に懸濁させ
、0.05NHC120m1中三塩化ルテニウム水和物
(Ru含量:40.3%)0.2487の溶液を攪拌し
ながら室温で添加した。
次いでPH値が約9〜10と推定されるまでNNaOH
約15m1を5分間かけて滴々に添加した。更に5時間
攪拌した後、触媒を分離し、塩素イオンがなくなるまで
洗浄し、真空デシケータ一中で乾燥した。茶黒色の粉末
〔触媒(3)〕10.07を得た。実施例 4水180
0m111MnS04・H2O3387及びAl(NO
3)3・9H205007の溶液に、水1200m1申
炭酸アンモニウム530yの溶液を攪拌しながら室温で
10分間に亘り添加した。
この混合物を約30分間撹拌し、沈殿を硫酸イオン及び
硝酸イオンがなくなるまで洗浄し、次いで水1000m
1中懸濁液の形で2,5時間85℃に加熱することによ
り水750d中クロム酸水素アンモニウム5307の溶
液と反応させた。冷却後、暗色沈殿を沢別し、水約50
0m1で洗浄し、120℃で3時間攪拌した。茶黒色の
物体4557を得た(分析:Mn22.8%、Cr2l
.O%及びAl9.3%);これを20分間250℃に
加熱して茶黒色の粉末〔担体(4)〕390tを得た。
担体(4)10.07を水50m1に懸濁させ、0.0
5NHC120m1中三塩化ルテニウム水和物0.24
87の溶液を室温で添加し、次いでPHが9〜10とな
るまで1NNa0IyJ14dを10分間かけて添加し
た。更に5時間攪拌した後、触媒を分離し、塩素イオン
がなくなるまで洗浄し、真空デシケータ一中で乾燥した
。茶黒色粉末〔触媒(4)〕9,87を得た。実施例
5 水2000m111:1MnS04・H2O338yl
Al(NO3)3・9H20及びFeSO4・7H20
707の溶液に、水1350m1中炭酸アンモニウム5
90yの溶液を攪拌しながら5分間に亘り25℃で添加
した。
混合物を約30分間攪拌し、硫酸イオン及び硝酸イオン
がなくなるまで沈殿を洗浄し、次いで水1000m1中
懸濁液として85℃まで加熱し、この温度で水750m
1中(NH4)2Cr2075507の溶液を導入した
この混合物を約2時間85℃で攪拌し、冷却後暗色の沈
殿を分離し、水500m1でゆすぎ、3時間120℃で
乾燥した。茶黒色の粉末4807を得た。分析:Mn2
l.7%、Cr2O.O%、Al8.9%及びFe2.
5%。この粉末を約30分間250℃に加熱し、茶黒色
の粉末〔担体(5)〕3927を得た。粉末の担体(5
)10.07を水50m1に懸濁させ、0.05NHC
120m1中三塩化ルテニウム水和物(Ru含量:40
.3重量%)0.2487の溶液を添加した。
次いでPHが約8〜10となるまで1NNa0H約17
m1を滴々に添加した。5時間後暗色の沈殿を沢別し、
塩素イオンがなくなるまで洗浄し、120℃で2時間乾
燥した。
茶黒色粉末〔触媒(5)〕9.67を得た。実施例 6
(比較例) 微粉末Cr2O3、MnO2又はMncO3lO.Ot
を水50m1に懸濁させ、次いで実施例3〜5と同様に
先ず0.05NHC120m111RuC13水和物0
,248yの溶液で及び続いてPH値が9〜10となる
までNNaOHで処理した。
洗浄及び乾燥後、次の触媒を得た:実施例 7〜12(
使用例) 下表1に示す触媒の1つを用い、水素の吸収が終るまで
振とうオートクレーブ中250℃及び200〜280バ
ールの圧力範囲下で4・4′−ジァミノージフエニルー
メタン1007を水素化した。
ルテニウムの使用量は各々の場合水素化すべき基質1k
9当り0,05yであつた。結果を表示す。実施例 1
3(比較例) 本発明による触媒との比較のために、触媒以外実施例7
〜12に述べたものと同一の条件下に市販の触媒及び本
発明による触媒担体の各成分のみを含有する触媒を使用
した。
ルテニウムの使用量まこの場合にも水素化すべき基質1
Vg当り約0.057であつた。結果を表に示す。実施
例は、本発明による触媒が高活性を示す低使用濃度にお
いて、比較触媒が不満足な活性及び選択性しか示さない
ことを示す。
水素化は完結するまで定量的に起こらなかつた。実施例
14 攪拌機付きオートクレーブ中において水素の吸収が終る
まで(約150分間)、250℃及び水素圧280バー
ル下に4・4′−ジアミノージフエニルーメタン200
07を触媒(3)4,0yと共に撹拌した。
冷却後、反応生成物をメタノール中に捕捉させ、混合物
を▲過し、蒸留した。次いで4・4′−ジアミノジシク
ロヘキシルメタン99.2%及び4−アミノジシクロヘ
キシルメタン0,8%からなる沸点128〜130℃/
0.05mmHgの留出物21007を得た。これは理
論量の98%の収率に相当した。留出物の固化温度は4
2℃であつた。実施例 15 ルテニウム含量1重量%の触媒(3)7,57の存在下
に2・4−ジアミノトルエン1500yを、水素圧28
0バール及び温度範囲235〜250℃において水素の
吸収が終るまで(9時間)攪拌した。
冷却後触媒を▲別し、沢液を分留に供した。ヘキサヒド
ロトルイジン237、2・4−ジアミノ−メチル−シク
ロヘキサン15257(公理論量の96.8%)及び蒸
留残渣217を得た。比較実験.同一の条件を用い市販
のRu(5%)/Al2O3触媒1.57の存在下に水
素化を行なつた場合、水素の吸収が理論量の約25%と
なつた後、5.5時間以内に水素化反応は停止した。
更に6.07のRu(5%)/Al2O3触媒を水素化
バツチに添加した場合、更に6.5時間後ヘキサヒドロ
トルイジン49.1%及び2・4−ジアミノ−メチルシ
クロヘキサン46、7%からなる反応混合物を得た。実
施例 16振とう式オートクレーブ沖触媒(1)0.5
7の存在において、4・4!−ジアミノ−3・3′・5
・5′−テトラエチルージフエニルメタン1007を2
50℃及び水素圧200〜280バール下に水素の吸収
が終るまで(5時間)振とうした。
触媒の分離後、水素化生成物を普通の方法で蒸留した。
沸点。.2:157〜163℃の無色粘稠な留出物10
2yを得た。これは実質的に純粋な4・4′−ジアミノ
−3・3′・5・5′−テトラエチルージシクロヘキシ
ルメタンからなつた。収率:理論量の98%o滴定は強
塩基性第一アミノ基9.9%を与えた。ガスクロマトグ
ラフイ一による分析は100%の純度を示した。実施例
17及び18 実施例16と同一の方法に従い、次のビスアニリン誘導
体を水素化することにより同様に良好な結果を得た。
結果を表に要約する。実施例 19 触媒(1)0.57の存在下にN−N−ジメチル−4・
4′−ジアミノジフエニルメタン100yを水素圧18
0〜280バールにおいて水素の吸収が終るまで水素化
した。
水素化温度は3時間の水素化に亘り165℃から210
℃まで上昇した。触媒を除去した水素化生成物を蒸留で
処理した時、N−V−ジメチル−4・4′−ジアミノジ
シクロヘキシルメタンを沸点120〜122℃/0,1
mmHgの無色粘稠な液体として得た。量104.5y
=理論量の99%o 分析:全強塩基性窒素、実験値11.7%第2強塩基性
窒素、実験値11.6% 実施例 20 触媒(3)(ルテニウム約1%)1.07の存在下にα
・α7ービス一(4−アミノフエニル)−p−ジイソプ
ロピルベンゼン100yを水素圧170〜290バール
において水素吸収速度が非常に大きく減少するまで水素
化した。
水素化時間は約100分であつた。冷却後、反応生成物
をメタノールに捕捉させ、溶液を▲過し、溶媒の除去後
残渣を真空下に蒸留した。α・α5−ビス−(4一アミ
ノシクロヘキシル)−p−ジイソプロピルベンゼン10
17(理論量の97、6%)を得た。97〜105℃。
比較実験 市販のRu(5%)/Al2O3触媒0.27の存在下
に水素化を行なつた場合、590分の後水素化生成物を
得た。
これを蒸留することにより純度99.5%のα・α7ー
ビス一(4−アミノシクロヘキシル)−p−ジイソプロ
ピルベンゼン59tを得た。一方蒸留残渣は427に増
加した。実施例 21 触媒(2)(ルテニウム約1%)1.07の存在におい
てα・α5−ビス−(4−メチルアミノフエニル)−p
−ジイソプロピルベンゼン1007を180〜200℃
及び水素圧200〜280バール下に水素の吸収が終る
まで(約160分)水素化した。
冷却後、水素化生成物をメタノールに捕捉させ、溶液を
▲過し、濃縮し、残渣を減圧下に蒸留した。理論量10
0%に相当する1037のα.α7ービス一(4−メチ
ルアミノシクロヘキシル)−p−ジイソプロピルベンゼ
ンを得た。沸点:203〜206℃/0.2mmHg1
固化温度:84〜86℃o比較実験 触媒(2)1.07の代りに市販のRu(5%)/Al
2O3触媒0.27を用いた場合、210℃で6時間後
水素化生成物98.57を得た;沸点範囲:205〜2
1『C/0.2mmHg1固化温度:107〜108℃
o比較実験は、Ru(5%)/Al2O3触媒を用いる
水素化がかなりの程度のメチル基の開裂を伴なうことを
示している。
更に水素化は芳香族に結合した窒素の割合によつて示さ
れるように定量的に起つていない。実施例 22 触媒(2)2.07の存在において4・4″一トリアミ
ノートリフエニルメタン1007を260〜265℃及
び水素圧240〜300バール下に水素の吸収が終るま
で(約19時間)振とうした。
冷却後反応混合物をメタノール中に捕捉させ、溶液を▲
過し、用いる圧力下に濃縮後蒸留した。ゆつくり結晶化
する無色の粘稠な蒸留物60.57を得た;沸点:18
8〜193℃/0.2mmHg03倍量のメチルシクロ
ヘキサンから再結晶した後無色の結晶を得た;融点:1
32〜136℃o実施例 23実施例22の水素化を同
一の触媒4.07の存在下に250℃及び水素圧250
〜300バールで行なつた場合、反応時間7時間及び続
く蒸留後ゆつくり結晶化する無色の留出物82.07を
得た;沸点:145〜200℃/0.3mmHg0なお
本発明の関連事項を要約すれば以下の通りである:1.
芳香族アミンの接触水素化に特許請求の範囲第1〜4項
記載の触媒を使用する方法。
2.式 〔上式中、R1、R2及びR3は同一でも異なつてもよ
く、水素又はアルキル基を表わし、R4及びR5は同一
でも異なつてもよく、随時置換されていてもよいアルキ
ル、シクロアルキル、アラルキル又はアリール基を表わ
し、及びM.n及びpはそれぞれ0又は1の数を表わす
〕の芳香族アミンを接触水素化することを特徴とする上
記1の使用法。
3.式 〔上式中、R1及びR2は同一でも異なつてもよく、水
素又はアルキル基を表わし、R6及びR7は同一でも異
なつてもよく、アルキル基を表わし、及びM,.n及び
pはそれぞれ数0又は1を表わす〕の芳香族アミンを接
触水素化することを特徴とする上記1及び2の方法。
4.式 〔上式中、R1、R2、R3、R8、 R9及びRlO は同一でも異なつてもよく、水素又はアルキル基を表わ
し、及びAは好ましくは炭素数1〜6の随時置換されて
いてもよいアルキレン基を表わす〕の芳香族アミンを接
触水素化することを特徴とする上記1〜2の触媒の使用
法。
5.式 〔上式中、R1、R2、R3、R8、R9及びRlOは
同一でも異なってもよく、水素又はアルキル基を表わす
〕の芳香族アミンを接触水素化することを特徴とする上
記1〜2の触媒の使用法。

Claims (1)

  1. 【特許請求の範囲】 1 触媒担体がクロム及びマンガンの水酸化物及び/又
    は水和酸化物及び/又はその脱水生成物からなることを
    特徴とする、芳香族アミンの接触核水素化反応に用いら
    れる担持ルテニウム触媒。 2 元素マンガン及びクロムの相対重量比が0.2:1
    乃至5:1であることを特徴とする特許請求の範囲第1
    項記載の触媒。 3 触媒のルテニウム含量が、ルテニウムとして計算し
    た場合、担持触媒に対して0.1〜10重量%であるこ
    とを特徴とする特許請求の範囲第1項又は第2項記載の
    触媒。 4 触媒担体がクロム、マンガン及びアルミニウム並び
    に随意鉄の水酸化物及び/又は水和酸化物及び/又はそ
    の脱水生成物からなることを特徴とする、芳香族アミン
    の接触核水素化反応に用いられる担持ルテニウム触媒。 5 触媒担体をクロム及びマンガンの水酸化物及び/又
    は水和酸化物及び/又はその脱水生成物から調製し、続
    いてこの触媒担体にルテニウムを適用することによる芳
    香族アミンの接触核水素化反応に用いられる担持ルテニ
    ウム触媒の製造法であつて、新しく沈殿させた水性懸濁
    液中の炭酸マンガンをクロム酸水素アンモニウムと反応
    させることによつて触媒担体を調製することを特徴とす
    る製造法。
JP51005505A 1975-01-24 1976-01-22 担持ルテニウム触媒 Expired JPS596699B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2502894A DE2502894C3 (de) 1975-01-24 1975-01-24 Ruthenium-Trägerkatalysator

Publications (2)

Publication Number Publication Date
JPS5197591A JPS5197591A (ja) 1976-08-27
JPS596699B2 true JPS596699B2 (ja) 1984-02-14

Family

ID=5937234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51005505A Expired JPS596699B2 (ja) 1975-01-24 1976-01-22 担持ルテニウム触媒

Country Status (9)

Country Link
US (1) US4049584A (ja)
JP (1) JPS596699B2 (ja)
BE (1) BE837853A (ja)
CH (1) CH619379A5 (ja)
DE (1) DE2502894C3 (ja)
FR (1) FR2298366A1 (ja)
GB (1) GB1536025A (ja)
IT (1) IT1053416B (ja)
NL (1) NL7600609A (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133905A (en) * 1976-04-30 1977-11-09 Sumitomo Chem Co Ltd Preparation of enamides
DE2745172A1 (de) * 1977-10-07 1979-04-12 Bayer Ag Ruthenium-traegerkatalysator
US4214970A (en) * 1979-01-15 1980-07-29 Diamond Shamrock Technologies, S.A. Novel electrocatalytic electrodes
US4222961A (en) * 1979-02-01 1980-09-16 Suntech, Inc. Process for hydrogenating aromatic dinitriles
DE3801755A1 (de) * 1988-01-22 1989-07-27 Bayer Ag Ruthenium-traegerkatalysator, seine herstellung und sein einsatz bei der herstellung von gegebenenfalls substituiertem cyclohexylamin und gegebenenfalls substituiertem dicyclohexylamin
DE3801756A1 (de) * 1988-01-22 1989-08-03 Bayer Ag Ruthenium-katalysator, verfahren zu seiner herstellung und verfahren zur herstellung eines gemisches aus cyclohexylamin und dicyclohexylamin unter einsatz des ruthenium-katalysators
DE19641688A1 (de) * 1996-10-10 1998-04-16 Bayer Ag Katalysatoren und Verfahren zur Herstellung von cycloaliphatischen Aminen
DE19824906A1 (de) * 1998-06-04 1999-12-09 Bayer Ag Verfahren zur Herstellung von variablen Gemischen aus Cyclohexylamin und Dicyclohexylamin
DE19827282A1 (de) * 1998-06-19 1999-12-23 Bayer Ag Verfahren zur Herstellung von cycloaliphatischen Aminen
US6750172B2 (en) * 2001-03-14 2004-06-15 Micron Technology, Inc. Nanometer engineering of metal-support catalysts
US7476373B2 (en) * 2002-04-08 2009-01-13 Sued-Chemie Catalysts Japan, Inc. Treating agent for exhaust gas containing metal hydride compound and method for treating exhaust gas containing metal hydride compound
DE102004061608A1 (de) * 2004-12-17 2006-07-06 Basf Ag Verfahren zur Herstellung von 1,2-Diamino-3-methylcyclohexan und/oder 1,2-Diamino-4-methylcyclohexan
JP2006257046A (ja) * 2005-03-18 2006-09-28 Arakawa Chem Ind Co Ltd 新規な脂環式ジアミン化合物および脂環式ジアミン化合物の製造方法
AU2010331418B2 (en) * 2009-12-18 2016-02-25 Cosmo Oil Co., Ltd. Catalyst composition for production of hydrocarbons and method for producing hydrocarbons
WO2024160704A1 (en) 2023-01-30 2024-08-08 Gaznat Sa Supported ru catalysts highly efficient for carbon dioxide methanation, methods of preparation and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636108A (en) * 1965-12-23 1972-01-18 Du Pont Catalytic hydrogenation of aromatic nitrogen containing compounds over alkali moderated ruthenium
GB1415155A (en) * 1971-10-28 1975-11-26 Johnson Matthey Co Ltd Catalysis
CA979180A (en) * 1972-04-12 1975-12-09 Janice L. Stiles Process for depositing noble metal catalysts

Also Published As

Publication number Publication date
FR2298366A1 (fr) 1976-08-20
CH619379A5 (ja) 1980-09-30
DE2502894C3 (de) 1981-12-03
BE837853A (fr) 1976-07-23
DE2502894B2 (ja) 1981-01-15
FR2298366B1 (ja) 1979-06-01
IT1053416B (it) 1981-08-31
US4049584A (en) 1977-09-20
JPS5197591A (ja) 1976-08-27
GB1536025A (en) 1978-12-13
NL7600609A (nl) 1976-07-27
DE2502894A1 (de) 1976-07-29

Similar Documents

Publication Publication Date Title
US4161492A (en) Cycloaliphatic amines and process for preparing same
JPS596699B2 (ja) 担持ルテニウム触媒
US5023226A (en) Ruthenium supported catalyst, its preparation and its use in the preparation of substituted or unsubstituted cyclohexylamine and substituted or unsubstituted dicyclohexylamine
US4186145A (en) Process for the hydrogenation of an aromatic amine and the supported ruthenium catalyst used in the process
US3919155A (en) Synthesis of aromatic amines by reaction of aromatic compounds with ammonia
US4001260A (en) Synthesis of aromatic amines by reaction of aromatic compounds with ammonia
KR0127755B1 (ko) 4-클로로-2.5-디메톡시아닐린의 제조방법
US4400537A (en) Process for 1,4-phenylenediamine
US2166151A (en) Catalytic hydrogenation of adiponitriles to produce hexamethylene diamines
US4263175A (en) Catalyst for the production of pyrrolidone
CA1069487A (en) Hydrogenation catalyst
CN110975884A (zh) 一种用于选择性氧化甲苯制备苯甲醛的含过渡金属催化剂的制备方法
JPH10204002A (ja) 置換芳香族化合物の核水素化方法
EP0668101A1 (de) Ruthenium-Katalysatoren, deren Herstellung und ein Verfahren zur Herstellung von cycloaliphatischen Polyaminen unter Verwendung dieser Katalysatoren
JPH0216736B2 (ja)
EP2155661B1 (de) Verfahren zur herstellung von nitrilen
JPS5839646A (ja) 水素化方法
JP2855284B2 (ja) 芳香族アミン類の水素化用触媒およびシクロヘキシルアミン類の製造方法
JPH01160947A (ja) ジアルキルアミノエタノールの精製法
US5124485A (en) Catalysts and methods of separation thereof
US3723532A (en) Process for preparing cycloalkenones
US3250799A (en) Process of preparing 4-amino-4'-chloro-2-stilbene carbonitrile
JPH09151168A (ja) β−アラニン塩の製造方法
JPS6332347B2 (ja)
JPS59186929A (ja) シクロオレフインの製法