[go: up one dir, main page]

JPS5966347A - Ozone decomposing catalyst - Google Patents

Ozone decomposing catalyst

Info

Publication number
JPS5966347A
JPS5966347A JP57176592A JP17659282A JPS5966347A JP S5966347 A JPS5966347 A JP S5966347A JP 57176592 A JP57176592 A JP 57176592A JP 17659282 A JP17659282 A JP 17659282A JP S5966347 A JPS5966347 A JP S5966347A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
nio
coax
ozone decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57176592A
Other languages
Japanese (ja)
Inventor
Shinichi Ochiwa
小知和 眞一
Yoshikazu Hirose
広瀬 善和
Kenji Kunihara
健二 国原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP57176592A priority Critical patent/JPS5966347A/en
Publication of JPS5966347A publication Critical patent/JPS5966347A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain an ozone decomposing efficiency and excellent durability, by compounding Co-oxide, ni-oxide and Mn-oxide in a specific containing ratio. CONSTITUTION:This catalyst comprises three components, that is, Co-oxide (CoOx), NO and MnO2 and, with respect to the contents of the aforementioned components, CoOx is adjusted to 48-80mol%, NiO to 10-38mol% and MnO2 to 2-22mol%. As the result, an ozone decomposing catalyst having both high ozone decomposing efficiency and excellent durability not achieved by a CoRx catalyst or a CoOx-NiO catalyst is obtained. This catalyst can be prepared by a kneading method, a suspension precipitation method or the like. In addition, the shape of the catalyst may be a fine powder, a granule or a pellet having an arbitrary particle size, one obtained by coating the surface of a monolithic ceramic carrier with a catalyst or other shapes.

Description

【発明の詳細な説明】 使用するためのオゾン分解触媒に関する。強力な酸化能
一計有するオゾンは脱色、脱臭、殺菌またはCOD除去
などの目的に広く使用されているが、その利用過程にお
いて未反応のオゾンが大気中に排出され、二次公害を発
生させる恐れがあるため。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to an ozone decomposition catalyst for use. Ozone, which has strong oxidizing ability, is widely used for purposes such as decolorization, deodorization, sterilization, and COD removal, but during its use, unreacted ozone is emitted into the atmosphere, which may cause secondary pollution. Because there is.

排オゾンの処理をする必要がある。Exhaust ozone must be treated.

この排オゾン処理法には高いオゾン分解効率。This exhaust ozone treatment method has high ozone decomposition efficiency.

安全性、保守性とともにコンパクトで優れた経済性を有
すると一とが望まれる。
It is desirable to have safety, maintainability, compact size, and excellent economic efficiency.

排オゾン処理の分野で現在採用されている技術としては
活性炭法、熱分解法、薬液洗浄法などがあり、低濃度の
排オゾンに対しては活性炭法が採用され、一方数百pp
m以上の高濃度排オゾンに対しては、安全性、保守性お
よびオゾン分解効率等の点から熱分解法が採用されるこ
とが多い。
Technologies currently adopted in the field of exhaust ozone treatment include activated carbon method, thermal decomposition method, and chemical cleaning method.Activated carbon method is adopted for low concentration of exhaust ozone, while
For high concentration exhaust ozone of m or more, the thermal decomposition method is often adopted from the viewpoints of safety, maintainability, ozone decomposition efficiency, etc.

しかしながら、熱分解法で99チ以−にの高いオゾン分
解効率を得るためには、300℃で2秒置1の滞留時間
を必要とするため、経(i性およびコンパクト化の点で
好ましくない。この熱分解法の欠点を取り除くため、最
近ではオゾン分解触媒を利用することが検討されており
、この神の触媒としてコバルト酸化物などが優れたオゾ
ン分解性fit; k有していることが報告されている
(!特開昭52ー75686号公報および特開昭53−
14688号公報)。
However, in order to obtain a high ozone decomposition efficiency of 99°C or higher using the thermal decomposition method, a residence time of 2 seconds at 300°C is required, which is undesirable from the viewpoint of efficiency and compactness. In order to eliminate the drawbacks of this thermal decomposition method, the use of ozone decomposition catalysts has recently been considered, and it is believed that cobalt oxides and the like have excellent ozone decomposition properties as this divine catalyst. It has been reported (! Japanese Patent Application Laid-Open No. 52-75686 and Japanese Patent Application Laid-open No. 53-
14688).

しかしながら、本発明者4P^記のようなコバルト酸化
物(Coax)触媒を用い1種々の条件で実験を回なっ
へ1果、:190℃以下の温度で使用すると、徐々にそ
のオゾン分解性能が低下することが判明した。   、
 :ど      ′ :■、護゛  11 ここで1コバ、、ルト―焦物」とはC’oO,Co、0
. 。
However, after conducting experiments under various conditions using a cobalt oxide (Coax) catalyst as described by the present inventor, the ozone decomposition performance gradually decreased. It was found that it decreased. ,
:do ′ :■、guard゛ 11 Here one piece,、Luto-jimono'' means C'oO, Co, 0
.. .

co304等を総称する。本発明者らがオゾン分解活性
を示すコバルト酸化物を”X l”直□折により解析し
またところ、多くの場合主成分と罷てCOρ4が存在す
ることが認められた。しかし、他のものも活性相である
ととを確認したので:本発明ではこ□れらすべてを佐倉
する意味でC”0’ Oxとルて表示することとした。
Collectively refers to co304, etc. When the present inventors analyzed cobalt oxides exhibiting ozonolytic activity by "X1" direct analysis, it was found that in many cases COρ4 was present, in contrast to the main component. However, since it has been confirmed that other substances are also active phases, in the present invention, all of these are referred to as C"0'Ox" in the meaning of Sakura.

  ニー″    □ さらに本発明者らは、C00X触媒の性iI岐善するだ
め、□Co’Oxに対して、準イ―ツケル(N i O
)を1〜’3 Q % ’、;、”%ff5’7+nし
た触媒力□、従来ノ、、Co、O,x触媒に比べ竺れた
オソン、分解性、鶴を有していることを出願中であるが
、つ、のCoax−NiOi:媒にセいても、100℃
以下の低温で長時間使用すると。
In addition, the present inventors have determined that the properties of the C00X catalyst, □Co'Ox, are quasi-Eetschel (N i
) is 1~'3Q%', ;,'%ff5'7+n catalytic power □, compared to conventional catalysts, Co, O, Although the application is pending, even if it is set in a Coax-NiOi medium, 100℃
When used for a long time at low temperatures below.

僅かではあるが性能の低下が生じることが判明し、より
高いオゾン分解〆効率を有し、かつ耐久性に優れたオゾ
ン分解触媒を開発するととが望まれて、、いへ0 ・旨・1.、   ・ この発明の目的は、上述のよりなCoax触媒お閤よl
云””l:Co□l、0’、x−”N i O触媒のも
つ欠点を除去して、111.09.℃以下の温度、でも
優れたオゾン分解活性能お上、び耐久性を有するオゾン
分IN!媒を提供することにある。
It was found that there was a slight decrease in performance, and it was desired to develop an ozone decomposition catalyst with higher ozone decomposition efficiency and excellent durability. .. , ・The purpose of this invention is to improve the Coax catalyst as described above.
云""l: Co□l, 0', x-" Eliminates the drawbacks of the N i O catalyst and provides excellent ozone decomposition activity and durability even at temperatures below 111.09.℃. It is an object of the present invention to provide an ozone content IN! medium.

本発明者らは、Coax触媒およびCoax−NiO触
媒が有する上記のような欠点を取り除< fcめ、′種
々め実験を行なった結果、 ” ”C”’6”OXを主
体としてこれにNiOおよびMnO2が添加き孔た触媒
′1を:、以下のような組成範囲となる様に鱈1ム1製
するならば、Coax触媒あるいはC1o Ox−LN
 ’i 0触媒では、!成できないような鴬いオレ゛ン
分解高率と、優ハ亮耐久性、を兼ね:備え、″′オシ′
盆、解1.:=♂“得ら1iとを見出し′fc′。  
    □ 、、、    ・■  、   ・、・Coax−Ni
O−Mn04−触g、o好址し吟組、成、範囲を、各成
分のモル饅で表わした三角座標を用いて明示すると第1
図のようになる。この図に示されるようにXCo−Co
0X のモル% 、 xN、=NiOのモル% 、 x
  =MnO,のモル饅とすると好ましい組成n 範囲は、以下に示す6本の直線が互いに交わって形成さ
れる多角形への領域内・である。
In order to eliminate the above-mentioned drawbacks of Coax catalysts and Coax-NiO catalysts, the present inventors conducted various experiments and found that NiO If a catalyst '1 with holes added and MnO2 is prepared so as to have the following composition range, it will be a Coax catalyst or C1o Ox-LN.
'i 0 catalyst,! It combines a high oil decomposition rate that cannot be achieved with excellent durability.
Bon, solution 1. :=♂“Get 1i and find 'fc'.
□ ,,, ・■ , ・,・Coax-Ni
O-Mn04-Touch g, o good place Gin group, formation, range is specified using triangular coordinates expressed in moles of each component, the first
It will look like the figure. As shown in this figure, XCo-Co
0X mol%, xN, = mol% of NiO, x
=MnO, the preferable composition n range is within the polygonal region formed by the six straight lines intersecting each other shown below.

さらに好捷しくは、次式で示される6・本の直線が交わ
って形成される多角形Bの領域内である。
More preferably, it is within the area of a polygon B formed by intersecting six straight lines expressed by the following equation.

本発明による好ましい組成・範囲は・、後述の実施め 例の第3図会るいは第4図に示すように、□厳・密には
多角形ではないが、はぼ上記の□ような六角形A。
The preferred composition/range according to the present invention is, as shown in Figure 3 or Figure 4 of the embodiments described below, □ strictly speaking not a polygon, but a polygon like the above □. Square A.

あるいはBの領域内として表わすことができる。Alternatively, it can be expressed as within the region B.

本発明の触媒は混線法、懸濁沈殿法等の方法によって製
造することができる。また・触媒の形状は。
The catalyst of the present invention can be produced by a method such as a crosstalk method or a suspension precipitation method. Also, what is the shape of the catalyst?

微細な粉末でも、また任意の大きさの粒子寸法をもつ顆
粒、ペレットあるいはモノリス状のセラミックス担体の
表面に、触媒をコーティングしたもの、その他の形状の
ものであってもよい。
It may be a fine powder, a granule, pellet, or monolithic ceramic carrier having any particle size, coated with a catalyst on the surface thereof, or other shapes.

したがって1本発明・によれば、  CoOx、NiO
お。
Therefore, according to the present invention, CoOx, NiO
oh.

よびMnO,の含有量を、上述の多角形A・の、領域・
、内とな、るように調製したオゾン分解・触媒が提・供
□され、当触媒は、後述の笑1施例1・〜3・に示、す
よう・に、従来の、CoOx−、NiO触媒に比べ、優
れた・オゾン分解。
The content of MnO,
, an ozone decomposition catalyst prepared in the following manner is provided, and this catalyst can be used for conventional ozone decomposition, CoOx-, as shown in Examples 1-3 below. Superior ozone decomposition compared to NiO catalyst.

・性能と・耐久性を有している。・Performance and durability.

一方、本発明者らは、・先にオゾン分解・触媒としてC
oax−NiO触媒に銀(Ag)を担・、持した触媒が
On the other hand, the present inventors previously discovered that C was used as a catalyst for ozone decomposition.
A catalyst in which silver (Ag) is supported on an oax-NiO catalyst.

低温で優れたオゾン分解性能と耐、人件を有すると:′
と全見出し、現在特許出願中(特□願、昭56−114
779号)であるが、これと本発明とを比較すると1本
発明は高価なAg を担持するの、と同様の効果が、安
価なMnO□をCoax−NiO触媒、に添加する。こ
とにより得られるという利点をもって、いる。。
It has excellent ozone decomposition performance at low temperatures, resistance, and labor requirements:'
and all headings, currently patent pending (patent application, 1984-114)
No. 779), but comparing this with the present invention, the present invention has the same effect as supporting expensive Ag, but adding inexpensive MnO□ to the Coax-NiO catalyst. It has the advantage of being obtained by doing so. .

本発明の触媒が従来のCoax触媒、あるいはCo0x
−NiO触媒と比較して、優れたオゾン分解性能と耐久
性を有する理由は明確ではないが、前述のよ□うな多角
形Aの領域内において、オゾン分・解性能に優れた混合
酸化物が生成しているためと思わ九る。
The catalyst of the present invention is a conventional Coax catalyst or a Co0x catalyst.
-The reason why it has superior ozone decomposition performance and durability compared to NiO catalyst is not clear, but within the area of polygon A as mentioned above, mixed oxides with excellent ozone decomposition and decomposition performance I think this is because it is generated.

本発明ををらに例示するために以下に実施例を示す。Examples are provided below to further illustrate the invention.

犬−4倒↓ 混練法によるCoax−NiO−MnO□触媒の製造占
ぞの性能。
Dog-4 Down↓ Production performance of Coax-NiO-MnO□ catalyst by kneading method.

塩基性炭M :J /−< )’−ト(CoCO,、、
Co (OHL )を空気気流中:330℃で48時間
加熱分解して得fr−Co Oxに、酸化水酸化ニッケ
ル(NiOOH)(r、空気気流中200℃3時間焼成
して得たNiOと、炭酸マンカン(N1n COs )
t 酸素気流中350℃で3時間加熱分解して得たMn
O2とを、第1表に示す組成比となるように混合した。
Basic carbon M: J /-<)'-to (CoCO,...
Co(OHL) was thermally decomposed at 330°C for 48 hours in an air stream to produce fr-CoOx, nickel hydroxide oxide (NiOOH) (r, NiO obtained by firing at 200°C for 3 hours in an air stream, Carbonated mankan (N1n COs)
t Mn obtained by thermal decomposition at 350°C for 3 hours in an oxygen stream
O2 was mixed so as to have the composition ratio shown in Table 1.

さらに、これに20重it %のシリカゾルを加えて十
分に混練した後、空気、気流中200’[で3時間加熱
しCo Ox第1表 触媒の性能試験(は、これ全破砕(−で10〜12メツ
ツユて整粒したものをパイレックス製の反応管に充填(
〜、第2図に示すオゾン分解性能試験装置を用い−6行
なった。
Furthermore, 20% by weight of silica sol was added thereto, thoroughly kneaded, and then heated in air at 200°C for 3 hours. Fill the sized particles into a Pyrex reaction tube (
-6 tests were conducted using the ozone decomposition performance testing apparatus shown in FIG.

第2図ではA 7’ライガAから出たオゾンを含イjし
た空気は、水処理装置全模擬1〜だガス洗浄器Gで加湿
され、次いでオゾン分解触媒I〕が充填さhた電気炉1
″;を・角するオゾン分解装ff1Mに導びがれる。オ
ゾン分解装置Mに流入するAfJおよびオゾン分解装置
βMを通過した後のガス中のオゾン濃度を6111 ’
Nするため、三方コックC1とC2にはそれぞれオゾン
濃度dlll定装置に1とに2が接続されている。なお
りはニー ドル弁、F’l、F2は流量計、11は除湿
器である。
In Figure 2, the ozone-containing air discharged from Liga A is humidified in a gas washer G, which simulates the entire water treatment system, and then transferred to an electric furnace filled with an ozone decomposition catalyst I. 1
The ozone concentration in the gas after passing through AfJ flowing into ozone decomposition device M and ozone decomposition device βM is 6111'.
For this reason, three-way cocks C1 and C2 are connected to ozone concentration dllll constant devices 1 and 2, respectively. Noori is a needle valve, F'l and F2 are flow meters, and 11 is a dehumidifier.

混練法により製造り一たCoax −N io−Mn0
2  触媒のオゾン分解性能を、第2図の装置により試
験した結果を第3図に示す。ただ(7試験条件は次のと
うりであった。
Coax-Nio-Mn0 produced by kneading method
2 The ozone decomposition performance of the catalyst was tested using the apparatus shown in FIG. 2. The results are shown in FIG. However, (7 test conditions were as follows.

触媒充填Mt : 1.5 cc、触媒層温度:50℃
、オゾン金山空気(排オゾン)〆流量: l、 Q t
 /n1in、空間速度G、f(、S、V、: 40,
000hr ’、触媒層入口オゾン濃度: 2,000
 ppm。
Catalyst filling Mt: 1.5 cc, catalyst layer temperature: 50°C
, Ozone Kanayama air (exhaust ozone) 〆Flow rate: l, Q t
/n1in, spatial velocity G,f(,S,V,: 40,
000hr', catalyst layer inlet ozone concentration: 2,000
ppm.

第3図は、第1表に示した触媒の150時間経過後にお
けるオゾン分解効率のデータをもとに。
FIG. 3 is based on data on the ozone decomposition efficiency of the catalyst shown in Table 1 after 150 hours.

触媒の組成に対するオゾン分解効率の等高線を示したも
ので、等高線に付けられた数値は側シン分解効率(係)
であり次式により求めた。
This shows the contour lines of ozone decomposition efficiency with respect to the composition of the catalyst, and the numbers attached to the contour lines are the lateral decomposition efficiency (correspondence).
It was calculated using the following formula.

月1−剥l 懸濁沈殿法によるCoax−NiO−Mn02触媒の製
造とその性能。
Month 1 - Peeling Production of Coax-NiO-Mn02 catalyst by suspension precipitation method and its performance.

炭酸マンガン(h4ncO,)を酸素気流中350℃で
3時間加熱分解して得たMnO2を、硝酸コバルト(C
o (NU3 )2 : 6H20)と硝Nl ニッケ
ル(N i (NQ)2: 6H20)との混合水溶液
中に分散させておき。
Cobalt nitrate (C
o (NU3)2: 6H20) and nitric nickel (Ni(NQ)2: 6H20).

これに水酸化ジトリラム(Na011)水浴液を加える
ことにより、水酸化コバルト−水酸化ニッケル=M n
 O2混ば物を得た。たたし、炭酸マンカンおよびコバ
ル)・とニッケルの硝V+w等は、り’J 記第1表と
同様の組成となる↓つに所定燵秤取して混合物を調製し
た。
By adding ditrilam hydroxide (Na011) water bath solution to this, cobalt hydroxide-nickel hydroxide = M n
An O2 mixture was obtained. However, nitric acid, mankan carbonate, cobal), nickel nitrate V+w, etc. had the same composition as shown in Table 1 of Ri'J, and a mixture was prepared by weighing out a predetermined amount.

この混合物全純水を用いて十分洗浄した後、120℃3
時間乾燥しさらに空気気流中300℃で3時間加熱した
。次いでこれに20重」11%のシリカゾルを加えて十
分に混線した伎、空気気流中200℃で13時間加熱し
、Coax−Ni O−Mr102  触媒を得た。
After thoroughly washing this mixture with pure water,
It was dried for an hour and then heated at 300° C. for 3 hours in a stream of air. Next, 20% 11% silica sol was added thereto, and the mixture was heated at 200° C. for 13 hours in an air stream to obtain a Coax-NiO-Mr102 catalyst.

触媒の性能試験は実施例1と同様にして行なった。本触
媒の150時間経過後のオゾン分解効率をもとに、触媒
の組成に対するオゾン分解効率の等、高線を図示すると
第4図のよ蟲な″うた。
The catalyst performance test was conducted in the same manner as in Example 1. Based on the ozone decomposition efficiency of this catalyst after 150 hours, the high line of the ozone decomposition efficiency with respect to the composition of the catalyst is plotted as shown in Figure 4.

ここで1本発明による触媒の性能を従来触媒のそれと比
較するため、従来のCoax触媒およびCoax−Ni
O触媒の性能を第5図に示す。第5図は実施例1と同様
の性能試験条件5.おけるCoax−N i O触媒の
組成と、150時間経過後のオシ/分解効率との関係を
示したものであり1図中のイおよび口は、それぞれ実施
例1および2で示した調製法による触媒の性能を示して
いる。第5図かられかるように、 Coax−NiO触
媒はNiOの含有量が15〜25モルチでモルン分解活
性が極大となるが、その効率は高々99.3%である。
Here, in order to compare the performance of the catalyst according to the present invention with that of a conventional catalyst, a conventional Coax catalyst and a Coax-Ni
The performance of the O catalyst is shown in Figure 5. FIG. 5 shows performance test conditions 5. similar to those in Example 1. Figure 1 shows the relationship between the composition of the Coax-N i O catalyst and the oxidation/decomposition efficiency after 150 hours. Shows the performance of the catalyst. As can be seen from FIG. 5, the Coax-NiO catalyst has maximum morn decomposition activity when the NiO content is 15 to 25 moles, but its efficiency is at most 99.3%.

これに対して第3図および第4図に示すように、禾発明
のCoax −N i 0−MnO2触媒すなわちCo
ax 、 NiOお+びMnO2の含有量が。
On the other hand, as shown in FIGS. 3 and 4, the Coax-N i 0-MnO2 catalyst of the present invention, namely
ax , the content of NiO and MnO2.

x =48モルモルよび80モル係 O x、=10モルモルよび38モルチ l xMn−2モルチおよび22モル係 の6本の直線が交わって形成される多角雫、の領域内に
、ある触媒は、第、5図、と同一の反応条件で、従来の
Coax触媒あるいはCoax−NiO触媒では達成す
ることが困難な99.4%以上のオゾン分解、効率変得
られることがわかる。
x = 48 mol mol and 80 mol mol Ox, = 10 mol mol and 38 mol 1 It can be seen that under the same reaction conditions as shown in Figure 5, ozone decomposition of 99.4% or more, which is difficult to achieve with conventional Coax catalysts or Coax-NiO catalysts, can be achieved.

特に上記領域のCooX−NiO−Mn02触輝の中で
、Coax、、、:、 6.0 モル+J、 Nip:
 28モノy、%”+ MnO2’:12モ、ルチなる
組成の触媒は、極めて高いオゾン分解活性を有している
Particularly in the CooX-NiO-Mn02 tactile region of the above region, Coax,...:, 6.0 mol+J, Nip:
A catalyst with a composition of 28 monoy, %" + MnO2': 12 mo, ruti has extremely high ozonolysis activity.

ス1遺し 第2図に記載の装置を用いて僅来のCooX、触媒、C
o Ox −N i Op 媒びNip: 20 %ル
% )および本発明のCo、0x−28モル% 、 N
i0 .12モイレテ。
Using the apparatus shown in Figure 2, CooX, catalyst, and C
oOx-NiOpNip: 20% mol%) and Co of the present invention, 0x-28 mol%, N
i0. 12 moirete.

M n O,触媒の耐久性を比較した。この結、果を第
6図に示す。試験条件は実施例1と同様であった。
The durability of MnO and catalysts was compared. The results are shown in FIG. Test conditions were similar to Example 1.

第6図における特性線ハ、二、ホ、はそれぞれCoax
触媒、Coax−20モ =28モル%N i O−′’、12モル%M n 0
2触媒の試験時間に対するオゾン分□解性能の変化を示
している。
The characteristic lines C, 2, and H in Fig. 6 are Coax, respectively.
Catalyst, Coax-20 mo = 28 mol% N i O-'', 12 mol% M n 0
It shows the change in ozone decomposition performance with respect to the test time of the two catalysts.

第6図かられかるように1本発明の触媒は従来のCoa
x触媒あるいはCoax−NiO触媒に比べ。
As can be seen from FIG. 6, the catalyst of the present invention is a conventional Coa
x catalyst or Coax-NiO catalyst.

オゾン分解性能と共に耐久性についても極めて、優れた
性能を有している。
It has extremely excellent ozone decomposition performance and durability.

以上述べたように本発明の触媒は従来のcoox触媒あ
るいはCoax−NiO触媒に比べ、優れたオゾン分解
性能および耐久性を有、しており、またその採用により
排オゾン処理装置のコンパクト化および使用温度の低減
による経済性の向上、等を達成することが可能となる。
As described above, the catalyst of the present invention has superior ozone decomposition performance and durability compared to conventional coox catalysts or coax-NiO catalysts, and its adoption makes exhaust ozone treatment equipment more compact and usable. It becomes possible to achieve improvements in economic efficiency due to temperature reduction, etc.

本発明の触媒は、上述のよう江高、濃・度排オゾンの処
、理に利用できるものとして説明したが、複写後等の各
種の装置から発、生する堺濃度オゾンの処理にも応用す
ることができる。
The catalyst of the present invention has been described above as being applicable to the treatment and treatment of high-concentration and high-concentration ozone, but it can also be applied to the treatment of high-concentration ozone generated from various devices such as after copying. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の触媒の好ましい組成領域を示す線図1
.第2図は触媒のオゾン分解性・能試:験装置の系統図
、第3図は混練法にょるCoax−NiO−M n 0
2触媒の組成とオゾン分解性能との関係を示す線図、第
4図は懸濁沈殿法忙よるC00C00x−Ni0−!触
媒の組成とオゾン分解性能との関係を示す線図、第5図
は従来のC00X−N、i0触媒の組成と、イゾ、ン分
解性能との関係を示す線図、第6図は従来のCo0X触
媒、CooX7.20モ、ル%NiO触媒および本発明
I) C’、oOx −2,,8−e ル%N i 0
−12モル%MnO2触媒の耐久性を示す線図である。 A・・・オシ、ナイザ、c1.c2・・・三方咀ツク、
D・・・オゾン分解触媒1M・・・オゾン分解装置、K
i。 K2Y・・オゾン濃度測定装置。 f″Il¥1 才Z区 ヤ3 口 1”4閃
FIG. 1 is a diagram showing the preferred composition range of the catalyst of the present invention.
.. Figure 2 is a system diagram of the test equipment for testing the ozone decomposition performance and capacity of catalysts, and Figure 3 is the system diagram of the test equipment for testing the ozone decomposition performance and capacity of catalysts.
Figure 4 is a diagram showing the relationship between the composition of the catalyst and the ozone decomposition performance. A diagram showing the relationship between the composition of the catalyst and the ozone decomposition performance. Figure 5 is a diagram showing the relationship between the composition of the conventional CO0X-N,i0 catalyst and the izone decomposition performance. Co0X catalyst, CooX7.20%NiO catalyst and the present invention I) C', oOx -2,,8-e%Ni0
FIG. 2 is a diagram showing the durability of a -12 mol% MnO2 catalyst. A... Oshi, Naiza, c1. c2...Mikata Tsuku,
D...Ozone decomposition catalyst 1M...Ozone decomposition device, K
i. K2Y...Ozone concentration measuring device. f″Il¥1 Sai Z Ward Ya 3 Mouth 1″4 flash

Claims (1)

【特許請求の範囲】 1)コバルト酸化物(Coax)、ニッケル酸化物(N
ip)およびマンガン酸化物(Mn02)の3成分から
なり、前記各成分の含有量がCoaxが48〜80モル
チ、N i Oが10〜38モルチおよびMnO,が2
〜22モルチであることを特徴とするオゾン分解触媒。 2)特許請求範囲第1項記載の触媒において、各成分の
含有量がCoaxが52〜72モルチ、NiOが16〜
37モル係およびMnO2が5〜20モル係であること
を特徴とするオゾン分解触媒。
[Claims] 1) Cobalt oxide (Coax), nickel oxide (N
ip) and manganese oxide (Mn02), and the content of each of the above components is 48 to 80 mole of Coax, 10 to 38 mole of N i O, and 2 mole of MnO.
An ozone decomposition catalyst characterized in that it has a molecular weight of ~22 molar. 2) In the catalyst according to claim 1, the content of each component is 52 to 72 mole of Coax and 16 to 72 mole of NiO.
37 molar ratio and MnO2 is 5 to 20 molar ratio.
JP57176592A 1982-10-07 1982-10-07 Ozone decomposing catalyst Pending JPS5966347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57176592A JPS5966347A (en) 1982-10-07 1982-10-07 Ozone decomposing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57176592A JPS5966347A (en) 1982-10-07 1982-10-07 Ozone decomposing catalyst

Publications (1)

Publication Number Publication Date
JPS5966347A true JPS5966347A (en) 1984-04-14

Family

ID=16016257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57176592A Pending JPS5966347A (en) 1982-10-07 1982-10-07 Ozone decomposing catalyst

Country Status (1)

Country Link
JP (1) JPS5966347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223563A2 (en) * 1985-11-13 1987-05-27 BARR &amp; WRAY LIMITED Swimming pool water treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0223563A2 (en) * 1985-11-13 1987-05-27 BARR &amp; WRAY LIMITED Swimming pool water treatment
EP0223563A3 (en) * 1985-11-13 1989-11-29 BARR &amp; WRAY LIMITED Swimming pool water treatment

Similar Documents

Publication Publication Date Title
US20100111825A1 (en) Redox active mass for a chemical looping combustion process
JP2000302410A (en) Apparatus for purifying hydrogen
US5804526A (en) Adsorbent for nitrogen oxides and exhaust emission control catalyst
CN109999829A (en) A kind of bimetallic manganese iron low temperature SCR denitration catalyst, preparation method and applications
CN106423139A (en) Rare-earth-based SCR denitration catalyst and preparation method thereof
JPS62117620A (en) Method for removing nitrogen oxide contained in exhaust gas of gasoline engine
JPS62106826A (en) Method for removing nitrogen oxide in diesel exhaust gas
CN110479303A (en) A kind of dry method solid desulphurization denitration catalyst and its desulfurization denitrification agent
CN105268451B (en) Ternary metal complex carrier low-temperature selective catalytic reduction system catalyst and preparation method thereof
CN113731401B (en) La 1-x Mn 1+x O 3 Preparation method of (1)
CN108714426A (en) A kind of nanocube perovskite type catalyst and its preparation method and application
JP2018001080A (en) Co oxidation catalyst and method for producing the same, supported catalyst and exhaust gas treatment apparatus
CN108404906B (en) Nano-rod-shaped manganese-chromium composite oxide low-temperature denitration catalyst and preparation method thereof
JPS5966347A (en) Ozone decomposing catalyst
CN111135834A (en) Photothermal Synergistic Degradation of Toluene by LaNixCo1-xO3 La-based Perovskites
US7223715B2 (en) Purification catalyst, preparation process therefor and gas-purifying apparatus
CN113649020A (en) A low-temperature SCR denitration catalyst loaded with high-entropy oxide and its preparation method and application
CN115920905A (en) Single-phase rock salt type high-entropy oxide catalyst and preparation method and application thereof
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
CN114984944B (en) Preparation method of a high-sulfur-resistant low-temperature SCR catalyst
JP2005034682A (en) Co modification catalyst and its production method
JPS6038972B2 (en) Ozone decomposition catalyst
JPS6097049A (en) Ozone decomposing catalyst
CN110465283A (en) A kind of low-temperature denitration catalyst and preparation method thereof
JPS6117545B2 (en)