[go: up one dir, main page]

JPS595928A - Light temperature sensor - Google Patents

Light temperature sensor

Info

Publication number
JPS595928A
JPS595928A JP11500682A JP11500682A JPS595928A JP S595928 A JPS595928 A JP S595928A JP 11500682 A JP11500682 A JP 11500682A JP 11500682 A JP11500682 A JP 11500682A JP S595928 A JPS595928 A JP S595928A
Authority
JP
Japan
Prior art keywords
organic medium
temperature sensor
dissolved
high molecular
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11500682A
Other languages
Japanese (ja)
Inventor
Yoshio Sugiyama
義雄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11500682A priority Critical patent/JPS595928A/en
Publication of JPS595928A publication Critical patent/JPS595928A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/16Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To enable the prevention of ignited explosion in a mine or the like by having a high molecular substance dissolved or dispersed somewhere between two light wave guides while an organic medium adapted to be reversibly precipitated by a temperature change. CONSTITUTION:A light temperature sensor is made up of a temperature detection body 1, optical fibers 2 and 2', a light source 3, a photodetector 4 and focusing lenses 5 and 5' while the detection body 1 houses an organic medium in which a high molecular substance is dissolved or dispersed in a transparent cell. The high molecular substance and the organic medium preferably combine polystylene and cyclohexane and polyethylene and diphenyl ether to be reversibly precipitated at the room temperature and near 150 deg.C or dissolved. The blending ratio thereof is more than 0.01vol% for the high molecular substance in terms of the total of the two components. The thickness of a cell housing both shall be 0.5mm. or more.

Description

【発明の詳細な説明】 本発明は光温度センサに関する。[Detailed description of the invention] The present invention relates to an optical temperature sensor.

従来、防爆という観点より光ファイバを用いた光温度セ
ンサが各種考案されている。これは化学プラント、貯油
基地、鉱内等における電気式センサーの火花による引火
爆発を防ぐためのものである。また光ファイバの長距離
伝送性による遠隔地の温度検出等に有効な手段を与える
ものである。
Conventionally, various optical temperature sensors using optical fibers have been devised from the viewpoint of explosion protection. This is to prevent ignition and explosions caused by sparks from electrical sensors in chemical plants, oil storage terminals, mines, etc. It also provides an effective means for temperature detection in remote locations due to the long-distance transmission properties of optical fibers.

本発明の目的はこの分野で高分子物質の可逆的析出現象
を利用して温度検知をする光温度センサを提供すること
である。
An object of the present invention is to provide an optical temperature sensor in this field that detects temperature by utilizing the reversible precipitation phenomenon of polymeric substances.

本発明において用いられる高分子物質は比較的高温度で
は有機媒体中に溶解または分散し透明であるが、温度を
下げると高分子物質の一部または全部が媒体中で析出し
、不透明となる。逆に温度を上げるともとの透明な状態
にもどる。その析出が起る温度は、高分子物質と有機媒
体の組み合せ及び高分子物質の分子量によって変えるこ
とができる。たとえばA、R5hultyとP、’J、
’F’1ory著 ジャーナル・オブ・アメリカンケミ
カル・リナイアティ 7ダ巻 1760η(/夕に、2
年); RKOningSV8%著ジャーナル・Aブ・
ポリマー ′リイエンス パートA−、!、&巻32.
r頁(79乙ざ年)を参照。高分子物質と有機媒体とは
、適宜組合わせて選択することができるが、溶解もしく
は分散した状態で透明、好ましくは無色透明であり、耐
久性があり、毒性のないものが良い。以上の条件を満足
【7室懸及び150°C付近で可逆的に析出、溶解させ
るだめの好適な組み合せは、それぞれポリスチレンとシ
クロヘキサン及びポリエチレンとジフェニルニーデルで
ある。
The polymeric substance used in the present invention is dissolved or dispersed in an organic medium and is transparent at relatively high temperatures, but when the temperature is lowered, part or all of the polymeric substance precipitates in the medium and becomes opaque. Conversely, when the temperature is raised, it returns to its original transparent state. The temperature at which the precipitation occurs can be varied depending on the combination of polymeric material and organic medium and the molecular weight of the polymeric material. For example, A, R5hulty and P, 'J,
'F'1ory, Journal of American Chemical Renewability, Volume 7, 1760η (/Evening, 2
); RKOning SV8% Journal AB
Polymer 'Reliance Part A-,! , & Volume 32.
See page r (79 Otsuza). The polymeric substance and the organic medium can be selected in an appropriate combination, but one that is transparent in a dissolved or dispersed state, preferably colorless and transparent, durable, and non-toxic is preferable. The above conditions are satisfied. [Suitable combinations of seven chambers and reversibly precipitated and dissolved at around 150°C are polystyrene and cyclohexane and polyethylene and diphenyl needle, respectively.

高分子物質と有機媒体との配合割合は高分子物質か有機
媒体に溶解または分散つる範囲内であれば任意である。
The blending ratio of the polymeric substance and the organic medium is arbitrary as long as the polymeric substance is dissolved or dispersed in the organic medium.

しかし、高分子物質の量があまり小であると、調度変化
前後の光透過の差が小さくなって、実用的でない。従、
て高分子物質は、それと有機媒体との会計縦に対して体
積分率o、oi以上含有されることが好ましい。また、
高分子物質が有機媒体t(溶解または分散できる最大値
に限りがあり、低温時の透過率を小さくする必要がある
ため高分子物質と有機媒体とを含有するセルの厚さはQ
j;mm以上であることが好ましい。
However, if the amount of the polymeric substance is too small, the difference in light transmission before and after the furniture change becomes small, making it impractical. Follow,
It is preferable that the polymer substance is contained in a volume fraction of o, oi or more with respect to the total length of the polymer substance and the organic medium. Also,
The thickness of a cell containing a polymeric substance and an organic medium is
It is preferable that j; mm or more.

オ/図に光温度センタの構成を示す。本発明の光温度セ
ンサは高分子物質と有機媒体よりなる温度検知体/、光
ファイバ2..2’ 、光源3.光検知器l、レンズ例
えば集束性レンズs、slよりなる。
The configuration of the optical temperature center is shown in the figure below. The optical temperature sensor of the present invention includes a temperature sensing body made of a polymeric substance and an organic medium; an optical fiber; .. 2', light source 3. It consists of a photodetector l, lenses such as focusing lenses s, sl.

温度検知体は透明セル中に高分子物質を溶解または分散
した有機媒体を収容している。
The temperature sensor contains an organic medium in which a polymeric substance is dissolved or dispersed in a transparent cell.

本発明による光温度センダによれば電気と光の変換部で
ある光#3.光検知器lは測定点より十分離れた位置に
設置できるため防爆性がある。
According to the optical temperature sensor according to the present invention, the light #3 which is the electricity-light converter. The photodetector l can be installed at a sufficient distance from the measurement point, so it is explosion-proof.

化学プラント、貯油基地、鉱内等で高分子物質と有機媒
体として室温付近で可逆的析出現象を示すポリスチレン
とシクロヘキサンを使用した光温度センサは、空調用光
1M度センサとして有効であり、750°C付近で可逆
的析出現象を示すポリエチレンとジフェニルエーテルを
使用した光温度センサは、火災報知器として利用するこ
とができる。
Optical temperature sensors using polystyrene and cyclohexane, which exhibit reversible precipitation phenomena near room temperature as polymeric substances and organic media in chemical plants, oil storage terminals, mines, etc., are effective as optical 1M degree sensors for air conditioning, and are effective at 750 degrees. An optical temperature sensor using polyethylene and diphenyl ether, which exhibits a reversible precipitation phenomenon near C, can be used as a fire alarm.

また、水銀温度計や水銀を利用した光温度センサでは、
破損時に人体に害を及ぼし後処理に時間を要するが、前
記のような高分子物質と有機媒体を利用した光温度セン
サであれば、そのようなこともない。
In addition, with mercury thermometers and optical temperature sensors that use mercury,
When broken, it causes harm to the human body and requires time for post-processing, but this does not occur if the optical temperature sensor uses a polymeric substance and an organic medium as described above.

以−F実施例をあげて、本発明をさらに詳細に説明する
が、これにより本発明の範囲が限定されるものでないこ
とは、いうまでもない。
The present invention will be described in more detail with reference to Examples, but it goes without saying that the scope of the present invention is not limited thereby.

実施例/ ポリスチレン0.3grとシクロヘキサン/、21nl
をフラスコに入れ加熱すると均一な溶液が得られた。こ
れを室fill″Cで放置すると底部にシクロヘキサン
に溶は切らないポリスチレンが析出していたが、上澄液
は無色透明均一溶液であった。
Example/Polystyrene 0.3gr and cyclohexane/21nl
When heated in a flask, a homogeneous solution was obtained. When this was left in room fill''C, polystyrene, which was not soluble in cyclohexane, was precipitated at the bottom, but the supernatant liquid was a colorless and transparent homogeneous solution.

これを10mm×10mmXダ5 tn mの石英セル
に入れ紫外可視分光光度計の試料側に入れた。シクロヘ
キサンを入れた同じ大きさの石英セルを参照側に入れた
。室温/g″Cで300nmよりg30nmまで測定す
ると、透過率はほぼ100%であった。
This was placed in a 10 mm x 10 mm x 5 tnm quartz cell and placed on the sample side of an ultraviolet-visible spectrophotometer. A quartz cell of the same size containing cyclohexane was placed on the reference side. When measured from 300 nm to g30 nm at room temperature/g''C, the transmittance was approximately 100%.

試料の温度をくり返し変えてざ30 nmの波長の光で
透過率を測定するとオフ図に示すように、透過(5) 率の温度変化が観測された。61.0nlnの波長の光
の場合もオフ図と同様であった。温度検出体/である試
料の入った石英セルを光ファイバー2と光ファイバー2
1の間に置き光源3よりざ!;0nrnまたは6乙Qn
mの波長の光を発し、光検知器lで出力の有無を測定し
た。レンズ5は光ファイバー2の出射端に設けられてい
て、ファイバー−からの光を平行光に変換して光検知器
lに入射させるよファイバー、21の入射端に設けであ
る。温度検出体の周囲の温度が10″Cであると光検知
器グの出力は無く、lj″Cであると出力は有った。
When the temperature of the sample was repeatedly changed and the transmittance was measured using light with a wavelength of 30 nm, a change in the transmittance (5) with temperature was observed, as shown in the off-graph. The case of light with a wavelength of 61.0 nln was also similar to the off-graph. A quartz cell containing a sample, which is a temperature sensor, is connected to optical fiber 2 and optical fiber 2.
Place it between 1 and light source 3! ;0nrn or 6 Otsu Qn
Light with a wavelength of m was emitted, and the presence or absence of output was measured using a photodetector l. A lens 5 is provided at the output end of the optical fiber 2, and is provided at the input end of the fiber 21 to convert the light from the fiber into parallel light and input it to the photodetector 1. There was no output from the photodetector when the temperature around the temperature detector was 10''C, and there was an output when it was lj''C.

逆に温度を下げ10°Cにすると光検知器ダの出力は無
かった。
Conversely, when the temperature was lowered to 10°C, there was no output from the photodetector.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであって、オ/図は光
温度センサの構成を示す図であり、オフ図はポリスチレ
ンのシクロヘキサン溶液の光学特性を示すグラフである
。 71M度検出体 、  、2.j’:光ファイノ4 。 3:光源 、 q:光検知器 。 s、sl:レンズ (7) 第1図 第2図 0       5      10      15
      20      25屈羨(0C)
The drawings show examples of the present invention, in which the O/D figure is a diagram showing the configuration of an optical temperature sensor, and the O/D figure is a graph showing the optical characteristics of a cyclohexane solution of polystyrene. 71M degree detection object, ,2. j': Optical Fino 4. 3: light source, q: photodetector. s, sl: Lens (7) Figure 1 Figure 2 0 5 10 15
20 25 Quen (0C)

Claims (1)

【特許請求の範囲】 (]) 2個の光導波路の中間に、高分子物質も溶解ま
たは分散させた、温度変化により可逆的にその高分子物
質を析出させる有機媒体を介在させてなる光温度センサ
。 (2)前記高分子物質と有機媒体がそれぞれポリスチレ
ンとシクロヘキサンである特許請求の範囲17項記載の
光温度センサ。 (3)前記高分子物質と有機媒体が、それぞれポリエチ
レンとジフェニルエーテルである特許ill 求ノ範囲
オ1項記載の光温度センサ。 (4)前記高分子物質はそれと前記有機媒体との合計量
に対して体積分率0.0 /以上含有される特許請求の
範囲17項記載の光温度センサ。−(5)前記高分子物
質と有機媒体がセル内に収容されそのセルの厚さがQj
;mm以上であることを特徴とする特許請求の範囲17
項記載の光温度センサ。
[Scope of Claims] (]) A light temperature system in which an organic medium in which a polymeric substance is also dissolved or dispersed and which precipitates the polymeric substance reversibly by temperature change is interposed between two optical waveguides. sensor. (2) The optical temperature sensor according to claim 17, wherein the polymeric substance and the organic medium are polystyrene and cyclohexane, respectively. (3) The optical temperature sensor according to item 1 of the patent, wherein the polymeric substance and the organic medium are polyethylene and diphenyl ether, respectively. (4) The optical temperature sensor according to claim 17, wherein the polymer substance is contained in a volume fraction of 0.0/or more with respect to the total amount of the polymer substance and the organic medium. -(5) The polymer substance and the organic medium are housed in a cell, and the thickness of the cell is Qj.
;Claim 17 characterized in that it is not less than mm.
Optical temperature sensor described in section.
JP11500682A 1982-07-02 1982-07-02 Light temperature sensor Pending JPS595928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11500682A JPS595928A (en) 1982-07-02 1982-07-02 Light temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11500682A JPS595928A (en) 1982-07-02 1982-07-02 Light temperature sensor

Publications (1)

Publication Number Publication Date
JPS595928A true JPS595928A (en) 1984-01-12

Family

ID=14651949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11500682A Pending JPS595928A (en) 1982-07-02 1982-07-02 Light temperature sensor

Country Status (1)

Country Link
JP (1) JPS595928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906107A (en) * 1986-02-12 1990-03-06 Soundek Oy Fibre-optic thermometer or temperature alarm device
US6019507A (en) * 1992-11-25 2000-02-01 Terumo Cardiovascular Systems Corporation Method of making temperature sensor for medical application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906107A (en) * 1986-02-12 1990-03-06 Soundek Oy Fibre-optic thermometer or temperature alarm device
US6019507A (en) * 1992-11-25 2000-02-01 Terumo Cardiovascular Systems Corporation Method of making temperature sensor for medical application

Similar Documents

Publication Publication Date Title
Chen et al. Simultaneous measurement of trace dimethyl methyl phosphate and temperature using all fiber Michaelson interferometer cascaded FBG
US7006718B2 (en) Distributed optical fiber sensor with controlled response
Alwis et al. Fibre optic long period grating-based humidity sensor probe using a Michelson interferometric arrangement
GB1259383A (en)
EP0142270B1 (en) Optical fibre thermometer and method of measuring temperature
Liang et al. High-sensitivity optical fiber relative humidity probe with temperature calibration ability
Yu et al. Fiber-optic Fabry-Perot hydrogen sensor coated with Pd-Y film
JPS595928A (en) Light temperature sensor
Laarossi et al. Ultrahigh temperature and strain hybrid integrated sensor system based on Raman and femtosecond FBG inscription in a multimode gold-coated fiber
EP0259412B1 (en) Fibre-optic thermometer or temperature alarm device
Neves et al. Humidity-insensitive optical fibers for distributed sensing applications
Libish et al. Glucose concentration sensor based on long period grating fabricated from hydrogen loaded photosensitive fiber
US5020884A (en) Optical cell
CN110031404A (en) A kind of high-temperature-resistant gas absorption cell containing list, the compound collimator of multimode fibre
CN1017928B (en) Mercury temperature sensor with optical fiber
Wysokiński et al. Fiber optic gas sensor for on-line CO2 monitoring
JPS60230104A (en) Optical fiber
Gentile et al. Infrared fiber optical materials
Andrawis et al. Hydrazine concentration fiber optic reversible sensor
Andrawis et al. Reversible low-loss fiber optic hydrazine sensor
US934500A (en) Device for detecting decomposition of explosives.
KR101736764B1 (en) Plastic Optical Fiber temperature sensor based on reversible thermochromic material and maunfacturing method at the same
Wu et al. Optical fiber gas sensor based on organic polymer
Mathew et al. Agarose coated single mode fiber bend for monitoring humidity
KR101595986B1 (en) A composition of a gel-type temperature monitoring sensor and thereof preparation method