JPS5949298B2 - Dispersed precipitation type heat-resistant and wear-resistant sintered alloy - Google Patents
Dispersed precipitation type heat-resistant and wear-resistant sintered alloyInfo
- Publication number
- JPS5949298B2 JPS5949298B2 JP2836079A JP2836079A JPS5949298B2 JP S5949298 B2 JPS5949298 B2 JP S5949298B2 JP 2836079 A JP2836079 A JP 2836079A JP 2836079 A JP2836079 A JP 2836079A JP S5949298 B2 JPS5949298 B2 JP S5949298B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- component
- alloy
- less
- phase forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
この発明は、きわめて高い強度と靭性を有すると共に、
著しく改善された耐摩耗性および耐溶着性を有し、特に
低速切削から高速切削にわたって適用できる切削工具や
、熱間工具などとして使用するのに適した分散析出型耐
熱耐摩耗性焼結合金に関するものである。[Detailed Description of the Invention] This invention has extremely high strength and toughness, and
This invention relates to a dispersed precipitation type heat-resistant and wear-resistant sintered alloy that has significantly improved wear resistance and adhesion resistance and is suitable for use as cutting tools that can be applied in particular from low-speed cutting to high-speed cutting, hot tools, etc. It is something.
先に、同一出願人は、強度と靭性を有し、さらにすぐれ
た耐熱耐摩耗性および耐溶損性を有し、特に熱間工具や
切削工具などとして使用した場合に、例えば切削工具で
あれば低速切削から高速切削にわたって軽重切削が可能
であるなどのすぐれた性能を発揮する分散析出型耐熱耐
摩耗性焼結合金0、すなわち、rNi:50〜70%、
Ti:2〜10%、およびAt:0.5〜10%を基本
組成とし、Fe : 0.1〜l O%、Co:1〜2
0チ、Cr:1〜20%、B : 0.01〜1.0%
、Z r : 0.01〜1.0%、Nb:5%以下、
v:5%以下、Si :3%以下およびMn:5%以下
、1種または2種以上を離別した結合相に、第4a族、
第5a族、および第6a族の遷移金属の炭化物あるいは
複炭化物の1種または2種以上からなる炭化物:10〜
90%を分散させ、かつ該結合相にrを析出させたこと
を特徴とする分散析出型耐熱耐摩耗合金。Previously, the same applicant has proposed that it has strength and toughness, as well as excellent heat and abrasion resistance and erosion resistance, and is particularly effective when used as a hot tool or a cutting tool. Dispersion precipitation type heat-resistant and wear-resistant sintered alloy 0, that is, rNi: 50-70%, which exhibits excellent performance such as light and heavy cutting that is possible from low-speed cutting to high-speed cutting.
The basic composition is Ti: 2-10% and At: 0.5-10%, Fe: 0.1-10%, Co: 1-2
0chi, Cr: 1-20%, B: 0.01-1.0%
, Zr: 0.01 to 1.0%, Nb: 5% or less,
v: 5% or less, Si: 3% or less and Mn: 5% or less, in a binder phase in which one or more types are separated, Group 4a,
Carbide consisting of one or more carbides of group 5a and group 6a transition metal carbides or double carbides: 10-
A dispersion precipitation type heat-resistant and wear-resistant alloy characterized in that 90% of r is dispersed and r is precipitated in the binder phase.
」(以下先行発明合金という)を特願昭47−8582
3号(特公昭53−6922号)として出願した。” (hereinafter referred to as “prior invention alloy”) was filed in patent application No. 47-8582.
The application was filed as No. 3 (Special Publication No. 53-6922).
この発明は、上記先行発明合金をさらに一段と改善した
分散析出型耐熱耐摩耗性焼結合金を提供するもので、
(a) 上記先行発明合金における分散相形成成分の
のうちの一部を、周期律表の4a、5a、および6a族
の遷移金属の窒化物、炭窒化物、複窒化物、および複炭
窒化物のうちの1種または2種以上(以下、これらを総
称して遷移金属の炭・窒化物という)で置換すると、
■ 合金組織における分散相粒子が非常に微細になって
常温における硬度および靭性がさらに一段と向上する。The present invention provides a dispersed precipitation type heat-resistant and wear-resistant sintered alloy which is a further improvement over the above-mentioned prior invention alloy. One or more types of nitrides, carbonitrides, double nitrides, and double carbonitrides of transition metals in Groups 4a, 5a, and 6a of the Table of Contents (hereinafter, these are collectively referred to as transition metal nitrides, carbonitrides, double nitrides, and double carbonitrides). When substituted with (referred to as carbon/nitride), the dispersed phase particles in the alloy structure become extremely fine, further improving the hardness and toughness at room temperature.
■ 結合相中にr相、すなわち(N i3A Z (T
i))相がより多量に析出するようになるため、高温強
度が一段と向上する。■ In the bonded phase, there is an r-phase, that is, (N i3A Z (T
i)) Since a larger amount of the phase is precipitated, the high temperature strength is further improved.
(b) さらに、上記先行発明合金における分散相形
成成分のうちの1部を、上記遷移金属の炭・窒化物で置
換すると共に、望化アルジニウム(以下A7Nで示す)
を含有させると、AlNのもつすぐれた耐摩耗性および
耐溶着性が合金に相乗的に付与されるようになるため、
合金はより一段とすぐれた耐摩耗性および耐溶着性をも
つようになり、さらに、AANの一部が結合相中に固溶
して、γ′相の析出をより一段と微細にして均一なもの
とするため、合金の常温および高温における硬度および
靭性がさらに著しく向上するようになる。(b) Furthermore, a part of the dispersed phase forming components in the above-mentioned prior invention alloy is replaced with carbon/nitride of the above-mentioned transition metal, and desirable aldinium (hereinafter referred to as A7N)
By containing AlN, the excellent wear resistance and adhesion resistance of AlN will be synergistically imparted to the alloy.
The alloy now has even better wear and welding resistance, and a portion of the AAN is solidly dissolved in the binder phase, making the γ' phase precipitation much finer and more uniform. As a result, the hardness and toughness of the alloy at room and high temperatures are further significantly improved.
など上記(a)および(b)項に示される研究結果にも
とづいてなされたものである。This was done based on the research results shown in sections (a) and (b) above.
したがって、この発明は、分散相形成成分として、周期
律表の4a、5a+および6a族の遷移金属の炭化物お
よび複炭化物のうちの1種または2種以上(以下A成分
という):10〜95%、それぞれ結合相形成成分とし
て、Fe:1〜10係、Co:1〜70%、Cr:1〜
20%、Mo:1〜50多、W:1〜20係、B :
0.01〜1.0係、Z r : 0.01〜1.0%
、Nb:5%以下、V:5チ以下、Si :3係以下、
Mn:5%以下、からなる群のうちの1種または2種以
上、Ti:2〜10%、A4:0.5〜10%、Niお
よび不可避不純物:20〜70%、からなる組成を有す
ると共に、r相、すなわち(Ni3A4(Ti ))相
が析出した結合相:5〜90%、(以上重量%)を有す
る分散析出型焼結合金において、上記分散相形成成分の
一部を、周期律表の4a、5a、および6a族の遷移金
属の窒化物、炭窒化物、複窒化物、および複炭窒化物の
うちの1種または2種以上(以下B成分という)からな
る分散相形成成分で、A成分:B成分=1:0.1〜0
.8の重量割合を満足する範囲で置換し、さらに必要に
応じて0.1〜5重量係のAtNを含有させた組成とす
ることによって、強度、靭性、耐熱耐摩耗性、および耐
溶着性の向上をはかった分散析出型耐熱耐摩耗性焼結合
金に特徴を有するものである。Therefore, the present invention provides, as a dispersed phase-forming component, one or more carbides and double carbides of transition metals in groups 4a, 5a+, and 6a of the periodic table (hereinafter referred to as component A): 10 to 95% , Fe: 1 to 10%, Co: 1 to 70%, and Cr: 1 to 10% as bonding phase forming components, respectively.
20%, Mo: 1-50, W: 1-20, B:
0.01~1.0 ratio, Zr: 0.01~1.0%
, Nb: 5% or less, V: 5% or less, Si: 3% or less,
It has a composition consisting of one or more of the group consisting of Mn: 5% or less, Ti: 2 to 10%, A4: 0.5 to 10%, Ni and inevitable impurities: 20 to 70%. In addition, in a dispersed precipitation type sintered alloy having a binder phase in which the r phase, that is, the (Ni3A4(Ti)) phase is precipitated: 5 to 90% (or more by weight), a part of the dispersed phase forming components is periodically Formation of a dispersed phase consisting of one or more types (hereinafter referred to as component B) of nitrides, carbonitrides, double nitrides, and double carbonitrides of transition metals in Groups 4a, 5a, and 6a of the Table of Contents In the ingredients, A component: B component = 1:0.1~0
.. By substituting the weight ratio of 8 within a satisfying range and further containing 0.1 to 5 weight ratio of AtN as necessary, strength, toughness, heat resistance, abrasion resistance, and welding resistance can be improved. This is a dispersion precipitation type sintered alloy with improved heat and wear resistance.
ついで、この発明の合金において、遷移金属の炭・窒化
物の置換割合およびAtNの含有量を上記のように限定
した理由を説明する。Next, the reason why the substitution ratio of transition metal carbon/nitride and the content of AtN are limited as described above in the alloy of the present invention will be explained.
(a) 遷移金属の炭・窒化物の置換割合周期律表の
4a 、 5a +および6a族の遷移金属の炭化物、
複炭化物のうちの1種または2種以上(以下A成分とい
う)に対する遷移金属の炭・窒化物(以FB成分という
)の置換割合が10重量%未満、すなわちB成分/A成
分=0.1未満では、所望の特性改善効果が得られず、
一方その置換割合が80重量%を越える、すなわちB成
分/A成分=0.8を越えると焼結性が著しく低下し、
耐衝撃性が低下するようになることから、重量比でA成
分:B成分=i:0.1〜0.8を満足する置換割合と
した。(a) Substitution ratio of carbon/nitride of transition metals Carbides of transition metals of groups 4a, 5a + and 6a of the periodic table,
The substitution ratio of transition metal carbon/nitride (hereinafter referred to as FB component) to one or more of the double carbides (hereinafter referred to as A component) is less than 10% by weight, that is, B component/A component = 0.1 If it is less than that, the desired characteristic improvement effect cannot be obtained,
On the other hand, if the substitution ratio exceeds 80% by weight, that is, if the B component/A component = 0.8, the sinterability will be significantly reduced.
Since the impact resistance decreases, the substitution ratio was set such that the weight ratio of component A:component B=i:0.1 to 0.8.
(b)A7N含有量
その含有量が0.1%未満では、所望の特性効果が得ら
れず、一方5%を越えて含有させると、N1AA、Co
A7 、FeA7のような金属間化合物を作って脆化す
るため好ましくないことから、その含有量を0.1〜5
%と定めた。(b) A7N content If the content is less than 0.1%, the desired characteristic effects cannot be obtained, while if the content exceeds 5%, N1AA, Co
Since it is undesirable to form intermetallic compounds such as A7 and FeA7 and cause embrittlement, the content should be set at 0.1 to 5.
%.
ついで、この発明の分散析出型耐熱耐摩耗性焼結合金(
以下本発明合金という)を実施例によシ・先行発明合金
と対比しながら説明する。Next, the dispersion precipitation type heat-resistant and wear-resistant sintered alloy of this invention (
The alloy of the present invention (hereinafter referred to as the alloy of the present invention) will be explained using examples and in comparison with the alloy of the prior invention.
実施例 1
原料粉末として平均粒径1.5μmのTaC粉末、Ta
C粉末およびTaN粉末、さらにいずれも平均粒径が2
0μmのCo粉末、Ni粉末、Ni −At合金(A、
/、含有量:31.7チ)粉末、Ti粉末、Mo粉末、
およびCr粉末を使用し、最終成分組成が、15%Ti
c −10%TaN−10%Co−52%Ni−3%A
7−2%Ti−3%Mo−5%Crとなるように配合し
、湿式混合し、プレス成形し、ついで10 tuiH9
の真空中、温度1350℃に13時間保持することによ
って焼結し、焼結後、真空中、温度1150℃に4時間
保持した後油焼入れ。Example 1 TaC powder with an average particle size of 1.5 μm as raw material powder, Ta
C powder and TaN powder, both of which have an average particle size of 2
0 μm Co powder, Ni powder, Ni-At alloy (A,
/, Content: 31.7 Ti) powder, Ti powder, Mo powder,
and Cr powder, and the final composition was 15% Ti.
c -10%TaN-10%Co-52%Ni-3%A
7-2% Ti-3% Mo-5% Cr, wet mixed, press molded, and then 10 tuiH9
Sintered by holding at a temperature of 1350°C in vacuum for 13 hours, and after sintering, holding at a temperature of 1150°C in vacuum for 4 hours, followed by oil quenching.
の溶体化処理を行ない、引続いて温度760℃に3時間
保持の焼却し処理を行なうことによって本発明合金1を
製造した。Alloy 1 of the present invention was produced by solution treatment, followed by incineration treatment at a temperature of 760° C. for 3 hours.
また、比較の目的で、原料粉末としてTiN粉)末の代
わりにTaC粉末を使用して、最終成分組成が、15%
TiC−10%TaC−10%Co −52%Ni −
3%Al 2%Ti −3%Mo−5%Crとなるよ
うに上記原料粉末を配合する以外は上記本発明合金1の
製造に適用したと同一の条件にて先行発明合金1を製造
した。For comparison purposes, TaC powder was used instead of TiN powder as the raw material powder, and the final component composition was 15%.
TiC-10%TaC-10%Co-52%Ni-
Prior Invention Alloy 1 was produced under the same conditions as applied to the production of Invention Alloy 1, except that the raw material powders were blended so as to have 3% Al, 2% Ti, 3% Mo, and 5% Cr.
この結果得られた本発明合金1と先行発明合金1の焼結
時、焼入時、および焼戻時の硬さと、焼入れ一焼戻しの
熱処理後の抗折力を測定し、この測定結果を第1表に示
した。The hardness of the resulting invention alloy 1 and prior invention alloy 1 during sintering, quenching, and tempering, and the transverse rupture strength after the quenching and tempering heat treatment were measured, and the measurement results were It is shown in Table 1.
また、第1図には、上記熱処理後の本発明合金1と先行
発明合金1、および市販のJIS−8KH4合金(高速
度鋼)について、温度に対する硬さ変化曲線を示した。Moreover, FIG. 1 shows hardness change curves with respect to temperature for the present invention alloy 1 and the prior invention alloy 1 after the above heat treatment, and the commercially available JIS-8KH4 alloy (high speed steel).
第・1表に示されるように、本発明合金1は先行発明合
金1に比して常温における硬さおよび抗折力がともにす
ぐれておシ、また第1図に、見られるように5KH4合
金は勿論のこと、先行発明合金1に比してもきわめて高
い高温硬さをもつことが明らかであシ、しかも図示され
るように5KH4合金が約600℃の軟化点、先行発明
合金1が約700℃の軟化点をそれぞれ示すのに対して
、本発明合金1はいずれの合金よシも高い約800℃の
軟化点を示すことが明らかである。As shown in Table 1, the alloy 1 of the present invention has better hardness and transverse rupture strength at room temperature than the alloy 1 of the prior invention. Of course, it is clear that it has extremely high high temperature hardness compared to the prior invention alloy 1, and as shown in the figure, the 5KH4 alloy has a softening point of about 600°C, and the prior invention alloy 1 has a softening point of about 600°C. It is clear that Alloy 1 of the present invention exhibits a softening point of about 800°C, which is higher than any of the alloys, while each exhibits a softening point of 700°C.
さらに、上記本発明合金1、先行発明合金1、および5
KH4合金よシ切削工具を切出し、被削材:JIS@S
NCM−8(硬さH:220)、送J : 0.2w/
rev 、切込み:1.Omm、切削速度:20,50
.および80m/min、切削時間:5m1n、の条件
で連続切削試験を行ない−。Furthermore, the above-mentioned present invention alloy 1, prior invention alloy 1, and 5
Cut out the KH4 alloy cutting tool, work material: JIS@S
NCM-8 (Hardness H: 220), Feed J: 0.2w/
rev, depth of cut: 1. Omm, cutting speed: 20,50
.. A continuous cutting test was conducted under the conditions of 80 m/min and cutting time: 5 m1n.
フランク摩耗量を測定すると共に、溶着状態および仕上
面状態をそれぞれ観察した。In addition to measuring the amount of flank wear, the welding state and the finished surface state were observed.
この結果を第2表に示す。The results are shown in Table 2.
第2表に見られるように、本発明合金1は先行発明合金
1およびSKH4合金に比してすぐれた切削性能を示す
ことがわかる。As seen in Table 2, it can be seen that Invention Alloy 1 exhibits superior cutting performance compared to Prior Invention Alloy 1 and SKH4 alloy.
実施例 2
分散相形成成分としての平均粒径1.5μmのTic粉
末10%、同1.0μnのWC粉末:5%、同1.5μ
nのCrC粉末:5%、同1.5μmのTiN粉末:1
0%と、結合相形成成分としての平均粒径がそれぞれ2
.0μmのCo粉末:1.5%、Ni粉末:40%、N
i −At合金(Ni : 68.3%、A、la:3
1.7%)粉末:10チ、Ti粉末:3チ、B粉末:0
.1%、Nb粉末:1.9チ(以上重量%)とからなる
配合粉末を用意し、この配合粉末より実施例1における
と同一の条件で実質的に前期の配合粉末組成と同一の最
終成分組成をもった本発明合金2を製造した。Example 2 10% Tic powder with an average particle size of 1.5 μm, 5% WC powder with an average particle size of 1.5 μm, and 1.5 μm as dispersed phase forming components
n CrC powder: 5%, 1.5 μm TiN powder: 1
0% and the average particle size as a binder phase forming component is 2.
.. 0 μm Co powder: 1.5%, Ni powder: 40%, N
i-At alloy (Ni: 68.3%, A, la: 3
1.7%) Powder: 10chi, Ti powder: 3chi, B powder: 0
.. 1%, Nb powder: 1.9% (by weight) is prepared, and from this mixed powder, under the same conditions as in Example 1, the final component is substantially the same as the previous mixed powder composition. Invention alloy 2 having the composition was produced.
また、比較の目的で、上記本発明合金2の製造における
配合粉末のうち分散相形成成分の配合を、Tin粉末を
使用することなく、TiC粉末:20チ、We粉末:5
%、Cr3C2粉末:5q6とする以外は同一の条件に
て先行発明合金2を製造した。In addition, for the purpose of comparison, the composition of the dispersed phase forming components of the blended powder in the production of the above-mentioned invention alloy 2 was changed without using Tin powder, TiC powder: 20%, We powder: 5%.
%, Cr3C2 powder: 5q6, but the prior invention alloy 2 was produced under the same conditions.
この結果得られた両合金の熱処理後の硬さおよび抗折力
を測定したところ、先行発明合金2は、硬さHRC:6
3、抗折カニ 190 kg/1rait Lか示さな
いのに対して、本発明合金2は、硬さHRC:65、抗
折カニ200に7/11jのすぐれた値を示した。When the hardness and transverse rupture strength of both of the resulting alloys were measured after heat treatment, the hardness of the prior invention alloy 2 was HRC: 6.
3. Inventive alloy 2 showed an excellent hardness HRC of 65 and 7/11j in terms of hardness HRC 200.
実施例 3
分散相形成成分としての平均粒径1.0μmのwc粉末
、30電同1.5μmの(W、Ti)CN粉末=20%
と、結合相形成成分としての平均粒径がそれぞれ2.0
μmのCo粉木:35%、Ni粉末:10%、NiA1
合金(A7:31.7%含有)粉末:2%、Ti粉末=
2%、■粉末=1%(以上重量%)とからなる配合粉末
を用意し、湿式混合し、プレス成形した後、0、5 m
mHPのN雰囲気中、温度1400℃に1時間保持して
焼結し、ついで真空中、温度1100℃に4時間保持し
た後油焼入れの溶体化処理を行ない、引続いて温度70
0℃に4時間保持の焼戻し処理を施すことによって実質
的に前記の配合粉末組成と同一の最終成分組成をもった
本発明合金3を製造した。Example 3 WC powder with an average particle size of 1.0 μm and (W, Ti)CN powder with an average particle size of 1.5 μm as dispersed phase forming components = 20%
and the average particle size as a binder phase forming component is 2.0, respectively.
μm Co powder wood: 35%, Ni powder: 10%, NiA1
Alloy (A7: containing 31.7%) powder: 2%, Ti powder =
Prepare a blended powder consisting of 2%, ■powder = 1% (more than % by weight), wet mix, press mold, and then 0.5 m
Sintering was carried out by holding at a temperature of 1400°C for 1 hour in a N atmosphere of mHP, followed by sintering at a temperature of 1100°C in vacuum for 4 hours, followed by solution treatment of oil quenching, followed by sintering at a temperature of 70°C.
Alloy 3 of the present invention having substantially the same final component composition as the above blended powder composition was produced by subjecting it to a tempering treatment held at 0° C. for 4 hours.
また、比較の目的で、上記本発明合金3の製造における
配合粉末のうち分散相形成成分の配合を。In addition, for the purpose of comparison, the blending of the dispersed phase forming components in the blended powder in the production of the above-mentioned Invention Alloy 3 is shown below.
窒化物粉末を含有させることなく、同1.0μmのWC
粉末:301同1.5μmの(W、 Ti ) C粉
末:20チからなる炭化物粉末のみの配合にする以外は
、同一の条件にて先行発明合金3を製造した。The same 1.0μm WC without containing nitride powder
Powder: 301 1.5 μm (W, Ti)C powder: Prior invention alloy 3 was produced under the same conditions except that only carbide powder consisting of 20 pieces was mixed.
この結果得られた両合金の熱処理後の硬さおよび抗折力
を測定したところ、先行発明合金3は、硬さHRCニア
2、抗折カニ200陽/−を示したのに対して、本発明
合金3は、これよシ高い値の硬さHRCニア5、抗折カ
ニ220に9/−を示した。When the hardness and transverse rupture strength of both of the resulting alloys were measured after heat treatment, the prior invention alloy 3 showed a hardness of HRC near 2 and a transverse rupture crab of 200 positive/-, whereas the present invention Invention Alloy 3 exhibited a higher hardness HRC of near 5 and 9/- of 220.
また、上記本発明合金3、先行発明合金3、および市販
のSKH4合金はついて、被削材:JIS・SNCM
−8(硬さHB:220)、送シ:0、2 vm/ r
av、切込み:1.Om、切削速度=3060、およ
び100”/win、切削時間:!Mlin、の条件で
連続切削試験を行ない、実施例1におけると同様に切削
性能を観察した。In addition, the above-mentioned present invention alloy 3, prior invention alloy 3, and commercially available SKH4 alloy have a workpiece material of JIS/SNCM.
-8 (Hardness HB: 220), Feed: 0, 2 vm/r
av, depth of cut: 1. A continuous cutting test was conducted under the following conditions: Om, cutting speed = 3060, and 100''/win, cutting time: !Mlin, and the cutting performance was observed in the same manner as in Example 1.
この結果を第3表に示す。The results are shown in Table 3.
第3表に示されるように、実施例3においても実施例1
におけると同様に本発明合金3は先行発明合金3および
SKH4合金に比してすぐれた切削性能を示すことが明
らかである。As shown in Table 3, in Example 3, Example 1
It is clear that Invention Alloy 3 exhibits superior cutting performance compared to Prior Invention Alloy 3 and SKH4 alloy.
実施例 4
分散相形成成分としての平均粒径1.5μmのTie粉
末:45%、同i、2μmのTac 粉末:10%、
同1.0μmのMo粉末:5%、同1.5μmのNbN
粉末:15%と、結合相形成成分としての平均粒径がそ
れぞれ2.0μmのNi粉末:10チ、Ni−At合金
(At: 31.7%含有)粉末=3チ、Ti粉末:2
%、Mo粉末:10%(以上重量%)とからなる配合粉
末を用意し、湿式混合し、プレス成形した後、10−の
真空中、温度1450℃に1時間保持して焼結し、つい
で真空中、温度1160℃に3時間保持した後油焼入れ
の溶体化処理を行ない、引続いて温度720℃に4時間
保持の焼戻し処理を行なうことによって、前期の配合粉
末組成と実質的に同一の最終成分組成をもった本発明合
金4を製造した。Example 4 Tie powder with an average particle size of 1.5 μm as a dispersed phase forming component: 45%, Tac powder with an average particle size of 2 μm: 10%,
1.0 μm Mo powder: 5%, 1.5 μm NbN
Powder: 15%, Ni powder with an average particle size of 2.0 μm as a binder phase forming component: 10 cm, Ni-At alloy (Containing At: 31.7%) powder = 3 cm, Ti powder: 2 cm
%, Mo powder: 10% (by weight) was prepared, wet-mixed, press-molded, held at a temperature of 1450°C for 1 hour in a 10-degree vacuum, sintered, and then By holding the temperature at 1,160°C for 3 hours in vacuum, performing oil quenching solution treatment, and then performing tempering treatment at 720°C for 4 hours, the composition of the blended powder was substantially the same as that of the previous stage. Invention alloy 4 with the final composition was produced.
また、比較の目的で、上記本発明合金4の製造における
配合粉末のうちの分散相形成成分の配合を、同1.5μ
mのTie粉末=45%、同1.2μmのTac粉末:
10%、同1.0ttmのMo粉末:5%、同1.5μ
mのNbc粉末:15チからなる炭化物粉末のみとする
以外は、同一の条件にて先行発明合金4を製造した。In addition, for the purpose of comparison, the blending of the dispersed phase forming components in the blended powder in the production of the above-mentioned Invention Alloy 4 was changed to 1.5 μm.
m Tie powder = 45%, same 1.2 μm Tac powder:
10%, 1.0ttm Mo powder: 5%, 1.5μ
Prior Invention Alloy 4 was produced under the same conditions except that only carbide powder consisting of 15 m of Nbc powder was used.
この結果得られた両合金の熱処理後の硬さおよび抗折力
を測定したところ、本発明合金4は、硬さHRA :
91.7、抗折カニ160陽/−を示し、一方先行発
明合金4は、硬さHRA :91.0、抗折カニ150
梅/mitを示した。When the hardness and transverse rupture strength of both of the resulting alloys were measured after heat treatment, it was found that Invention Alloy 4 had a hardness of HRA:
Hardness HRA: 91.7, 160 positive/-, while prior invention alloy 4 had hardness HRA: 91.0, 150 positive/-
Showed ume/mit.
また、上記本発明合金4、先行発明合金4、および市販
のTie基サーメットについて、被削材: JIS
−SNCM −8(硬さHB :220)、送F)
: 0.3mm/ rev 、切込み:1.5+m、
切削速度:80,150.および220m/min、切
削時間: 10m1n、の条件で連続切削試験を行ない
、実施例1および3におけると同様に切削性能を測定し
、観察した。Further, for the above-mentioned present invention alloy 4, prior invention alloy 4, and commercially available Tie-based cermet, the workpiece material: JIS
-SNCM -8 (Hardness HB: 220), Feed F)
: 0.3mm/rev, depth of cut: 1.5+m,
Cutting speed: 80,150. A continuous cutting test was conducted under the conditions of 220 m/min and 10 m1n of cutting time, and the cutting performance was measured and observed in the same manner as in Examples 1 and 3.
この結果を第4表に示す。以上の結果から本発明合金4
は、市販のTie基サーメットは勿論のこと、先行発明
合金4に比してもすぐれた機械的性質および切削性能を
示すことが明らかである。The results are shown in Table 4. From the above results, the present invention alloy 4
It is clear that the alloy exhibits superior mechanical properties and cutting performance not only to commercially available Tie-based cermets but also to the prior invention Alloy 4.
実施例 5
分散相形成成分としての平均粒径1.5μmのTie粉
末30%、同1.0.u77ZのMo c粉末:10%
、同1.5μmのTicN粉末:30%、同1.5μm
のVN粉末:5チと、結合相形成成分としてのCo粉末
:2%、Ni粉末:10%、Ni−At合金(At:3
1.7%含有)粉末:5%、Ti粉末:2.5%、W粉
末:5%、Si粉末二0.5%(以上重量%)とからな
る配合粉末を用意し、この配合粉末より実施例4におけ
ると同一の条件で、前期の配合粉末組成と同一の最終成
分組成をもった本発明合金5を製造した。Example 5 30% of Tie powder with an average particle size of 1.5 μm as a dispersed phase forming component, and 1.0% of Tie powder with an average particle size of 1.5 μm. u77Z Moc powder: 10%
, 1.5 μm TicN powder: 30%, 1.5 μm
VN powder: 5%, Co powder as binder phase forming component: 2%, Ni powder: 10%, Ni-At alloy (At: 3%).
Prepare a blended powder consisting of powder (containing 1.7%): 5%, Ti powder: 2.5%, W powder: 5%, and Si powder (20.5% by weight), and from this blended powder. Inventive alloy 5 was produced under the same conditions as in Example 4, having the same final component composition as the blended powder composition of the previous stage.
また、比較の目的で、上記本発明合金5の製造における
配合粉末のうちの分散相形成成分の配合を、平均粒径1
.5μ扉のTie粉末=60%、同i、oμmのMo、
e 粉末=10チ、同1.51tmのVc粉末:5%
からなる炭化物粉末だけで構成する以外、同一の条件に
て先行発明合金5を製造した。In addition, for the purpose of comparison, the composition of the dispersed phase forming components of the blended powder in the production of the above-mentioned invention alloy 5 was changed to
.. 5μ door Tie powder = 60%, same i, 0μm Mo,
e Powder = 10 cm, same 1.51 tm Vc powder: 5%
Prior invention alloy 5 was manufactured under the same conditions except that it was composed only of carbide powder consisting of.
この結果得られた両合金の熱処理後の硬さおよコび抗折
力は、本発明合金5においては、硬さHRA二92.0
、抗折力=150陽/ynAを示し、先行発明合金5に
おいては、硬さHRA : 91.1 、抗折カニ
130kr/#71を示した。The hardness and transverse rupture strength after heat treatment of both alloys obtained as a result are as follows: Inventive alloy 5 has a hardness of HRA292.0.
, the transverse rupture strength was 150 positive/ynA, and the prior invention alloy 5 had a hardness HRA of 91.1 and a transverse rupture strength of 150 positive/ynA.
It showed 130kr/#71.
また、上記本発明合金5、および市販のWe基超超硬合
金PIO)について、温度に対する硬さ変化を測定した
ところ第2図に示される結果を得た。Further, when the change in hardness with respect to temperature was measured for Invention Alloy 5 and the commercially available We-based cemented carbide PIO), the results shown in FIG. 2 were obtained.
さらに、上記本発明合金5、先行発明合金5、およびW
e基超超硬合金切削工具として使用し、実施例4におけ
ると同一の切削条件で連続切削試験を行なったところ、
番5表に示される切削性能を示した。Furthermore, the above-mentioned present invention alloy 5, prior invention alloy 5, and W
When used as an e-based cemented carbide cutting tool and conducted a continuous cutting test under the same cutting conditions as in Example 4,
The cutting performance shown in Table No. 5 was shown.
第2図および第5表に示される結果から明らかなように
、本発明合金5は、先行発明合金5およびWe基超超硬
合金比して、すぐれた機械的性質、高温硬さ、および切
削性能をもつのである。As is clear from the results shown in FIG. 2 and Table 5, the present invention alloy 5 has superior mechanical properties, high-temperature hardness, and cutting ability compared to the prior invention alloy 5 and the We-based cemented carbide. It has performance.
゛実施例 6
分散相形成成分としての平均粒径1.5μmのTie粉
末:25係、同1.QμmのNbc粉末=5%、同1.
5μmのZrc粉末:5%、同1.5pmのZrN粉末
:5%、同1.0μmのAtN粉末:3%と、結合相形
成成分としての平均粒径がそれぞれ2.0 mを有する
Co粉末:11.5%、Ni粉末:33%、Ni −A
1合金(At:31.7係含有)粉末:5%、Ti粉末
:5%、Mn粉末:2チ、Zr粉末:0.5チ、(以上
重量%)とからなる配合粉末を用意し、この配合粉末よ
り実施例3におけると同一の条件で、前期の配合粉末組
成と実質的に同一最終成分組成をもった本発明合金6を
製造した。゛Example 6 Tie powder with an average particle size of 1.5 μm as a dispersed phase forming component: 25, 1. Qμm Nbc powder = 5%, same 1.
5 μm Zrc powder: 5%, 1.5 μm ZrN powder: 5%, 1.0 μm AtN powder: 3%, and Co powder each having an average particle size of 2.0 m as a binder phase forming component. : 11.5%, Ni powder: 33%, Ni-A
1 alloy (containing At: 31.7%) powder: 5%, Ti powder: 5%, Mn powder: 2T, Zr powder: 0.5T, (more than weight %) is prepared, Inventive alloy 6 having substantially the same final component composition as the previous blended powder composition was produced from this blended powder under the same conditions as in Example 3.
また、AtN成分による特性改善効果を確認する目的で
、上記本発明合金6の製造における配合粉末のうちの分
散相形成成分の配合を、、AtN粉末を配合させること
なく、平均粒径1.5μmのTie粉末:25%、同1
.QμmのNbc粉末:5チ、同1.5μmのZrc粉
末:5%、同1.5μmのZrN粉末:8チから構成す
る以外は、同一の条件で本発明合金7を製造した。In addition, for the purpose of confirming the property improvement effect of the AtN component, the composition of the dispersed phase forming component of the blended powder in the production of the above-mentioned invention alloy 6 was changed to an average particle size of 1.5 μm without blending the AtN powder. Tie powder: 25%, same 1
.. Alloy 7 of the present invention was manufactured under the same conditions except that it was composed of Nbc powder of 5 μm in diameter, 5% Zrc powder in 1.5 μm diameter, and 8 grams of ZrN powder in 1.5 μm diameter.
さらに、比較の目的で、同様に分散相形成成分の配合を
、窒化物粉末を配合させることなく、平均粒径1.5A
mのTie粉末:30%、同1.Q μmのNbc粉末
:5%、同1.5μmのZrc粉末:13%からなる炭
化物粉体で構成する以外は、上記本発明合金6の製造に
おけると同一の条件で先行発明合金6を製造した。Furthermore, for the purpose of comparison, the blending of the dispersed phase forming components was similarly carried out without blending the nitride powder, and the average particle size was 1.5A.
m Tie powder: 30%, same 1. Prior invention alloy 6 was produced under the same conditions as in the production of the invention alloy 6 above, except that it was composed of carbide powder consisting of Q μm Nbc powder: 5% and 1.5 μm Zrc powder: 13%. .
この結果得られた本発明合金6および7、並びに先行発
明合金6の熱処理後の常温における硬さくロックウエル
ムAスケール)および抗折力、さらに温度800℃にお
ける高温硬さくビッカース)を測定したところ第6表に
示す結果を得た。After heat treatment of the resulting invention alloys 6 and 7 and the prior invention alloy 6, the hardness (Rockwell A scale) and transverse rupture strength at room temperature, as well as the high temperature hardness (Vickers) at a temperature of 800°C were measured. The results shown in Table 6 were obtained.
第6表に示されるように、AJaN成分を含有する本発
明合金6は、A7N成分を含有しない本発明合金7より
すぐれた機械的性質および高温硬さし、さらに窒化物を
含有する本発明合金6゜7は窒化物を含有しない先行発
明合金6に比してすぐれた特性をもつことが明らかであ
る。As shown in Table 6, the alloy 6 of the present invention containing the AJaN component has superior mechanical properties and high temperature hardness than the alloy 7 of the present invention not containing the A7N component, and the alloy of the present invention containing nitrides. It is clear that 6°7 has superior properties compared to the prior invention alloy 6 which does not contain nitrides.
実施例 7
分散相形成成分としての平均粒径:1.8μmを有する
(Ti、Mo)C粉末=10チ、同2.0/!ZffL
のVeC粉末10チ、同1.5μmのTiN粉末:15
q6と、結合相形成成分としての平均粒径がそれぞれ2
.7pmのNi粉末=49%、Ti粉末:1%、Ni−
A1合金(At:31.7%含有)粉末=5チ、W粉末
=5チ、Cr:粉末:5%(以上重量%)とからなる配
合粉末を用意し、この配合粉末よシ実施例1におけると
同一の条件で、前記配合粉末組成と実質的に同一の最終
成分組成をもった本発明合金8を製造した。Example 7 (Ti, Mo)C powder having an average particle size of 1.8 μm as a dispersed phase forming component = 10 Ti, 2.0/! ZffL
VeC powder: 10 cm, TiN powder: 1.5 μm: 15
q6 and the average particle size as a binder phase forming component are each 2.
.. 7pm Ni powder = 49%, Ti powder: 1%, Ni-
A blended powder consisting of A1 alloy (containing 31.7% At) powder = 5mm, W powder = 5mm, Cr: powder: 5% (or more by weight) was prepared, and Example 1 was prepared using this blended powder. Inventive alloy 8 was produced under the same conditions as in Example 1, having a final component composition substantially the same as the blended powder composition.
また、比較の目的で、上記本発明合金8の製造における
配合粉末のうちの分散相形成成分の配合を、平均粒径:
1.8μmを有する(Ti9MO)・C粉末:25チ、
同2.OμrnのVcC粉末10%からなる炭化物粉末
のみとする以外は、同一の条件にて先行発明合金7を製
造した。In addition, for the purpose of comparison, the composition of the dispersed phase forming components of the blended powder in the production of the above-mentioned Invention Alloy 8 was changed to the average particle size:
(Ti9MO)・C powder with 1.8 μm: 25 Ti,
Same 2. Prior invention alloy 7 was manufactured under the same conditions except that only the carbide powder consisting of 10% Oμrn VcC powder was used.
゛この結果得られた本発明合金8および先行発明合
金7の熱処理後の硬さおよび抗折力を測定したところ、
第7表に示される値を示した。゛When the hardness and transverse rupture strength of the resulting invention alloy 8 and prior invention alloy 7 after heat treatment were measured,
The values shown in Table 7 are shown.
また、第7表には、これら両合金について、実施例1に
おけると同一の条件(ただし切削速度が50m/yni
nの場合のみ)で行なった連続切削試験結果を示した。Table 7 also shows that these alloys were tested under the same conditions as in Example 1 (however, the cutting speed was 50 m/yni).
The results of a continuous cutting test conducted in the case of n only) are shown.
第7表に示されるように、本発明合金8は先行発明合金
7に比してすぐれた機械的性質および切削性能をもつこ
とが明らかである。As shown in Table 7, it is clear that Invention Alloy 8 has superior mechanical properties and cutting performance compared to Prior Invention Alloy 7.
実施例 8
分散相形成成分としの平均粒径:1.5μmを有するT
ie粉末:15チ、同0,8μmのWeC粉末5%、同
1.0μmの(Ti、V)N粉末=15チと、結合相形
成成分としての平均粒径がそれぞ2.7117nのNi
粉末:48%、Ti粉末:2%、Ni−At合金(At
: 31.7%含有)粉末:5チ、■粉末:5%、Fe
粉末:6%(以上重量%)とからなる配合粉末を用意し
、この配合粉末より実施例1におけると同一の条件で、
前期配合粉末組成と実質的に同一の最終成分組成をもっ
た本発明合金9を製造した。Example 8 T having an average particle size of 1.5 μm as a dispersed phase forming component
ie powder: 15 t, 5% WeC powder of 0.8 μm, (Ti, V)N powder of 1.0 μm = 15 t, and Ni with an average particle size of 2.7117 n as a binder phase forming component.
Powder: 48%, Ti powder: 2%, Ni-At alloy (At
: Contains 31.7%) Powder: 5chi, ■Powder: 5%, Fe
Powder: A blended powder consisting of 6% (or more by weight) was prepared, and from this blended powder, under the same conditions as in Example 1,
Invention Alloy 9 was produced having a final component composition substantially the same as the previous blended powder composition.
また、比較の目的で、上記本発明合金9の製造における
配合粉末のうちの分散相形成成分の配合を、平均粒径:
1.5μmを有するTie粉末二部30%、同0.8μ
mのWe粉末:5%からなる炭化物粉末だけで構成する
以外は、同一の条件にて先行発明合金8を製造した。In addition, for the purpose of comparison, the composition of the dispersed phase forming components of the blended powder in the production of the above-mentioned invention alloy 9 was changed to the average particle size:
2 parts 30% Tie powder with 1.5 μm and 0.8 μm
Prior Invention Alloy 8 was produced under the same conditions except that it was composed only of carbide powder consisting of 5% We powder of m.
この結果得られた本発明合金9および先行発明合金8の
熱処理後の硬さおよび抗折力を測定したところ、第8表
に示される値を示した。The hardness and transverse rupture strength of the resulting alloy 9 of the present invention and the alloy 8 of the prior invention after heat treatment were measured and showed the values shown in Table 8.
また、第8表には、これら両合金について、実施例1に
おけると同一の条件(ただし切削速度が50 /min
の場合のみ)で行なった連続切削試験結果を示した。Table 8 also shows that both alloys were tested under the same conditions as in Example 1 (however, the cutting speed was 50/min).
The results of continuous cutting tests conducted in the following cases are shown.
第8表に示されるように、本発明合金9は先行発明合金
8に比してすぐれた機械的性質および切削性能をもつこ
とが明らかである。As shown in Table 8, it is clear that Invention Alloy 9 has superior mechanical properties and cutting performance compared to Prior Invention Alloy 8.
上記のように、この発明の分散析出型耐熱耐摩耗性焼却
合金は、窒化物の含有によって、窒化物を含有しない分
散析出型耐熱耐摩耗性焼却合金に比して、常温および高
温における硬度および靭性、さらに高温強度が著しく改
善された特性をもつものであり、したがって高い強度と
靭性を有し、耐摩耗性および耐溶着性にもすぐれたこの
発明の合金は、特に切削工具や熱間工具などの製造に適
用した場合にきわめてすぐれた性能を発揮するのである
。As mentioned above, the dispersion precipitation type heat-resistant and wear-resistant incineration alloy of the present invention has a higher hardness at room temperature and high temperature than a dispersed precipitation type heat-resistant and wear-resistant incineration alloy that does not contain nitrides due to the inclusion of nitrides. The alloy of the present invention has significantly improved toughness and high-temperature strength, and therefore has high strength, toughness, and excellent wear and welding resistance, and is particularly suitable for cutting tools and hot-working tools. It exhibits extremely excellent performance when applied to manufacturing such as.
第1図および第2図は本発明合金、先行発明合金、およ
び従来公知合金に関して、温度に対する硬さ変化を示し
た曲線図である。FIGS. 1 and 2 are curve diagrams showing changes in hardness with respect to temperature for the alloy of the present invention, the alloy of the prior invention, and the conventionally known alloy.
Claims (1)
の1種または2種以上(以下A成分という)=10〜9
5%それぞれ結合相形成成分として、Fe : 1〜1
0%、co=1〜70チ、Cr:1〜20チ、Mo:1
〜50%、W:1〜20チ、B : 0.01〜1.0
%、Z r : 0.01〜1.0 %、Nb:5%以
下、V:5%以下、Si :3%以下、Mn:5%以下
、からなる群のうちの1種または2種以上、Ti:2〜
10チ、At二0.5〜10係、Niおよび不可避不純
物:20〜70%、からなる組成を有すると共に、r相
、すなわち(NiA7(Ti))相が析出した結合相:
5〜90%、(以上重量%)を有する分散析出型焼結合
金において、上記分散相形成成分の一部を、周期律表の
4at 5a+および6a族の遷移金属の窒化物、炭窒
化物、複窒化物、および複炭窒化物のうちの1種または
2種以上(以下B成分という)からなる分散相形成成分
で、A成分:B成分=1:0.1〜0.8の重量割合を
満足する範囲内で置換した組成とすることによって、強
度、耐熱耐摩耗性、および耐溶着性の向上をはかったこ
とを特徴とする分散析出型耐熱耐摩耗性焼結合金。 2 分散相形成成分として、周期律表の4 a s5a
、および6a族の遷移金属の炭化物および複炭化物のう
ちの1種または2種以上(以下A成分という):10〜
95%、それぞれ結合相形成成分として、Fe:1〜1
0%、co=1〜70チ、Cr:1〜20%、Mo1〜
50%、W:1〜20チ、B:0.01〜1゜0チ、z
r:0.01〜1.0チ、Nb:5チ以下、V:5チ以
下、Si:3%以下、Mn:5%以下、からなる群のう
ちの1種または2種以上、Ti :2〜10%、At:
0.5〜10%、Niおよび不可避不純物=20〜70
チ、からなる組成を有すると共に、r相、すなわち(N
13A Z (T i) )相が析出した結合相:5
〜90%、(以上重量%)を有する分散析出型焼結合金
において、上期分散相形成成分の一部を、周期律表の4
a + 5 a sおよび6a族の遷移金属の窒化物
、炭窒化物、複窒化物、および複炭窒化物のうちの1種
または2種以上(以下B成分という)からなる分散相形
成成分で、A成分:B成分=1:0.1〜0.8の重量
割合を満足する範囲内で置換すると共に、0.1〜5重
量%の窒化アルミニウムを含有した組成とすることによ
って、強度、耐熱耐摩耗性、および耐溶着性の向上をは
かったことを特徴とする分散析出型耐熱耐摩耗性焼結合
金。[Claims] 1. 4a, 5. of the periodic table as dispersed phase forming components. a. and one or more carbides and double carbides of group 6a transition metals (hereinafter referred to as component A) = 10 to 9
5% each as a bonding phase forming component, Fe: 1 to 1
0%, co=1 to 70 inches, Cr: 1 to 20 inches, Mo: 1
~50%, W: 1-20 inches, B: 0.01-1.0
%, Zr: 0.01 to 1.0%, Nb: 5% or less, V: 5% or less, Si: 3% or less, Mn: 5% or less. , Ti: 2~
A binder phase having a composition of 10%, At2, 0.5% to 10%, Ni and unavoidable impurities: 20% to 70%, and in which the r phase, that is, the (NiA7(Ti)) phase was precipitated:
In the dispersion precipitation type sintered alloy having a concentration of 5 to 90% (or more by weight), a part of the dispersed phase forming components is replaced with nitrides, carbonitrides, and carbonitrides of transition metals of groups 4at, 5a+, and 6a of the periodic table. A dispersed phase forming component consisting of one or more types of double nitrides and double carbonitrides (hereinafter referred to as component B), in a weight ratio of component A: component B = 1:0.1 to 0.8. 1. A dispersion-precipitation type heat- and wear-resistant sintered alloy, characterized in that its strength, heat- and wear-resistance, and welding-resistance are improved by having a composition in which the following elements are substituted within a satisfying range. 2 As a dispersed phase forming component, 4a s5a of the periodic table
, and one or more carbides and double carbides of Group 6a transition metals (hereinafter referred to as component A): 10-
95%, each containing Fe: 1 to 1 as a bonding phase forming component
0%, co=1~70chi, Cr:1~20%, Mo1~
50%, W: 1-20 inches, B: 0.01-1°0 inches, z
One or more of the following groups: r: 0.01 to 1.0, Nb: 5 or less, V: 5 or less, Si: 3% or less, Mn: 5% or less, Ti: 2-10%, At:
0.5-10%, Ni and inevitable impurities = 20-70
It has a composition consisting of
13A Z (T i ) phase precipitated binder phase: 5
In a dispersed precipitation type sintered alloy having a content of ~90% (or more by weight), a part of the first dispersed phase forming component is
A dispersed phase forming component consisting of one or more types (hereinafter referred to as component B) of nitrides, carbonitrides, double nitrides, and double carbonitrides of transition metals of the a + 5 a s and 6a groups. , by substituting the weight ratio of component A:component B=1:0.1 to 0.8 within a satisfying range, and by creating a composition containing 0.1 to 5% by weight of aluminum nitride, strength, A dispersed precipitation type heat and wear resistant sintered alloy characterized by improved heat and wear resistance and welding resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2836079A JPS5949298B2 (en) | 1979-03-12 | 1979-03-12 | Dispersed precipitation type heat-resistant and wear-resistant sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2836079A JPS5949298B2 (en) | 1979-03-12 | 1979-03-12 | Dispersed precipitation type heat-resistant and wear-resistant sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55122852A JPS55122852A (en) | 1980-09-20 |
JPS5949298B2 true JPS5949298B2 (en) | 1984-12-01 |
Family
ID=12246444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2836079A Expired JPS5949298B2 (en) | 1979-03-12 | 1979-03-12 | Dispersed precipitation type heat-resistant and wear-resistant sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5949298B2 (en) |
-
1979
- 1979-03-12 JP JP2836079A patent/JPS5949298B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55122852A (en) | 1980-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100857493B1 (en) | Hardmetal compositions, harddmetal device, and fabrication methods for hardmetal | |
KR20080053468A (en) | Cemented carbide materials for high temperature applications | |
JP2008503650A (en) | High performance cemented carbide material | |
JPH10512622A (en) | Titanium-based carbonitride alloy with controllable wear and toughness | |
JPS5949298B2 (en) | Dispersed precipitation type heat-resistant and wear-resistant sintered alloy | |
JP2737676B2 (en) | Nitrogen-containing sintered hard alloy | |
JPS5917176B2 (en) | Sintered hard alloy with hardened surface layer | |
JPS5823455B2 (en) | sintered hard alloy | |
JPS5941445A (en) | Cubic boron nitride base high pressure sintered material for cutting tool | |
JPS58213842A (en) | Manufacturing method of high strength cermet | |
JPS61201750A (en) | sintered hard alloy | |
JPS61147841A (en) | Hyperfine-grained sintered hard alloy | |
JPH0471986B2 (en) | ||
JP2835255B2 (en) | Cemented carbide | |
JPS60135552A (en) | Hyperfine tungsten carbide-base sintered alloy | |
JPS5915970B2 (en) | Tough cermet with a softened surface layer | |
JPH0617532B2 (en) | Cermet member for cutting tools | |
JPS58113348A (en) | Cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
JPS58181845A (en) | Tough cermet | |
JPH04210447A (en) | Punch for coldforging excellent in wear resistance | |
JPS6311645A (en) | Nitrogen-containing sintered hard alloy and its manufacturing method | |
JPS5942067B2 (en) | Tough tungsten carbide-based cemented carbide for cutting tools | |
JPH05239587A (en) | Ticn-based cermet alloy | |
JPS58189345A (en) | Manufacture of tough cermet | |
JPS5854181B2 (en) | Toughness cermet |