JPS5949532B2 - Gas concentration analyzer - Google Patents
Gas concentration analyzerInfo
- Publication number
- JPS5949532B2 JPS5949532B2 JP52014472A JP1447277A JPS5949532B2 JP S5949532 B2 JPS5949532 B2 JP S5949532B2 JP 52014472 A JP52014472 A JP 52014472A JP 1447277 A JP1447277 A JP 1447277A JP S5949532 B2 JPS5949532 B2 JP S5949532B2
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- detector
- gas
- sample gas
- gas flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
【発明の詳細な説明】
本発明はガス濃度分析装置に関し、比較的簡単な構造で
、一個の検出器で広範囲の濃度にわたる精度のよい分析
を行なえるものを提供することを目的としている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas concentration analyzer, and an object of the present invention is to provide a gas concentration analyzer that has a relatively simple structure and can perform accurate analysis over a wide range of concentrations using a single detector.
ガス濃度の分析方法としては、ガスクロマトグラフ法、
赤外線分析法、化学発光法、水素炎イオン化法、炎光光
度法等があり、測定時間の短縮化及び応答性能の向上を
はかるため、たとえばNDIR、GLD、FID、FP
D等の専用検出器が用いられている。Gas concentration analysis methods include gas chromatography,
There are infrared analysis methods, chemiluminescence methods, flame ionization methods, flame photometry methods, etc. In order to shorten measurement time and improve response performance, for example, NDIR, GLD, FID, FP
A dedicated detector such as D is used.
しかし、これらの検出器はいずれも共通した欠点をもつ
ている。それは各検出器は、それぞれ分析感度がもつと
もすぐれている一定の測定濃度範囲を有しており、一個
の検出器では、ある限られた測定濃度範囲内でしか正確
な測定ができず、広範囲のガス濃度の分析ができないこ
とである。この測定濃度範囲を少しでも広げるために、
2つのセルをシリーズにしてみたり、電気的に増巾率を
変化させる方法などが採用されている。しかし、これら
の方法では低い濃度から順次高い濃度を測定する場合は
問題は少ないが、高濃度のガスが一度サンプリングライ
ンを流れ、次に低い濃度のガスを測定する場合、(特に
吸着性の強いガスの場合)テーリングを解消するため相
当長時間ゼロガスでパージする必要がある。又、パージ
時間を短かくするために、大流量のゼロガスを導入する
ことも考えられるが、検出部分に大流量のゼロガスを導
入すれば、検出器の動作状態が変化し、(例えば、温度
が低下したり、内部に圧力変化が生じる等)測定条件を
その都度調整する必要がある。又、特に電気的に増巾率
を変化させる場合は、いずれの方法においても、検出器
出力とガス濃度との関係が直線関係にないことから、各
レンジの検量線が必要となり、煩瑣である。本発明は、
このような従来欠点をできるだけ簡単な構造で解消した
ものである。However, all these detectors have common drawbacks. Each detector has a certain measurement concentration range with excellent analytical sensitivity, and a single detector can only accurately measure within a limited measurement concentration range; It is not possible to analyze gas concentration. In order to widen this measurement concentration range even a little,
Methods such as connecting two cells in series and electrically changing the amplification rate have been adopted. However, these methods pose few problems when measuring concentrations from low to high; (In the case of gas) It is necessary to purge with zero gas for a considerable period of time to eliminate tailing. Also, in order to shorten the purge time, it is possible to introduce a large flow rate of zero gas, but if a large flow rate of zero gas is introduced into the detection part, the operating state of the detector will change (for example, if the temperature The measurement conditions must be adjusted each time (such as when the pressure decreases or internal pressure changes occur, etc.). In addition, especially when changing the amplification rate electrically, the relationship between the detector output and the gas concentration is not linear in either method, so a calibration curve for each range is required, which is cumbersome. . The present invention
This conventional drawback has been solved by making the structure as simple as possible.
以下、本発明の一実施例を図面について説明する。An embodiment of the present invention will be described below with reference to the drawings.
図において、1は導入口2から導入されたサンプルガス
が流れるサンプルガス流路であつて、検出器(たとえば
、FID)3に接続されている。In the figure, reference numeral 1 denotes a sample gas flow path through which a sample gas introduced from an inlet 2 flows, and is connected to a detector (eg, FID) 3.
4,5,6,7,8は前記サンプルガス流路1中に夫々
上流側からこの順番に設けられたフイルタ、クーラ一、
加圧ポンプ、定差圧レギユレータ、固定流体抵抗素子と
しての毛細管であつて、サンプルガス中のダストはフイ
ルタ4で除去され、分析を妨害するミストや水分はクー
ラ−5で除去される。Reference numerals 4, 5, 6, 7, and 8 denote filters, coolers, and the like, which are provided in the sample gas flow path 1 in this order from the upstream side, respectively.
A pressure pump, a constant differential pressure regulator, and a capillary tube as a fixed fluid resistance element are used. Dust in the sample gas is removed by a filter 4, and mist and moisture that interfere with analysis are removed by a cooler 5.
ポンプ6はサンプルガスを導入するため設けられたもの
であり、この実施例のような加圧ポンプに限らず、検出
器3の下流側に吸入ポンプを設けてもよい。定差圧レギ
ユレータ7は所定の長さ及び内径を有する毛細管8の入
口側と出口側との差圧を一定に保つことにより該毛細管
8に常に定流量Q,のガスが流れるようにするものであ
り、前記定流量Q,が検出器3における最適流量と一致
するように毛細管8(の長さ及び内径)ならびにその両
端差圧を選定してある。次に、9は希釈ガス(たとえば
N2ガス等の分析計に妨害を与えないガス)を流す希釈
ガス流路であつて、この希釈ガス流路9の端部は複数の
分岐流路101,2.....1のうち所望するいずれ
かに択一的に選択することのできる切換部11を介して
、前記毛細管8より上流側で後述するバイパス15の接
続箇所より下流側のサンプルガス流路1に接続できるよ
うにしてあり、各分岐流路101,2......n中
にはそれぞれ長さ及び/又は内径の異なる固定流体抵抗
素子としての毛細管121,2......nが設けら
れている。The pump 6 is provided to introduce the sample gas, and is not limited to a pressurizing pump as in this embodiment, but a suction pump may be provided downstream of the detector 3. The constant differential pressure regulator 7 maintains a constant differential pressure between the inlet and outlet sides of a capillary tube 8 having a predetermined length and inner diameter so that a constant flow rate Q of gas always flows through the capillary tube 8. The capillary tube 8 (length and inner diameter) and the differential pressure at both ends thereof are selected so that the constant flow rate Q coincides with the optimum flow rate in the detector 3. Next, reference numeral 9 denotes a dilution gas passage through which a dilution gas (for example, a gas such as N2 gas that does not interfere with the analyzer) flows, and the end of this dilution gas passage 9 is connected to a plurality of branch passages 101, 2. .. .. .. .. .. 1 can be connected to the sample gas flow path 1 upstream from the capillary tube 8 and downstream from the connection point of a bypass 15 to be described later. Each branch flow path 101, 2 . .. .. .. .. .. Capillary tubes 121, 2 . .. .. .. .. .. n is provided.
切換部11は、たとえば図外切換コツク等を操作するこ
とによつて前記分岐流路10,,2......nのう
ち、所望するいずれかの流路に希釈ガスが流れるように
したものである。(尚、図では希釈ガスが分岐流路10
,を流れる場合を示している。)13は希釈ガス流路9
中に設けられた可変レギユレータ、14は毛細管(12
1,2......nのうちいずれか)を有する分岐流
路(101,2......nのうちのいずれか)の入
口側と出口側の差圧を示すメータであり、このメータ1
4の指示をみながら可変レギユレータ13を操作するこ
とにより毛細管(121,2......nのうちいず
れか)に所望定流量を流すことができる。(尚、周知の
ように、これら毛細管121,2......。に夫々
流れる希釈ガスの量は、各毛細管121,2.....
.nの長さ、内径及び両端差圧などにより定まる。)次
に、15は定差圧レギユレータ7より上流側のサンプル
ガス流路1から分岐されたバイパスであつて、検出器3
へと送られるサンプルガス以外の余剰のサンプルガスは
このバイパス15を通つて排出口16から排出される。The switching unit 11 switches the branch channels 10, 2, . .. .. .. .. .. The diluent gas is made to flow through any desired channel among the channels. (In addition, in the figure, the dilution gas is
, is shown. ) 13 is the dilution gas flow path 9
A variable regulator provided therein, 14 is a capillary tube (12
1, 2. .. .. .. .. .. This meter indicates the differential pressure between the inlet side and the outlet side of a branch flow path (any one of 101, 2... n) having a
By operating the variable regulator 13 while observing the instructions in step 4, a desired predetermined flow rate can be made to flow through the capillary tube (any one of 121, 2...n). (As is well known, the amount of diluent gas flowing through each capillary tube 121, 2...
.. It is determined by the length of n, the inner diameter, the differential pressure at both ends, etc. ) Next, 15 is a bypass branched from the sample gas flow path 1 on the upstream side of the constant differential pressure regulator 7, and is
Surplus sample gas other than the sample gas sent to is discharged from the outlet 16 through the bypass 15.
尚、検出器3に送られて分析を終えたガス(サンプルガ
ス+希釈ガス)も排出流路17を経て排出口16から排
出される。切換部11を操作して、いま仮りに図に示す
ように分岐流路10,から希釈ガスを流すようにし、可
変レギユレータ13を操作してメータ14が所定の指示
値を示したときの毛細管12,を流れる希釈ガス流量を
q1(定流量)とし、且つポンプ6にて導入されたサン
プルガスの定流量(応答性が無視できるオーダーの大流
量)をQとすると、前述したように定差圧レギユレータ
7の作用により、毛細管8には定流量Q,のガスが流れ
るから検出器3には希釈ガスq1とサンプルガス(Q,
q,)とが流入することになる。Note that the gas (sample gas + dilution gas) that has been sent to the detector 3 and has been analyzed is also discharged from the discharge port 16 via the discharge flow path 17 . By operating the switching unit 11, let the dilution gas flow from the branch flow path 10 as shown in the figure, and by operating the variable regulator 13, the capillary tube 12 will be changed when the meter 14 shows a predetermined indicated value. , the dilution gas flow rate flowing through the pump 6 is q1 (constant flow rate), and the constant flow rate of the sample gas introduced by the pump 6 (a large flow rate on the order of negligible response) is Q, then as mentioned above, the constant differential pressure Due to the action of the regulator 7, a constant flow rate Q of gas flows through the capillary tube 8, so the detector 3 receives dilution gas q1 and sample gas (Q,
q, ) will flow in.
そして、検出器3により分析した測定対象成分(たとえ
ばメタン以外の炭化水素)の濃度及び希釈ガスによる希
釈率(定流量であるQ,及びq1より求められる)とか
らサンプルガス中の測定対象成分の濃度をしることがで
きる。そして、ガス濃度を分析するさい、前記サンプル
ガス中の測定対象成分を予じめ推定し、分岐流路121
,2.....1のうちいずれに希釈ガスを流すか、及
びその分岐流路(12,,2......。のうち選択
されたいずれか)中の毛細管の両端差圧をいくらにする
かを決めて希釈率を定め使用する検出器3の特性に応じ
該検出器3においてもつとも分析精度がすぐれている測
定濃度範囲内に希釈後のガス中における測定対象成分の
濃度が入るように希釈するのである。尚、定差圧レギユ
レータ7の作用により余剰のサンプルガス(Q一(Q,
−Q,))はバイパス15を通り、排出口16から排出
される。本発明は上述したように、使用する検出器の特
性に応じ、該検出器において分析感度がもつともすぐれ
ている測定濃度範囲内に入るように、サンプルガスを所
望比率で希釈ガスにて希釈した後、検出器に流すので、
希釈率を適宜変更することにより、一個の検出器で、広
範囲の濃度にわたつて精度のよいサンプルガスの分析が
行なれる。Then, from the concentration of the component to be measured (for example, hydrocarbons other than methane) analyzed by the detector 3 and the dilution rate by the diluent gas (calculated from the constant flow rate Q and q1), the component to be measured in the sample gas is determined. Concentration can be determined. When analyzing the gas concentration, the component to be measured in the sample gas is estimated in advance, and the branch flow path 121 is
,2. .. .. .. .. 1. Decide which path the diluent gas will flow in and what the differential pressure between both ends of the capillary in the branched flow path (selected one of 12, 2...) will be. The dilution rate is determined based on the characteristics of the detector 3 used, and the dilution is performed so that the concentration of the component to be measured in the diluted gas falls within the measurement concentration range in which the detector 3 has excellent analytical accuracy. . Furthermore, due to the action of the constant differential pressure regulator 7, the excess sample gas (Q1 (Q,
-Q,)) passes through the bypass 15 and is discharged from the outlet 16. As described above, in accordance with the characteristics of the detector used, the sample gas is diluted with a diluent gas at a desired ratio so that the concentration falls within the measurement concentration range in which the analytical sensitivity of the detector is excellent. , since it flows to the detector,
By appropriately changing the dilution rate, a single detector can perform accurate sample gas analysis over a wide range of concentrations.
又、上述のように希釈された後のガスを検出器へ流すの
で、テーリング現象がおこりにくく、一層、精度が向上
するとともにゼロガスによるパージもごく短時間ですむ
。又、パージのためのゼロガスの量も少量でよく、且つ
希釈されたサンプルガスを前記検出器における最適流量
で検出器に流すようにしてあるから検出器の動作状態の
変化(温度低下や内部圧力の変化等)も生じることなく
、従つて測定条件をその都度調整する必要がない。又電
気的に増巾率を変化させる場合のように各レンジの検量
線を作成するといつた作業は不要となり、検量線は一本
ですむ。そして、検出器出力の増巾部が非常に簡単にな
り、且つ増巾部からの出力の処理も簡単になる。このよ
うに、冒頭で述べた従来の欠点を全て解消するに至つた
のであるが、特に、サンプルガス流路側に、固定流体抵
抗素子、定差圧レギユレータ、バイパスなどを設けて、
検出器内に常に一定流量のガスを供給するように構成す
る一方、希釈ガス流路側に、可変レギユレータ、択一的
に選択可能な流量変更のための分岐流路、圧力メータな
どを設けて、前記固定流体抵抗素子より上流側のサンプ
ルガス流路に常に所望流量の希釈ガスを供給するように
構成するものであるから、複雑な演算回路などを必要と
することなく、比較的簡単な構造で、サンプルガスの希
釈率を広範囲にわたつて多段切換えでき、切換え後にお
いては、所定の希釈率を確実に保持しながら、検出器に
供給することができるのである。Furthermore, since the diluted gas is flowed to the detector as described above, tailing phenomenon is less likely to occur, accuracy is further improved, and purging with zero gas can be done in a very short time. In addition, only a small amount of zero gas is required for purging, and the diluted sample gas is flowed to the detector at the optimum flow rate for the detector, so changes in the operating state of the detector (temperature drop, internal pressure Therefore, there is no need to adjust the measurement conditions each time. Also, unlike when electrically changing the amplification rate, the work of creating a calibration curve for each range becomes unnecessary, and only one calibration curve is required. The amplification section for the detector output becomes very simple, and the processing of the output from the amplification section also becomes simple. In this way, we were able to eliminate all of the conventional drawbacks mentioned at the beginning, but in particular, by providing a fixed fluid resistance element, a constant differential pressure regulator, a bypass, etc. on the sample gas flow path side,
While the detector is configured to always supply a constant flow rate of gas, the diluent gas flow path is equipped with a variable regulator, a branch flow path for selectively changing the flow rate, a pressure meter, etc. Since the structure is such that a desired flow rate of dilution gas is always supplied to the sample gas flow path upstream of the fixed fluid resistance element, the structure is relatively simple and does not require a complicated calculation circuit. The dilution rate of the sample gas can be switched in multiple stages over a wide range, and after switching, it is possible to supply the sample gas to the detector while reliably maintaining a predetermined dilution rate.
そして、その供給量も、濃度分析に好適な一定流量に維
持することができ、試料ガスの停滞による応答遅れが防
止されるのである。The supply amount can also be maintained at a constant flow rate suitable for concentration analysis, thereby preventing response delays due to stagnation of the sample gas.
図面は本発明の一実施例を示す説明図である。
1・・・・・・サンプルガス流路、3・・・・・・検出
器、7・・・・・・定差圧レギユレータ、8・・・・・
・固定流体抵抗素子、9・・・・・・希釈ガス流路、1
0・・・・・・分岐流路、11・・・・・・切換部、1
2・・・・・・固定流体抵抗素子、13・・・・・・可
変レギユレータ、14・・・・・・圧力メータ、15・
・・・・・バイパス。The drawings are explanatory diagrams showing one embodiment of the present invention. 1... Sample gas flow path, 3... Detector, 7... Constant differential pressure regulator, 8...
・Fixed fluid resistance element, 9... Dilution gas flow path, 1
0... Branch flow path, 11... Switching section, 1
2... fixed fluid resistance element, 13... variable regulator, 14... pressure meter, 15...
·····bypass.
Claims (1)
ガス流路から供給されるサンプルガスの濃度分析を前記
検出器にて行なうように構成したガス濃度分析装置にお
いて、前記サンプルガス流路に固定流体抵抗素子と、こ
の流体抵抗素子の入口側と出口側との差圧を一定に保つ
定差圧レギュレータとを設け、且つ、この定差圧レギュ
レータより上流側のサンプルガス流路にバイパスを接続
して前記固定流体抵抗素子を介して前記検出器内に常に
一定流量のガスを供給するように構成するとともに、前
記固定流体抵抗素子より上流側でバイパス接続箇所より
下流側のサンプルガス流路に、可変レギュレータを備え
た希釈ガス流路を接続し、この希釈ガス流路に、それぞ
れ固定流体抵抗素子を有する複数の分岐流路と、これら
複数の分岐流路を択一的に選択する切換部とを設け、且
つ、前記分岐流路の入口側と出口側との差圧を測定する
圧力メータを設けて、前記サンプルガス流路に所望流量
の希釈ガスを供給するように構成したことを特徴とする
ガス濃度分析装置。1. In a gas concentration analyzer configured such that a detector is connected to a sample gas flow path and the detector performs concentration analysis of a sample gas supplied from the sample gas flow path, a detector is fixed to the sample gas flow path. A fluid resistance element and a constant differential pressure regulator that maintains a constant differential pressure between the inlet and outlet sides of the fluid resistance element are provided, and a bypass is connected to the sample gas flow path upstream of the constant differential pressure regulator. and is configured to always supply a constant flow rate of gas into the detector through the fixed fluid resistance element, and to a sample gas flow path upstream from the fixed fluid resistance element and downstream from the bypass connection point. , a dilution gas flow path equipped with a variable regulator is connected to the dilution gas flow path, a plurality of branch flow paths each having a fixed fluid resistance element are connected to the dilution gas flow path, and a switching unit that selectively selects the plurality of branch flow paths. and a pressure meter for measuring the differential pressure between the inlet side and the outlet side of the branch flow path, and is configured to supply a desired flow rate of dilution gas to the sample gas flow path. Gas concentration analyzer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52014472A JPS5949532B2 (en) | 1977-02-12 | 1977-02-12 | Gas concentration analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52014472A JPS5949532B2 (en) | 1977-02-12 | 1977-02-12 | Gas concentration analyzer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5399990A JPS5399990A (en) | 1978-08-31 |
JPS5949532B2 true JPS5949532B2 (en) | 1984-12-03 |
Family
ID=11861991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52014472A Expired JPS5949532B2 (en) | 1977-02-12 | 1977-02-12 | Gas concentration analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5949532B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60263751A (en) * | 1984-06-13 | 1985-12-27 | Aisin Warner Ltd | Four-wheel drive transfer display device of four-wheel drive car |
JPS6172445U (en) * | 1984-10-19 | 1986-05-16 | ||
JPS6227U (en) * | 1985-02-21 | 1987-01-06 | ||
JPH0433649B2 (en) * | 1983-05-23 | 1992-06-03 | Nissan Motor |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6033772Y2 (en) * | 1980-07-19 | 1985-10-08 | ヤンマー農機株式会社 | Walking rice transplanter control device |
JPS61129548A (en) * | 1984-11-28 | 1986-06-17 | Toshiba Corp | Sodium leak detecting system |
JPH0619311B2 (en) * | 1985-10-19 | 1994-03-16 | 株式会社堀場製作所 | Gas analyzer for multi-component simultaneous measurement |
JPS62184360A (en) * | 1986-02-07 | 1987-08-12 | Jeol Ltd | Chemical analyzer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49125083A (en) * | 1972-12-20 | 1974-11-29 |
-
1977
- 1977-02-12 JP JP52014472A patent/JPS5949532B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49125083A (en) * | 1972-12-20 | 1974-11-29 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433649B2 (en) * | 1983-05-23 | 1992-06-03 | Nissan Motor | |
JPS60263751A (en) * | 1984-06-13 | 1985-12-27 | Aisin Warner Ltd | Four-wheel drive transfer display device of four-wheel drive car |
JPS6172445U (en) * | 1984-10-19 | 1986-05-16 | ||
JPS6227U (en) * | 1985-02-21 | 1987-01-06 |
Also Published As
Publication number | Publication date |
---|---|
JPS5399990A (en) | 1978-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6823743B2 (en) | Method and apparatus for measuring concentrations of components of fluid | |
EP1106983A2 (en) | Exhaust gas analyzing system | |
EP1864104B1 (en) | Wide range continuous diluter | |
JP3374077B2 (en) | Exhaust gas sampling device | |
US4555931A (en) | Apparatus for measuring or controlling the separation ratio of gas | |
CA2625889A1 (en) | Improved multi-capillary viscometer apparatus and method | |
US7594428B2 (en) | Apparatus and method for eliminating the breakthrough peak in differential detectors | |
JPS5949532B2 (en) | Gas concentration analyzer | |
CN105987831B (en) | Exhaust gas sampling device, exhaust gas analysis system, and exhaust gas dilution method | |
JP4345967B2 (en) | Use of a fluid regulator device for an analysis circuit and the fluid regulator device for the analysis circuit in chromatography | |
JP3668088B2 (en) | Gas analyzer calibration method and calibration apparatus | |
JP6513276B1 (en) | Gas analyzer | |
JPH10206406A (en) | Device for measuring non-methane hydrocarbon | |
JP2001159587A (en) | Gas analyzer | |
JP2002005943A5 (en) | ||
JP4137283B2 (en) | Fuel gas analyzer | |
JP7406232B2 (en) | Temperature programmed desorption analyzer | |
JPS643073Y2 (en) | ||
JP5621061B1 (en) | Gas analyzer | |
JP2016211866A (en) | Column adjustment device and column adjustment method | |
JPH085557A (en) | Exhaust gas analyzer | |
JP2023144425A (en) | Gas analyzer and calibration gas supply method | |
JP2903454B2 (en) | Chromatogram calculation method | |
SU1631415A1 (en) | Gas chromatograph | |
RU56633U1 (en) | ANALYZER OF HYDROGEN CONCENTRATION IN GAS MEDIA |