[go: up one dir, main page]

JPS595595A - Thin film el element - Google Patents

Thin film el element

Info

Publication number
JPS595595A
JPS595595A JP57114473A JP11447382A JPS595595A JP S595595 A JPS595595 A JP S595595A JP 57114473 A JP57114473 A JP 57114473A JP 11447382 A JP11447382 A JP 11447382A JP S595595 A JPS595595 A JP S595595A
Authority
JP
Japan
Prior art keywords
light
thin film
light emitting
emitting layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57114473A
Other languages
Japanese (ja)
Other versions
JPH0318320B2 (en
Inventor
浩司 谷口
柿原 良亘
康一 田中
隆 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57114473A priority Critical patent/JPS595595A/en
Publication of JPS595595A publication Critical patent/JPS595595A/en
Publication of JPH0318320B2 publication Critical patent/JPH0318320B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は交流電界の印加に依ってE L (Elect
r。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes the application of an alternating current electric field to generate E L (Elect
r.

Lum1nescence )発光を呈する薄膜EL素
子の構造に関し、特に外部発光効率を改善することを企
図するものである。
The present invention relates to the structure of a thin film EL element that emits light (luminescence), and is intended to particularly improve external light emitting efficiency.

従来、交流動作の薄膜EL素子として、絶縁耐圧、発光
効率及び動作の安定性等を高めるために0、1−2.0
 w t%のMn  (あるいはCunAl!、Br等
)をドープしたZ n S J Z n S e  等
の半導体発光層をY2O3、TiO2等の誘電体動1摸
でサンドーイ獄/Lチした三層構造ZnS:Mn  (
又はZn5e  :Mn)EL素子が開発され、発光諸
特性の向上か確かめられて−る。この薄膜EL素子はK
Hz  の交流電界印加によって高輝度発光し、しかも
長寿命であるという特徴を有している。
Conventionally, AC-operated thin film EL devices have been used with 0, 1-2.0 to improve dielectric strength, luminous efficiency, operational stability, etc.
A three-layer structure in which a semiconductor light-emitting layer such as ZnSJZnSe doped with wt% Mn (or CunAl!, Br, etc.) is mixed with a dielectric material such as Y2O3, TiO2, etc. ZnS:Mn (
Alternatively, a Zn5e:Mn) EL device has been developed, and it has been confirmed whether the various light emitting characteristics are improved. This thin film EL element is K
It emits high-intensity light when an alternating current electric field of Hz is applied, and has a long lifespan.

またこの薄膜EL素子の発光に関しては印加電圧を昇圧
して−く過程と高電圧側より降圧して旨く過程で、同じ
印加電圧に対して発光輝度が異なるといったヒステリシ
ス特性を有していることが発見され、そしてこのヒステ
リシス特性を有する薄膜EL素子に印加電圧を昇圧する
過程に於いて、光、電界、熱等が付与される゛と薄膜E
L素子はその強度に対応した発光輝度の状態に励起され
、光、電界、熱等を1余去して元の状態に戻しても発光
輝度は高くなった状態で維持される、いわゆるメモリー
現象か表示技術の新たな利用分野を開拓するに到った。
Furthermore, the light emission of this thin film EL element has a hysteresis characteristic in which the luminance of the light emitted by the same applied voltage differs between the process of increasing the applied voltage and the process of decreasing the voltage from the high voltage side. In the process of increasing the applied voltage to the thin film EL element that was discovered and has this hysteresis characteristic, light, electric field, heat, etc. are applied to the thin film EL element.
The L element is excited to a state of luminescence brightness corresponding to its intensity, and even if the light, electric field, heat, etc. are removed and returned to the original state, the luminance remains high, a so-called memory phenomenon. This led to the development of a new field of use for display technology.

薄膜EL素子の1例としてZnS:Mn  薄膜EL素
子の基本的構造を第1図に示す。
FIG. 1 shows the basic structure of a ZnS:Mn thin film EL device as an example of a thin film EL device.

第1図に基−て薄膜EL素子の構造を具体的に説明する
と、ガラス基板1上KIn203.SnO2等の透明型
@2、さらにその上に積層してY2O,。
The structure of the thin film EL element will be explained in detail based on FIG. 1.KIn203. Transparent type @2 such as SnO2, and Y2O layered on top of it.

Ti0z  、Al2O3,5i3Na 、SiO2等
からなる第1の誘電体層3がスパッタあるいは電子ビー
ム蒸着法等により重畳形成されている。第1の誘電体層
3上にはZnS:Mn  焼結ペレットを電子ビーム蒸
着することにより得られるZnS  発光層4か形成さ
れている。この時蒸着用のZnS:Mn焼結ペレットに
は活性物質となるMnが目的に応じた濃度に設定された
ペレットが使用される。
A first dielectric layer 3 made of TiOz, Al2O3, 5i3Na, SiO2, etc. is formed in an overlapping manner by sputtering, electron beam evaporation, or the like. A ZnS light emitting layer 4 is formed on the first dielectric layer 3 by electron beam evaporation of ZnS:Mn sintered pellets. At this time, the ZnS:Mn sintered pellets used for vapor deposition are pellets in which Mn, which is an active substance, is set at a concentration depending on the purpose.

Z、n S  発光層4上には第1の誘電体層3と同様
の柑料群より選定された材質から成る第2の誘電体層5
か積層され、更にその上にA4等から成る背面電極6が
蒸着形成されている。透明電極2と背面電極6は交流型
#7に接続され、薄膜EL素子が駆動される。
Z, n S On the light emitting layer 4 is a second dielectric layer 5 made of a material selected from the same group of citrus materials as the first dielectric layer 3.
A back electrode 6 made of A4 or the like is further formed by vapor deposition thereon. The transparent electrode 2 and the back electrode 6 are connected to an AC type #7, and the thin film EL element is driven.

電極2.61mKAC電圧を印加すると、ZnS発光層
40両側の誘電体層2層5間に上記AC電圧が誘起され
ることになり、従ってZnS  発光層4内に発生した
電界によって伝導帯に励起されかつ加速されて充分なエ
ネルギーを得た電子が、直接Mn発光センターを励起し
、励起されたMn発光センターが基底状態に戻る際に黄
橙色の発光を行なう。即ち高電界で加速された電子がZ
nS 発光層4中の発光センターであるZnサイトに入
ったMn原子の電子を励起し、基底状態に落ちる時、略
々5850Aをピークに幅広め波長@域で、強−発光を
呈する。活性物質としてMn以外に希土類の弗化物を用
いた場合にはこの希土類に特有の緑色その他の発光色が
得られる。
When a 2.61 mK AC voltage is applied to the electrodes, the above AC voltage will be induced between the two dielectric layers 5 on both sides of the ZnS light emitting layer 40, and therefore the ZnS light emitting layer 40 will be excited to the conduction band by the electric field generated within the light emitting layer 4. The accelerated electrons that have obtained sufficient energy directly excite the Mn luminescence center, and when the excited Mn luminescence center returns to the ground state, it emits yellow-orange light. In other words, electrons accelerated in a high electric field become Z
nS Excites the electrons of the Mn atoms that have entered the Zn site, which is the luminescent center in the luminescent layer 4, and when they fall to the ground state, exhibits strong luminescence in a wide wavelength range with a peak of approximately 5850A. When a rare earth fluoride other than Mn is used as the active substance, green and other luminescent colors characteristic of this rare earth element can be obtained.

しかしながら、上記構造の薄[EL素子に於いて、発光
層内部の出力光はその全てを外部に導出することは不可
能である。即ち、発光層中での発光は等方的であるが、
このうちの大部分が外部に取り出される途中の光学的界
面に於ける全反射により薄膜EL素子内部に閉じ込めら
れる。
However, in the thin EL device having the above structure, it is impossible to lead all of the output light inside the light emitting layer to the outside. That is, although the light emission in the light emitting layer is isotropic,
Most of this is trapped inside the thin film EL element due to total reflection at the optical interface on the way to the outside.

透明電極、誘電体層、発光層の屈折率をそれぞれnTE
*nrNSLnEM  で表わし、n E M >n 
T E 5nrNs>1とすれば、素子面に対し全反射
臨界角6以上の発光角度をもつ光子は全て全反射され素
子内に閉じ込められる。この様子を第2図に示す。
The refractive index of the transparent electrode, dielectric layer, and light emitting layer is nTE.
*Represented by nrNSLnEM, n E M > n
If T E 5nrNs>1, all photons having an emission angle with respect to the element surface that is a total reflection critical angle of 6 or more are totally reflected and confined within the element. This situation is shown in FIG.

、!−IJ ここでθはスネルの法則よりθ:S1n  −T、。,! -IJ Here, θ is θ: S1n −T, according to Snell's law.

で与えられる。即ち、発光層内で立体角4πで放射され
た光のうち、立体角4z(,1−cosθ)の光のみ外
部に取り出される。外部発光強度B。
is given by That is, of the light emitted within the light-emitting layer at a solid angle of 4π, only the light at a solid angle of 4z (, 1-cos θ) is extracted to the outside. External luminous intensity B.

は内部発光強度Biにより次式で与えられる。is given by the following equation using the internal emission intensity Bi.

たとえばn I M−2,3(ZnSに相当)とすれば
、内部発光の90%が外部に導出されなくなり、内部に
閉じ込められる。
For example, if n I M-2,3 (corresponding to ZnS), 90% of the internal light emission will not be led out to the outside and will be confined inside.

本発明は上記問題点に鑑み、(1)式が成立しない薄膜
発光素子の構造を確立し、内部発光効率でなく外部発光
効率を高めだ新規有用な薄膜EL素子を提供することを
目的とするものである。
In view of the above problems, it is an object of the present invention to establish a structure of a thin film light emitting device in which the formula (1) does not hold, and to provide a new and useful thin film EL device that increases external light emitting efficiency rather than internal light emitting efficiency. It is something.

以下、本発明を実施例に従って図面を参照しながら詳説
する。
Hereinafter, the present invention will be explained in detail according to embodiments with reference to the drawings.

第3図、第4図はそれぞれ本発明の1実施例を説明する
薄1漢E L素子の要部構成説明図である。
FIGS. 3 and 4 are explanatory views of the main part configuration of a thin 1-inch EL element, respectively, explaining one embodiment of the present invention.

第3図に示す如く、透明電極2、誘電体層3゜54ト、
、゛^光層4の少なくとも1層に於いて可視光の散乱構
造となるような粒界を形成し、(1)式が成立しない構
造とする。@3図は発光層4内に散乱粒界8を形成した
例を示す。発光層4内の発光センターで発生した光は発
光層4内の散乱粒界8で多方向性となり、全反射されな
い方向へ進行した光が外部へ導出される。
As shown in FIG. 3, a transparent electrode 2, a dielectric layer 3°54,
, In at least one layer of the optical layer 4, grain boundaries are formed so as to form a visible light scattering structure, so that the structure does not satisfy equation (1). Figure @3 shows an example in which scattering grain boundaries 8 are formed within the light emitting layer 4. The light generated at the light emitting center in the light emitting layer 4 becomes multidirectional at the scattering grain boundary 8 in the light emitting layer 4, and the light traveling in a direction that is not totally reflected is guided to the outside.

あるいは透明電極2、誘電体層3,5、発光層4の少な
くとも一層の形成過程で第4図に示す如く界面を平坦と
せずに可視光が充分に散乱し得る凹凸形状の接合界面と
することにより(1)式が成立しない構造とする。
Alternatively, in the process of forming at least one layer of the transparent electrode 2, the dielectric layers 3 and 5, and the light-emitting layer 4, as shown in FIG. 4, the interface is not flat but has an uneven shape that can sufficiently scatter visible light. Therefore, the structure is such that equation (1) does not hold.

(1)式の成立しな−素子構造においては、全反射臨界
角6以上の放射角度をもつ光も素子内で乱反射により全
反射臨界角θより小さい放射角度をもった成分が生成さ
れて外部へ取り出される。
Equation (1) does not hold - In the element structure, even light with a radiation angle greater than the critical angle of total reflection 6 is diffusely reflected within the element, producing a component with a radiation angle smaller than the critical angle of total reflection θ, which is reflected externally. taken out.

以上より(1)式の代わりに次式が成立する。From the above, the following equation holds true instead of equation (1).

本発明による素子は外部光の入!iIJに対しても散乱
が生じるたぬ、いわゆる白濁を示す。
The device according to the invention allows no external light to enter! It also shows so-called white turbidity without scattering for iIJ.

発光層4内の散乱粒界8は蒸着工程で蒸着材料を部分的
に分割形成することによりその分割境界面を散乱粒界8
とする方法等により形成される。
The scattering grain boundaries 8 in the light-emitting layer 4 are formed by partially dividing the vapor deposition material in the vapor deposition process, so that the dividing boundary surface becomes the scattering grain boundary 8.
It is formed by a method such as

また接合界面の凹凸は研摩、エツチング等により容易に
形成される。
Further, irregularities on the bonding interface can be easily formed by polishing, etching, etc.

第5図は印加電圧対発光輝度(B−V)特性を示すグラ
フである。図中の曲線11は上記実施例の素子であり、
I2は鏡面反射を主とする従来の素子である。曲線lI
で明らかな如く上記実施例の薄暎EL素子は発光輝度の
著しい増加が達成されている。
FIG. 5 is a graph showing applied voltage vs. luminance brightness (B-V) characteristics. Curve 11 in the figure is the element of the above example,
I2 is a conventional element mainly for specular reflection. curve lI
As is clear from the above, the thin EL device of the above example achieved a remarkable increase in luminance.

以上詳説した如く、本発明によれば出力光の散乱反射構
造を素子内部に形成することにより、外部発光効率を著
しく増加することができる。
As described in detail above, according to the present invention, by forming a scattering/reflection structure for output light inside the element, external light emission efficiency can be significantly increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第“1図は薄1模EL素子の基本的構造を示す構成図で
ある。 @2図は出力光の進行過程を示す説明図である。 % 3.1図及び第4図はそれぞれ本発明の1実施例を
115m?る薄1摸EL素子の要部構成説明図である。 第5図は印加電圧対発光輝度特性を示す特性図である。 ■・・・ガラス基板、 2・・・透明電極、 3.5・
・・誘電体層、  4・・・発光層、  6・・・背面
電極、8・・・散乱粒界。 代理人 弁理士 福 士 愛 彦(他2名)第4 図 190     200     210      
220Gp no を圧イVノ 第5図
Figure 1 is a block diagram showing the basic structure of a thin 1-millimeter EL element. Figure 2 is an explanatory diagram showing the progress process of output light. Fig. 5 is a diagram showing the main parts of a thin EL element having a thickness of 115 m in one example. Fig. 5 is a characteristic diagram showing applied voltage vs. luminance luminance characteristics. ■... Glass substrate, 2... Transparent electrode, 3.5・
...Dielectric layer, 4...Light emitting layer, 6...Back electrode, 8...Scattering grain boundary. Agent Patent attorney Aihiko Fuku (and 2 others) Figure 4 190 200 210
Pressure 220Gp no Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、電圧印加によりEL発光を呈する発光層を有する薄
膜構造部を1対の電極間に介設して成る薄膜EL素子に
於いて、前記薄]模構造部に出力先の散乱構造を形成し
たことを1#徽とする薄膜EL素子。
1. In a thin film EL element in which a thin film structure having a light emitting layer that emits EL light upon application of a voltage is interposed between a pair of electrodes, a scattering structure as an output destination is formed in the thin film structure. Thin film EL element with 1#.
JP57114473A 1982-06-30 1982-06-30 Thin film el element Granted JPS595595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114473A JPS595595A (en) 1982-06-30 1982-06-30 Thin film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114473A JPS595595A (en) 1982-06-30 1982-06-30 Thin film el element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2334695A Division JPH03225791A (en) 1990-11-29 1990-11-29 Thin film electroluminescence (el) element

Publications (2)

Publication Number Publication Date
JPS595595A true JPS595595A (en) 1984-01-12
JPH0318320B2 JPH0318320B2 (en) 1991-03-12

Family

ID=14638609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114473A Granted JPS595595A (en) 1982-06-30 1982-06-30 Thin film el element

Country Status (1)

Country Link
JP (1) JPS595595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035890A1 (en) * 2000-10-25 2002-05-02 Matsushita Electric Industrial Co., Ltd. Luminous element, and display device and lighting device using it
US7834528B2 (en) 2004-05-26 2010-11-16 Nissan Chemical Industries, Ltd. Planar luminous body with improved light-extraction efficiency

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130193A (en) * 1973-04-11 1974-12-13
JPS5214395A (en) * 1975-07-22 1977-02-03 Phosphor Prod Co Ltd Electroluminescent device
JPS5743391A (en) * 1980-08-26 1982-03-11 Fujitsu Ltd Method of producing el display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130193A (en) * 1973-04-11 1974-12-13
JPS5214395A (en) * 1975-07-22 1977-02-03 Phosphor Prod Co Ltd Electroluminescent device
JPS5743391A (en) * 1980-08-26 1982-03-11 Fujitsu Ltd Method of producing el display element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035890A1 (en) * 2000-10-25 2002-05-02 Matsushita Electric Industrial Co., Ltd. Luminous element, and display device and lighting device using it
US7342246B2 (en) 2000-10-25 2008-03-11 Matsushita Electric Industrial Co., Ltd. Light-emitting element and display device and lighting device using same
US7741771B2 (en) 2000-10-25 2010-06-22 Panasonic Corporation Light-emitting element and display device and lighting device using same
US7834528B2 (en) 2004-05-26 2010-11-16 Nissan Chemical Industries, Ltd. Planar luminous body with improved light-extraction efficiency

Also Published As

Publication number Publication date
JPH0318320B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US8456082B2 (en) Surface-emission light source with uniform illumination
JPH0766856B2 (en) Thin film EL device
JPS6240836B2 (en)
JP4406213B2 (en) Organic electroluminescence element, surface light source and display device
JPS595595A (en) Thin film el element
KR20070065486A (en) White light emitting device
KR101057349B1 (en) White light source with enhanced brightness
JPH03225791A (en) Thin film electroluminescence (el) element
JPH06151061A (en) Electroluminescent element
JPH05299175A (en) El luminescence element
JPS5827506B2 (en) Blackened electrode structure
JPS6025195A (en) El element
JPS5835587A (en) Thin film el element
JP2583994B2 (en) Thin-film electroluminescence device
JPH0123917B2 (en)
JPS6323640B2 (en)
JPH0773971A (en) El element
JPH07122366A (en) Blue emission el element
JPS5855636B2 (en) Thin film EL element
JP3056894B2 (en) Electroluminescent light source
JPH03141586A (en) Electroluminescent element
JPS60160594A (en) Thin film el element
KR970004496B1 (en) A method for manufacture for electric luminecence device
JPS62202492A (en) Thin film el device
JPS61142689A (en) Luminescence apparatus and driving thereof