JP2737676B2 - Nitrogen-containing sintered hard alloy - Google Patents
Nitrogen-containing sintered hard alloyInfo
- Publication number
- JP2737676B2 JP2737676B2 JP6324602A JP32460294A JP2737676B2 JP 2737676 B2 JP2737676 B2 JP 2737676B2 JP 6324602 A JP6324602 A JP 6324602A JP 32460294 A JP32460294 A JP 32460294A JP 2737676 B2 JP2737676 B2 JP 2737676B2
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- weight
- alloy
- hard alloy
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、窒素含有焼結硬質合金
に関し、特に切削加工用工具の材質として極めて耐熱衝
撃性に優れ、かつ耐摩耗性及び強度に富み、湿式切削に
も使用可能な窒素含有焼結硬質合金に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen-containing sintered hard alloy, and more particularly to a cutting tool which is extremely excellent in thermal shock resistance, has excellent wear resistance and strength, and can be used for wet cutting. It relates to a nitrogen-containing sintered hard alloy.
【0002】[0002]
【従来の技術】Tiを主成分とする炭窒化物などを硬質
相とし、これをNiとCoからなる金属で結合した窒素
を含有する焼結硬質合金が切削工具としてすでに実用化
されている。この窒素含有焼結硬質合金は、従来の窒素
を含有しない焼結硬質合金に比べ硬質相が著しく微粒に
なるため耐高温クリープ特性が大幅に改善されるためW
Cを主成分としたいわゆる超硬合金と並んで切削工具と
して広く使用されてきている。しかしながら、この窒素
含有焼結硬質合金は、 主成分であるTiの炭窒化物の熱伝導度が超硬合金の
主成分であるWCの熱伝導率に比べて著しく小さいた
め、この窒素含有焼結硬質合金の熱伝導度は超硬合金の
約1/2であること、 熱膨張係数も、同様に主成分の特性値に依存して窒素
含有焼結硬質合金のそれは超硬合金に比べ1.3倍にな
ること、などの理由により熱衝撃に対する抵抗が低くな
る。このため、特に熱衝撃の厳しくなる条件下での切
削、例えばフライス切削や角材の旋盤による切削加工、
また、切込みの大きく変動する湿式での倣い切削などに
は、被覆超硬合金などに比べて信頼性が低いのが現状で
あった。このような問題に対して、例えば、特開平2−
15139号公報や、特開平5−9646号公報で、強
靱なサーメットが提案されている。2. Description of the Related Art A sintered hard alloy containing nitrogen in which a carbon nitride or the like containing Ti as a main component is used as a hard phase and bonded with a metal composed of Ni and Co has already been put into practical use as a cutting tool. This nitrogen-containing sintered hard alloy has a remarkably fine hard phase compared to a conventional sintered hard alloy not containing nitrogen.
It has been widely used as a cutting tool along with a so-called cemented carbide containing C as a main component. However, in this nitrogen-containing sintered hard alloy, the thermal conductivity of the carbonitride of Ti, which is the main component, is significantly smaller than the thermal conductivity of WC, which is the main component of the cemented carbide. The thermal conductivity of the hard alloy is about の of that of the cemented carbide, and the coefficient of thermal expansion also depends on the characteristic value of the main component. For example, the resistance to thermal shock is reduced due to a factor of three. For this reason, cutting under severe thermal shock conditions, such as milling and turning of square bars,
In addition, in the current situation, the reliability is lower than that of a coated cemented carbide or the like in wet copying in which the depth of cut greatly varies. To solve such a problem, see, for example,
JP-A-15139 and JP-A-5-9646 propose tough cermets.
【0003】又、窒素含有焼結硬質合金は、特公昭56
−51201号公報などに開示されているように、硬質
相粒子がいわゆる有芯二重構造を呈しTiとNが富化さ
れている芯部とW,Moが富化されNが貧化している周
辺部とで形成されている。このような二重構造の合金は
X線回折測定(Cu−Kα線)をすると、同じB1構造
の同一回折面からのピークが2つに分離されて検出され
る。ここで回折角の低角側の強度の強いピークは周辺部
のもので、高角側の強度の低いピークは芯部のものであ
る。A nitrogen-containing sintered hard alloy is disclosed in
As disclosed in, for example, Japanese Patent Application Publication No. 51201, a hard phase particle has a so-called cored double structure, and a core portion in which Ti and N are enriched, and W and Mo are enriched and N is poor. It is formed with the peripheral part. When such an alloy having a double structure is subjected to X-ray diffraction measurement (Cu-Kα ray), a peak from the same diffraction plane having the same B1 structure is separated into two and detected. Here, the peak with a high intensity on the low angle side of the diffraction angle is that of the peripheral portion, and the peak with a low intensity on the high angle side is that of the core.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記い
ずれの公報に開示されたサーメットにおいても、耐摩耗
性及び靱性は向上しているが、被覆超硬合金に比べれば
耐欠損性は不十分であり、耐熱衝撃性、特に熱亀裂の発
生や、熱衝撃と機械的衝撃の両者に起因する亀裂の進展
による突発欠損が生じやすく、十分な信頼性が得られな
い。そこで本発明者らは、種々の切削における温度分布
などの切削現象の解析と、工具内の材料成分の配置との
詳細な研究をしてきた結果、本発明に達した。本発明
は、従来の高価な被覆超硬合金でしか使用できなかった
厳しい熱衝撃を受ける条件下での加工においても、表面
被覆を施すことなく高い信頼性を持って使用可能な切削
工具用窒素含有焼結硬質合金を提供することを目的とす
る。However, the cermets disclosed in any of the above publications have improved wear resistance and toughness, but have insufficient fracture resistance as compared with coated cemented carbide. In addition, thermal shock resistance, particularly thermal cracking, and sudden loss due to crack propagation caused by both thermal shock and mechanical shock are likely to occur, and sufficient reliability cannot be obtained. Then, the present inventors have conducted detailed research on the analysis of cutting phenomena such as temperature distribution in various cutting and the arrangement of material components in a tool, and as a result, have reached the present invention. The present invention is a cutting tool nitrogen for cutting tools that can be used with high reliability without applying a surface coating, even in machining under severe thermal shock conditions that could only be used with conventional expensive coated cemented carbide. It is an object of the present invention to provide a sintered hard alloy.
【0005】[0005]
【課題を解決するための手段】上記二重構造の合金にお
いて、合金表面部の組成・構造を、有芯構造の芯部の割
合を減らし、周辺部の構造の存在比を多くかつ組成ゆら
ぎや結晶歪をある範囲内にすることが耐摩耗性、耐熱衝
撃性、靱性を著しく向上させられるという知見を得、本
発明に到達した。すなわち、本発明の窒素含有焼結硬質
合金は、Tiと、周期律表の4a、5a、6a族から選
ばれたTiを除く少なくとも1種の遷移金属の炭化物、
窒化物、炭窒化物あるいはこれらの複合炭窒化物の少な
くとも1種以上からなる硬質相が75〜95重量%で、
Ni及びCo並びに不可避不純物を含む結合相が5〜2
5重量%であり、X線回折測定でB1構造のピークが2
種類検出される窒素含有焼結硬質合金において、X線回
折測定における2つのB1構造の同一回折面からのピー
クのうち低角側に検出される強度の大きい方のピークに
おけるX線回折ピークの半価幅(以下、半価幅という)
が、合金表面部で測定する半価幅が、合金の1mm以上
内部で測定する半価幅に対し60%以上80%未満であ
る事を特徴とする窒素含有焼結硬質合金である。60%
未満では耐塑性変形性が劣り、80%以上では耐熱衝撃
性が不十分で好ましくない。また、本発明ではB1構造
の硬質相だけでなく、内部にWC相を存在させても良
い。In the above-mentioned alloy having a double structure, the composition and structure of the alloy surface are reduced by reducing the proportion of the core in the cored structure, increasing the abundance ratio of the structure in the peripheral part, and increasing the composition fluctuation. It has been found that setting the crystal strain within a certain range can significantly improve wear resistance, thermal shock resistance, and toughness, and have reached the present invention. That is, the nitrogen-containing sintered hard alloy of the present invention comprises Ti and a carbide of at least one transition metal except Ti selected from Groups 4a, 5a and 6a of the periodic table;
75 to 95% by weight of a hard phase comprising at least one kind of nitride, carbonitride or composite carbonitride thereof;
5 to 2 binder phases containing Ni and Co and unavoidable impurities
5% by weight, and the peak of the B1 structure was 2 in the X-ray diffraction measurement.
In the detected nitrogen-containing sintered hard alloy, half of the X-ray diffraction peak of the larger intensity peak detected on the low angle side among the peaks from the same diffraction plane of the two B1 structures in the X-ray diffraction measurement Price range (hereinafter, half price range)
Is a nitrogen-containing sintered hard alloy characterized in that the half width measured at the alloy surface is 60% or more and less than 80% of the half width measured at 1 mm or more inside the alloy. 60%
If it is less than 80%, the plastic deformation resistance is poor, and if it is 80% or more, the thermal shock resistance is insufficient, which is not preferable. In the present invention, not only the hard phase having the B1 structure but also a WC phase may be present inside.
【0006】[0006]
【作用】本発明により、表面に有芯構造の周辺部の組成
ゆらぎや結晶歪みを合金内部のそれより小さくすると、
この部分の耐塑性変形性が優れるためクリープ強度を高
めることができ、工具強度を向上でき、全体として高性
能な工具となる。ただし、余り小さくすると冶金学でい
う整合歪強化による効果が望めなくなり靱性、耐熱衝撃
性が不十分となる。According to the present invention, when the composition fluctuation and crystal distortion at the peripheral portion of the cored structure are made smaller than those inside the alloy,
Since the plastic deformation resistance of this portion is excellent, the creep strength can be increased, the tool strength can be improved, and a high-performance tool as a whole can be obtained. However, if it is too small, the effect of strengthening the matching strain in metallurgy cannot be expected, and the toughness and thermal shock resistance become insufficient.
【0007】本発明の合金は、所望の原料を湿式混合
し、真空から、窒素雰囲気中で1400〜1700℃程
度で焼結後、脱炭脱窒素雰囲気中で徐冷することによっ
て調製することができる。The alloy of the present invention can be prepared by wet-mixing desired raw materials, sintering from about 1400 to 1700 ° C. in a nitrogen atmosphere under vacuum, and then gradually cooling in a decarburizing and denitrifying atmosphere. it can.
【0008】[0008]
【実施例】以下本発明を実施例により更に具体的に説明
するが、本発明を限定する意図のものではない。 (実施例1)平均粒径2μmで有芯構造の外郭部分が反
射電子顕微鏡像で真っ白に見え、芯部分が真っ黒に見え
る(Ti0.85Ta0.05Nb0.04W0.06)(C
0.55N0.45)粉末と、同0.7μmのWC粉末と、同
1.5μmのNi粉末とCo粉末をそれぞれ48重量
%、37重量%、5重量%、10重量%を湿式混合後、
型押し成形し、10-2Torrの真空中で1200℃で
脱ガス後、窒素ガス分圧20から70Torrで155
0℃にて1時間焼結後、CO2 中で冷却し、試料1を調
製した。この試料1のX線のCu−Kα線B1構造の
(220)面からの回折曲線の強度の強い方のピークの
半価幅(以下、半価幅という)が、表面から1mm内部
で0.26度、表面ラッピング面で0.16度と62%
に減少していた(図1参照)。試料1と同一合金組成と
なるようにTiCN37重量%、TaC5重量%、Nb
C2重量%、WC41重量%、Ni5重量%、Co10
重量%を配合し、試料1と同一条件で焼結して試料2を
調製し、また、TiCN42重量%、TaC10重量
%、Mo2 C8重量%、WC22重量%、Ni6重量
%、Co12重量%配合し試料1と同一条件で焼結して
試料3を調製し、試料1、試料2と同一の型押し成形体
を窒素分圧7Torrで1450℃で焼結しCO分圧1
80Torrで冷却し、それぞれ試料4、試料5を調製
した。The present invention will be described in more detail with reference to the following examples, which are not intended to limit the present invention. (Example 1) The outer part of the cored structure having an average particle size of 2 μm looks pure white in a reflection electron microscope image and the core part looks pure black (Ti 0.85 Ta 0.05 Nb 0.04 W 0.06 ) (C
0.55 N 0.45 ) powder, the same WC powder of 0.7 μm, the Ni powder and the Co powder of 1.5 μm, 48 wt%, 37 wt%, 5 wt% and 10 wt%, respectively, after wet mixing,
After embossing and degassing at 1200 ° C. in a vacuum of 10 −2 Torr, the nitrogen gas is 155 at a partial pressure of 20 to 70 Torr.
After sintering at 0 ° C. for 1 hour, it was cooled in CO 2 to prepare Sample 1. The half-value width (hereinafter, referred to as the half-value width) of the peak having the higher intensity of the diffraction curve from the (220) plane of the X-ray Cu-Kα ray B1 structure of Sample 1 is 0.1 mm from the surface. 26 degrees, 0.16 degrees and 62% on the surface wrapping surface
(See FIG. 1). TiCN 37% by weight, TaC 5% by weight, Nb so as to have the same alloy composition as Sample 1.
C2 wt%, WC41 wt%, Ni5 wt%, Co10
% By weight, and sintered under the same conditions as in Sample 1 to prepare Sample 2, and 42% by weight of TiCN, 10% by weight of TaC, 8% by weight of Mo 2 C, 22% by weight of WC, 6% by weight of Ni, and 12% by weight of Co. Then, sintering was performed under the same conditions as in Sample 1 to prepare Sample 3, and the same embossed compact as in Samples 1 and 2 was sintered at 1450 ° C. under a partial pressure of nitrogen of 7 Torr, and a CO partial pressure of 1
After cooling at 80 Torr, Sample 4 and Sample 5 were prepared, respectively.
【0009】また、平均粒径2μmの(Ti0.87Nb
0.07W0.06)(C0.5 N0.5 )粉末と、同1.5μmの
Ni粉末とCo粉末をそれぞれ83重量%、9重量%、
8重量%を湿式混合後、型押し成形し、10-2Torr
の真空中で1000℃で脱ガス後、Ar10Torr中
で1200℃まで昇温した後、窒素ガス分圧5Torr
で1450℃にて1時間焼結後、CO2 10Tor中で
超徐冷(0.5〜5℃/分)して試料6を調製し、同じ
く真空中で徐冷(3〜10℃/分)して試料7を調製
し、Ar中で急冷(200Torr、10〜50℃/
分)して試料8を調製した。次に、TiCN39重量
%、NbC6重量%、WC40重量%、Ni8重量%、
Co7重量%配合したものを、試料6、7、8と同一条
件で焼結してそれぞれ試料9、10、11を得、また、
TiCN59重量%、NbC8重量%、Mo2C5重量
%、WC10重量%、Ni10重量%、Co8重量%配
合したものを、試料1、4と同一条件で焼結してそれぞ
れ試料12、13を調製し、それぞれの(表面の半価
幅)/(内部の半価幅)を測定し、焼結肌で工具形状C
NMG432を作成して下記耐熱衝撃性評価の切削テス
トに付した結果を表1に示す。試料1、2、9、10、
11には合金組織の内部にWCが析出していた。Further, (Ti 0.87 Nb) having an average particle size of 2 μm
0.07 W 0.06 ) (C 0.5 N 0.5 ) powder and 83 wt% and 9 wt% of 1.5 μm Ni powder and Co powder, respectively.
After wet mixing 8% by weight, embossing is performed, and 10 −2 Torr is applied.
After degassing at 1000 ° C. in a vacuum, the temperature was raised to 1200 ° C. in Ar 10 Torr, and the nitrogen gas partial pressure was 5 Torr.
After sintering at 1450 ° C. for 1 hour, sample 6 was prepared by ultra-slow cooling (0.5 to 5 ° C./min) in 10 Torr of CO 2 , and slowly cooled in a vacuum (3 to 10 ° C./min) ) To prepare sample 7, which is quenched in Ar (200 Torr, 10-50 ° C /
Min) to prepare Sample 8. Next, 39% by weight of TiCN, 6% by weight of NbC, 40% by weight of WC, 8% by weight of Ni,
The mixture containing 7% by weight of Co was sintered under the same conditions as Samples 6, 7, and 8 to obtain Samples 9, 10, and 11, respectively.
Samples 12 and 13 were prepared by sintering 59% by weight of TiCN, 8% by weight of NbC, 5% by weight of Mo 2 C, 10% by weight of WC, 10% by weight of Ni and 8% by weight of Co under the same conditions as Samples 1 and 4. , Each (half width at the surface) / (half width at the inside) is measured, and the tool shape C
Table 1 shows the results of preparing NMG432 and subjecting it to the following cutting test for evaluating thermal shock resistance. Samples 1, 2, 9, 10,
In No. 11, WC was precipitated inside the alloy structure.
【0010】耐摩耗切削テスト 工具形状 SNMG432 被削材 SCM435(HB =240)丸棒 切削速度 180m/分 送り 0.36mm/rev. 切込み 1.5mm 切削油 水溶性 切削時間 10分 判定 逃げ面摩耗幅VB (mm) 耐熱衝撃性切削テスト 被削材 SCM435(HB =220)丸棒 切削速度 250m/分 送り 0.20mm/rev. 切込み 2.5→0.2mmに変動 切削油 水溶性 切削時間 15分 判定 20切刃中の欠損切刃数 (個)[0010] Abrasion cutting test tool shape SNMG432 workpiece SCM435 (H B = 240) Round bar Cutting speed 180 m / min Feed 0.36 mm / rev. Depth of cut 1.5mm Cutting oil Water soluble Cutting time 10min Judgment Flank wear width V B (mm) Thermal shock resistant cutting test Work material SCM435 (H B = 220) Round bar Cutting speed 250m / min Feed 0.20mm / rev . Cutting depth fluctuates from 2.5 to 0.2 mm Cutting oil Water soluble Cutting time 15 minutes Judgment Number of missing cutting edges in 20 cutting edges (pieces)
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【発明の効果】上述のように本発明によれば、切削工具
として特に熱衝撃の厳しい条件での切削、例えばフライ
ス切削や角材の旋盤による切削加工、また、切込みの大
きく変動する湿式での倣い切削加工など、従来は高価な
被覆超硬合金工具でした使用じできなかった加工領域に
対し、コーティングなしで極めて信頼性が高い窒素含有
焼結硬質合金を提供できるという効果を奏する。As described above, according to the present invention, as a cutting tool, cutting under particularly severe conditions of thermal shock, for example, milling or cutting of a square bar by a lathe, or wet copying in which the cutting depth greatly varies. The present invention has an effect that a highly reliable nitrogen-containing sintered hard alloy can be provided without a coating in a machining area, such as cutting, where a conventionally expensive coated cemented carbide tool could not be used.
【図1】図1は実施例の中の試料1の、(a)表面部、
(b)内部のX線Cu−Kα線の回折曲線である。FIG. 1 shows (a) a surface portion of a sample 1 in an embodiment,
(B) It is a diffraction curve of the inside X-ray Cu-Kα ray.
Claims (1)
から選ばれたTiを除く少なくとも1種の遷移金属の炭
化物、炭窒化物あるいはこれらの複合炭窒化物の少なく
とも1種以上からなる硬質相が75〜95重量%で、N
i及びCo並びに不可避的不純物を含む結合相が5〜2
5重量%であり、X線回折測定でB1構造のピークが2
種類検出される窒素含有焼結硬質合金において、 X線回折測定における2つのB1構造の同一回折面から
のピークのうち低角側に検出される強度の大きい方のピ
ークにおいて、合金表面部で測定するX線回折ピークの
半価幅が、合金の1mm以上内部で測定するX線回折ピ
ークの半価幅に対し60%以上80%未満である事を特
徴とする窒素含有焼結硬質合金。Claims: 1. A method for producing a material comprising at least one of carbides, carbonitrides or composite carbonitrides of Ti and at least one transition metal excluding Ti selected from groups 4a, 5a and 6a of the periodic table. 75-95% by weight of the hard phase
5 to 2 bonded phases containing i and Co and unavoidable impurities
5% by weight, and the peak of the B1 structure was 2 in the X-ray diffraction measurement.
In the type of nitrogen-containing sintered hard alloy detected, the peak with the larger intensity detected on the low angle side among the peaks from the same diffraction plane of the two B1 structures in the X-ray diffraction measurement is measured at the alloy surface. A nitrogen-containing sintered hard alloy, wherein the half-value width of the X-ray diffraction peak to be measured is at least 60% and less than 80% of the half-value width of the X-ray diffraction peak measured within 1 mm or more inside the alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6324602A JP2737676B2 (en) | 1994-12-27 | 1994-12-27 | Nitrogen-containing sintered hard alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6324602A JP2737676B2 (en) | 1994-12-27 | 1994-12-27 | Nitrogen-containing sintered hard alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08176719A JPH08176719A (en) | 1996-07-09 |
JP2737676B2 true JP2737676B2 (en) | 1998-04-08 |
Family
ID=18167659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6324602A Expired - Lifetime JP2737676B2 (en) | 1994-12-27 | 1994-12-27 | Nitrogen-containing sintered hard alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2737676B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5127110B2 (en) * | 2004-01-29 | 2013-01-23 | 京セラ株式会社 | TiCN-based cermet and method for producing the same |
JP4703122B2 (en) * | 2004-03-23 | 2011-06-15 | 京セラ株式会社 | Method for producing TiCN-based cermet |
JP5127264B2 (en) * | 2007-02-23 | 2013-01-23 | 京セラ株式会社 | TiCN-based cermet |
JP4974980B2 (en) * | 2008-08-25 | 2012-07-11 | 京セラ株式会社 | TiCN-based cermet |
EP2505289B1 (en) * | 2009-11-26 | 2019-06-05 | Kyocera Corporation | Rotation tool |
-
1994
- 1994-12-27 JP JP6324602A patent/JP2737676B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08176719A (en) | 1996-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4769070A (en) | High toughness cermet and a process for the production of the same | |
EP0380096B1 (en) | Cemented carbide drill | |
US5066553A (en) | Surface-coated tool member of tungsten carbide based cemented carbide | |
US5306326A (en) | Titanium based carbonitride alloy with binder phase enrichment | |
EP2450136A1 (en) | Cermet and coated cermet | |
EP1462534A1 (en) | Compositionally graded sintered alloy and method of producing the same | |
EP0687744B1 (en) | Nitrogen-containing sintered hard alloy | |
JP2737676B2 (en) | Nitrogen-containing sintered hard alloy | |
JP2737677B2 (en) | Nitrogen-containing sintered hard alloy | |
JP2893886B2 (en) | Composite hard alloy material | |
JP2775298B2 (en) | Cermet tool | |
EP0775755B1 (en) | Carbonitride-type cermet cutting tool having excellent wear resistance | |
JPH0813077A (en) | Nitrogen-containing sintered hard alloy | |
JP7432109B2 (en) | Cemented carbide and cutting tools | |
JP3803694B2 (en) | Nitrogen-containing sintered hard alloy | |
JP3850085B2 (en) | Coated cermet for cutting tools | |
JPH0698540B2 (en) | Method for manufacturing a cutting tool made of thermite with excellent wear resistance | |
JPS6059195B2 (en) | Manufacturing method of hard sintered material with excellent wear resistance and toughness | |
JP7473871B2 (en) | WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool | |
JPH0471986B2 (en) | ||
JPS6134130A (en) | Manufacture of high strength cermet having superior chipping resistance | |
JPH07316716A (en) | Nitrogen-containing sintered hard alloy | |
JP3319213B2 (en) | Cermet cutting tool with excellent fracture resistance | |
JP3493587B2 (en) | Titanium carbonitride-based cermet cutting tool with excellent wear resistance | |
JP2697553B2 (en) | Titanium carbonitride cermet cutting tool with excellent toughness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |