[go: up one dir, main page]

JPS5933129B2 - Method for manufacturing synthetic resin molded products with surfaces with excellent wear resistance - Google Patents

Method for manufacturing synthetic resin molded products with surfaces with excellent wear resistance

Info

Publication number
JPS5933129B2
JPS5933129B2 JP51082662A JP8266276A JPS5933129B2 JP S5933129 B2 JPS5933129 B2 JP S5933129B2 JP 51082662 A JP51082662 A JP 51082662A JP 8266276 A JP8266276 A JP 8266276A JP S5933129 B2 JPS5933129 B2 JP S5933129B2
Authority
JP
Japan
Prior art keywords
synthetic resin
plate
coating
curing
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51082662A
Other languages
Japanese (ja)
Other versions
JPS537771A (en
Inventor
末広 田山
和則 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP51082662A priority Critical patent/JPS5933129B2/en
Publication of JPS537771A publication Critical patent/JPS537771A/en
Publication of JPS5933129B2 publication Critical patent/JPS5933129B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は、耐摩粍性に優れた表面を有する合成樹脂成形
品の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a synthetic resin molded article having a surface with excellent abrasion resistance.

ポリメチルメタクリレート、ポリスチレン、ポリカーボ
ネート等から製造され、種々の形状に成形された合成樹
脂製品は、ガラス製品に比べて軽く耐衝撃性に優れてお
り、その製造が迅速に行いうること、安価であることな
どの種々の利点を有しているため多くの分野に使用され
ている。
Synthetic resin products manufactured from polymethyl methacrylate, polystyrene, polycarbonate, etc. and molded into various shapes are lighter than glass products and have excellent impact resistance, and can be manufactured quickly and at low cost. It is used in many fields because it has various advantages such as:

しかしこれらの合成樹脂を素材とした合成樹脂成形品は
、その表面硬度が不足しているため、他の物体との接触
、衝突、引つかきなどの作用によつて表面が損傷を受け
美観が損われると共に光学特性が低下し、製品の価値を
著しく低下させる。これまでこのような合成樹脂成形品
の欠点を改良する方法として種々検討されて来ている。
例えば、あらかじめ最終製品の形状に成形した熱可塑性
合成樹脂成形品の表面に耐摩粍性を付与する架橋硬化性
樹脂材料を塗布し、該塗布物の硬化を完了させて、熱可
塑性合成樹脂成形品に耐摩粍性を付与する方法、あるい
は架橋硬化性樹脂材料の重合物の皮膜を予め鋳型成型内
面上に形成し、その後に基材樹脂原料を注入して重合を
行い、基材と皮膜とを一体化して鋳型より剥離されるこ
とにより、板状の熱可塑性合成樹脂に耐摩耗性を付与し
、その後成形して合成樹脂成形品を得る方法等が提案さ
れている。しかしながら、上記の方法においては、次に
述べるような大きな欠点を有しているために、いまだ十
分な実用性を有していない。
However, synthetic resin molded products made from these synthetic resins lack surface hardness, so the surface may be damaged by contact with other objects, collisions, or scratches, resulting in poor appearance. The optical properties are deteriorated and the value of the product is significantly reduced. Up to now, various studies have been made to improve the drawbacks of such synthetic resin molded products.
For example, a cross-linked curable resin material that imparts abrasion resistance is applied to the surface of a thermoplastic synthetic resin molded product that has been previously molded into the shape of the final product, and the cure of the applied material is completed to create a thermoplastic synthetic resin molded product. A method of imparting abrasion resistance to a material, or a method of forming a film of a polymer of a cross-linked curable resin material on the inner surface of a mold in advance, and then injecting a base resin raw material and polymerizing it to bond the base material and the film. A method has been proposed in which a thermoplastic synthetic resin plate is imparted with wear resistance by being integrated and peeled from a mold, and then molded to obtain a synthetic resin molded product. However, the above method has major drawbacks as described below, and therefore is not yet of sufficient practical use.

すなわち前者の方法においては、最終形態にまで成形さ
れた合成樹脂成形品に架橋硬化性樹脂材料を塗布する場
合、板状品に塗布する重合と比較してその複雑な形態の
ため塗布工程がきわめて煩雑であり、また塗布する膜厚
を均一にすることは困難である。一方、後者の方法にお
いては、前者の方法に比べて塗布する膜厚は均一にする
ことができるが、架橋硬化皮膜を表面に有する板状の合
成樹脂を最終形態の製品に成形する重合、皮膜が高度に
架橋しているために、皮膜の伸びの限界によつて合成樹
脂の成形性が制限され、もし皮膜の伸びの限界を越える
条件下で成形が行なわれた場合、皮膜に亀裂が発生して
外観を著しく損い、実用に供さない。
In other words, in the former method, when applying a cross-linked curable resin material to a synthetic resin molded product that has been molded to its final form, the application process is extremely complicated compared to polymerization applied to a plate-shaped product. It is complicated, and it is difficult to make the coating thickness uniform. On the other hand, in the latter method, the thickness of the applied film can be made more uniform than in the former method, but the film is formed by polymerization, which involves molding a plate-shaped synthetic resin with a cross-linked cured film on the surface into the final product. Because it is highly cross-linked, the moldability of the synthetic resin is limited by the limit of film elongation, and if molding is carried out under conditions that exceed the film's elongation limit, cracks will occur in the film. This will seriously damage the appearance and make it unusable.

この現象は一般に耐摩粍性に優れた硬度の高い皮膜ほど
伸びが小さく、合成樹脂の成形性は悪くなる。したがつ
て耐摩耗性に優れた硬化皮膜を表面に有する合成樹脂板
状品を最終形態にまで成形し、所望の合成樹脂成形品を
製造することぱ困難であつた。本発明者等は、これらの
欠点を排除し、効率のよい耐摩耗性に優れた架橋皮膜を
表面に有する合成樹脂成形品の製造法を開発すべく鋭意
研究の結果特殊の方法を採用することによりこれらの問
題が一挙に解決できる方法を見出し本発明を完成した。
Generally speaking, the harder the coating is with better abrasion resistance, the smaller the elongation will be, and the moldability of the synthetic resin will be worse. Therefore, it has been difficult to mold a synthetic resin plate-like article having a hardened film with excellent wear resistance on its surface into its final form and to produce a desired synthetic resin molded article. The inventors of the present invention adopted a special method as a result of intensive research in order to eliminate these drawbacks and develop an efficient method for manufacturing synthetic resin molded products having a crosslinked film on the surface with excellent wear resistance. As a result, we have found a method that can solve these problems all at once, and have completed the present invention.

本発明の要旨とするところは、熱可塑性合成樹脂板状品
表面に耐摩耗性を付与するラジカル重合性の架橋硬化性
樹脂材料を塗布し、該塗布物を板状品表面上で紫外線を
照射することにより予備硬化させて平滑な塗膜面を形成
させ、ついで予備硬化された塗布物を有する前記合成樹
脂板状品を成形し、その後予備硬化された塗布物に紫外
線を照射して後硬化を行うことを特徴とする耐摩耗性に
優れた表面を有する熱可塑性合成樹脂成形品の製造法に
ある。
The gist of the present invention is to apply a radically polymerizable cross-linked curable resin material that imparts wear resistance to the surface of a thermoplastic synthetic resin plate, and to irradiate the coated material with ultraviolet rays on the surface of the plate. The synthetic resin plate-shaped article having the pre-cured coating material is then molded, and the pre-cured coating material is then irradiated with ultraviolet rays to post-cure. The present invention provides a method for producing a thermoplastic synthetic resin molded article having a surface with excellent wear resistance.

本発明において使用される熱可塑性合成樹脂板状品(以
下、単に板状品と略称する。
A thermoplastic synthetic resin plate-shaped article (hereinafter simply referred to as a plate-shaped article) used in the present invention.

)としては、例えば注型重合法、あるいは射出成形圧縮
成形、押出成形などの一般に用いられる各種の成形法で
製造される厚さが0.05〜50mm、好ましくは1〜
20關のものであつて、ポリメチルメタクリレート、メ
チルメタクリレートの共重合体、ポリシクロヘキシルメ
タクリレートのようなメタクリル樹脂、ポリスチレン、
AS樹脂、ABS樹脂のようなスチレン系樹脂、ポリカ
ーボネート、硬質塩化ビニル、酢酸セルロース、酢酸酪
酸セルロース等のセルロース樹脂、不飽和ポリエステル
等から選ばれる熱可塑性合成樹脂である。これらのうち
、特に本発明の実施に当り適した樹脂としては、透明性
が高く、美観を有するメタクリル樹脂、ポリカーボネー
ト、ポリアリルジグリコールカーボネート、スチレン系
樹脂などをあげることができる。
) has a thickness of 0.05 to 50 mm, preferably 1 to 50 mm, and is manufactured by various commonly used molding methods such as cast polymerization, injection molding, compression molding, and extrusion.
Polymethyl methacrylate, copolymers of methyl methacrylate, methacrylic resins such as polycyclohexyl methacrylate, polystyrene,
The thermoplastic synthetic resin is selected from styrene resins such as AS resin and ABS resin, polycarbonate, hard vinyl chloride, cellulose resins such as cellulose acetate and cellulose acetate butyrate, and unsaturated polyester. Among these, resins particularly suitable for carrying out the present invention include methacrylic resins, polycarbonates, polyallyl diglycol carbonates, styrene resins, etc., which have high transparency and good appearance.

本発明において用いられるラジカル重合性の架橋硬化性
樹脂材料(以下、架橋硬化性樹脂材料という)としては
特に限定されないが、硬化性、および塗膜物性の面から
多官能性のエチレン性不飽和単量体、例えば特公昭49
−26507号及び特公昭49−36830号に記載さ
れているような1分子中に少くとも2個以上のアクリロ
イルオキシ基又はメタアクリロイルオキシ基を有する架
橋重合性化合物、あるいは1分子中に3個以上の縮合反
応性官能基を有する縮合反応性単量体をあげることがで
きる。
The radically polymerizable crosslinked curable resin material (hereinafter referred to as crosslinked curable resin material) used in the present invention is not particularly limited, but from the viewpoint of curability and coating film properties, polyfunctional ethylenically unsaturated monomers are used. mass, e.g. Special Publication 1977
-26507 and Japanese Patent Publication No. 49-36830, cross-linked polymerizable compounds having at least two or more acryloyloxy or methacryloyloxy groups in one molecule, or three or more in one molecule. Examples include condensation-reactive monomers having a condensation-reactive functional group.

1分子中に2個以上のアクリロイルオキシ基又はメタア
クリロイルオキシ基を有する架橋重合性化合物の主な例
としては多価アルコールと(メタ)アクリル酸(アクリ
ル酸又は/及びメタアクリル酸の意、以下同じ)との縮
合物があげられる。
Main examples of cross-linked polymerizable compounds having two or more acryloyloxy or methacryloyloxy groups in one molecule include polyhydric alcohols and (meth)acrylic acid (acrylic acid and/or methacrylic acid, hereinafter referred to as acrylic acid and/or methacrylic acid). (same) as a condensate.

飽和多価アルコールの例としては、エチレングリコール
、ジエチレングリコール、トリエチレングリコール、テ
トラエチレングリコール、プロパンジオール、ブタンジ
オール、ヘキサンジオール、トリメチロールエタン、ト
リメチロールプロパン、ペンタエリスリトールなどが用
いられる。これらと(メタ)アクリル酸とによつて得ら
れる架橋重合性化合物としては、エチレングリコールジ
(メタ)アクリレート、トリエチレングリコールジメタ
クリレート、テトラエチレングリコールジ(メタ)アク
リレート、ジエチレングリコールジ(メタ)アクリレー
ト、プロパンジオールジ(メタ)アクリレート、ブタン
ジオールジ(メタ)アクリレート、ヘキサンジオールジ
(メタ)アクリレート、ビス一(エチレングリコール)
フタレートジ(メタ)アクリレート、ペンタエリスリト
ルテトラ(メタ)アクリレート、トリメチロールプロパ
ントリ(メタ)アクリレート、トリメチロールエタント
リ(メタ)アクリレートなどが挙げられる。
Examples of saturated polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propanediol, butanediol, hexanediol, trimethylolethane, trimethylolpropane, pentaerythritol, and the like. Examples of crosslinked polymerizable compounds obtained from these and (meth)acrylic acid include ethylene glycol di(meth)acrylate, triethylene glycol dimethacrylate, tetraethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, Propanediol di(meth)acrylate, Butanediol di(meth)acrylate, Hexanediol di(meth)acrylate, Bis(ethylene glycol)
Examples include phthalate di(meth)acrylate, pentaerythritortetra(meth)acrylate, trimethylolpropane tri(meth)acrylate, and trimethylolethane tri(meth)acrylate.

これらの架橋重合性化合物はそれぞれ単独でも、もしく
はそれらの混合物として用いることができる。
These crosslinking polymerizable compounds can be used alone or as a mixture thereof.

またこれらの架橋重合性化合物に他の共重合可能な他の
単量体、アクリル酸、メタアクリル酸、それらのエステ
ル、アクリロニトリル、メタアクリロニトリル、スチレ
ン及びその誘導体との混合物、好ましくはこれらの単量
体を30重量%以下を含有する混合物としても用いるこ
とができる。上記架橋重合性化合物のうち、合成樹脂成
形品の表面硬度及び耐摩耗性を高度に上げるには板状品
表面に塗布する樹脂材料中に1分子当り3個以上のアク
リロイルオキシ基又はメタアクリロイルオキシ基を有す
る化合物、例えばペンタエリスリトールテトラ(メタ)
アクリレート、トリメチロールプロパントリ(メタ)ア
クリレート、トリメチロールエタントリ(メタ)アクリ
レート等を30重量%以上含んでいるものを用いるのが
よい。上記の架橋重合性化合物の硬化させるための重合
開始剤としては、通常用いられるベンゾイルパーオキサ
イド、ラウロイルパーオキサイド等の過酸化物、又はア
ゾビスイソブチロニトリル等のアゾ化合物、あるいは主
吸収波長が2500〜4000λにある光増感剤、特に
好ましくはベンゾイン又はそのアルキルエーテル(炭素
数1〜4)があげられる。重合開始剤の添加量は架橋重
合性化合物100重量部に対して0.1〜10重量部、
好ましくは0.3〜2重量部である。他方、1分子中に
3個以上の縮合反応性官能基を有する単量体の具体例と
しては、テトラアルコキシシラン、メチルトリアルコキ
シシラン、フエニルトリアルコキシシラン、ビニルトリ
アルコキシシラン、γ−メタクロキシプロピルトリアル
コキシシランなどの4価あるいは3価のケイ素化合物、
あるいはエーテル化メチロールメラミンなどのメラミン
化合物があげられる。
In addition, these cross-linked polymerizable compounds are mixed with other copolymerizable monomers, acrylic acid, methacrylic acid, esters thereof, acrylonitrile, methacrylonitrile, styrene and derivatives thereof, preferably these monomers. It can also be used as a mixture containing up to 30% by weight. Among the cross-linked polymerizable compounds mentioned above, in order to highly increase the surface hardness and abrasion resistance of synthetic resin molded products, three or more acryloyloxy groups or methacryloyloxy groups per molecule should be added to the resin material applied to the surface of the plate-shaped product. Compounds with groups such as pentaerythritol tetra(meth)
It is preferable to use a material containing 30% by weight or more of acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, or the like. As a polymerization initiator for curing the above-mentioned crosslinked polymerizable compound, commonly used peroxides such as benzoyl peroxide and lauroyl peroxide, or azo compounds such as azobisisobutyronitrile, or a main absorption wavelength Photosensitizers having a wavelength of 2,500 to 4,000 λ, particularly preferably benzoin or its alkyl ether (having 1 to 4 carbon atoms). The amount of the polymerization initiator added is 0.1 to 10 parts by weight per 100 parts by weight of the crosslinked polymerizable compound.
Preferably it is 0.3 to 2 parts by weight. On the other hand, specific examples of monomers having three or more condensation-reactive functional groups in one molecule include tetraalkoxysilane, methyltrialkoxysilane, phenyltrialkoxysilane, vinyltrialkoxysilane, and γ-methacroxysilane. Tetravalent or trivalent silicon compounds such as propyltrialkoxysilane,
Alternatively, melamine compounds such as etherified methylolmelamine may be used.

上記ケイ素化合物あるいはメラミン化合物の縮合反応時
には、硬化促進剤として、通常塩酸、Pトルエンスルホ
ン酸等の酸性触媒下で反応を行わせる。
During the condensation reaction of the silicon compound or melamine compound, the reaction is usually carried out in the presence of an acidic catalyst such as hydrochloric acid or P-toluenesulfonic acid as a curing accelerator.

架橋硬化性樹脂材中には必要に応じて安定剤、改質剤、
着色剤、難燃化剤等の第3物質を添加することもできる
Stabilizers, modifiers,
Third substances such as colorants, flame retardants, etc. can also be added.

本発明を実施するには、まず板状品の表面に上記架橋硬
化性樹脂材料を塗布するか、又は塗布される板状品を加
温状態にして塗布する。
To carry out the present invention, first, the crosslinked curable resin material is applied to the surface of a plate-shaped article, or the plate-shaped article to be coated is heated.

硬化皮膜と板状品との密着性を更にあげるためには後者
の方法を採用した方が好ましい場合が多い。板状品への
上記架橋樹脂材料の塗布方法としては、例えば刷毛刷り
、回転塗布、スプレーコーテング、流し塗り、浸漬塗り
、ロールコート、グラビアコート、バーコード、スクリ
ーンコート、エアナイフコートその他の方法が用いられ
る。
In order to further improve the adhesion between the cured film and the plate-shaped article, it is often preferable to adopt the latter method. Examples of the method for applying the crosslinked resin material to the plate-shaped article include brushing, spin coating, spray coating, flow coating, dip coating, roll coating, gravure coating, bar coding, screen coating, air knife coating, and other methods. It will be done.

塗布される架橋硬化性樹脂材料の膜厚は、使用目的によ
り任意に選ぶことができるが、表面硬度、耐衝撃性、光
学特性などの観点から一般に0.001〜1mm、好ま
しくは0.001〜0.1m7nの厚さに塗布すること
が望ましい。ついで、板状品の表面に塗布された架橋硬
化性樹脂材料は予備硬化される。
The thickness of the crosslinked curable resin material to be applied can be arbitrarily selected depending on the purpose of use, but from the viewpoint of surface hardness, impact resistance, optical properties, etc., it is generally 0.001 to 1 mm, preferably 0.001 to 1 mm. It is desirable to apply the coating to a thickness of 0.1 m7n. Next, the crosslinked curable resin material applied to the surface of the plate-shaped article is precured.

予備硬化の程度は、塗布物が少なくとも表面にべとつき
を生じ板状品の成形を行なう過程で表面に損傷を受ける
ことのない程度にまでは硬化されている事が必要であり
、かつ板状品の成形後に後硬化を行なつた場合に硬化の
進行がもはや認められない程度にまで硬化されていては
ならないという2つの条件が満足されていれば特に限定
はされない。しかしながら本発明の目的にてらして、予
備硬化の程度としては、基材である板状品と同程度の表
面硬度をもつ段階まで硬化を進め、かつその段階で硬化
をとどめることが望ましい。予備硬化する方法としては
、架橋重合性化合物からなる塗布物の場合、あるいぱ縮
合反応性単量体からなる塗布物の場合ともにそれぞれの
通常の重合方法が用いられる。
The degree of preliminary curing must be such that the coated material is at least hardened to the extent that the surface will not become sticky and the surface will not be damaged during the process of forming the plate-shaped product, and There are no particular limitations as long as two conditions are satisfied: when post-curing is performed after molding, the cure must not be to such an extent that no progress in curing can be observed. However, for the purposes of the present invention, it is desirable that the degree of preliminary curing be carried out to a stage where the surface hardness is comparable to that of the plate-shaped article that is the base material, and that the curing be stopped at that stage. As a precuring method, a conventional polymerization method is used for both coatings made of a cross-linked polymerizable compound and coatings made of a condensation-reactive monomer.

架橋重合性化合物からなる場合は、上記のごとき熱重合
開始剤を添加して好ましくは50℃以上でかつ板状品基
材の熱変形温度以下で加熱する方法、あるいは室温又は
室温以上でかつ基材の熱変形温度以下で前記のごとき光
増感剤を添加して活性な光線を照射する方法、あるいは
γ線等の放射線を照射する方法等が適用できる。これら
の重合方法の中では硬化速度、装置の簡単さ、安全性な
どから考えると、光増感剤を添加して、キセノンランプ
、低圧水銀灯、高圧水銀灯、超高圧水銀灯からの活性光
線を照射して重合硬化させることが望ましい。上記方法
によつて塗布物の硬化を行なうにあたつては、酸素の重
合禁止効果を除去することが好ましい。たとえば窒素ガ
ス、炭酸ガス、希ガス、燃焼ガス等の不活性ガス零囲気
とするか、あるいは減圧にする方法、あるいは滑らかな
平面をもつフイルム状、板状の形態を有するポリオレフ
ィン、ポリエステル等の合成樹脂、ガラス、ステンレス
、あるいはアルミニウム等の材質からなる物品で被覆す
る方法あるいは円筒状のガラスで被覆する方法などが用
いられる。フイルム状、板状あるいは円筒状の形態を有
す物品で被覆して活性光線により塗布物の硬化を行なう
場合には、被覆する物品がポリオレフイン、ポリエステ
ル、ガラスなどのごとく活性光線に対して透明である場
合は被覆物を通して活性光線を照射することもできるが
、ステンレスのごとく不透明な被覆物を用いる場合ぱ、
基材である板状品を通して活性光線を照射しなければな
らない。本発明の実施において、この予備硬化完了まで
は板状品を連続押出し成形、もしくは連続キャスト製板
により製造し、次いで架橋硬化性樹脂材料を塗布し予備
硬化を行う連続方式をとつた方が好ましい。予備硬化さ
れた塗布物を表面に有する板状品の成形は、塗布物を表
面に有していない場合と同様の方法によつて行なうこと
ができる。
In the case of a cross-linked polymerizable compound, a method of adding a thermal polymerization initiator as described above and heating preferably at a temperature of 50°C or higher and below the heat deformation temperature of the base material of the plate-like article, or a method of heating at room temperature or above room temperature and the base material. A method of adding a photosensitizer as described above and irradiating active light at a temperature below the heat distortion temperature of the material, or a method of irradiating radiation such as gamma rays, etc. can be applied. Among these polymerization methods, considering the curing speed, simplicity of equipment, and safety, it is recommended to add a photosensitizer and irradiate active light from a xenon lamp, low-pressure mercury lamp, high-pressure mercury lamp, or ultra-high-pressure mercury lamp. It is desirable to polymerize and cure the resin. When curing the coated material by the above method, it is preferable to eliminate the polymerization inhibiting effect of oxygen. For example, the method of using an inert gas atmosphere such as nitrogen gas, carbon dioxide gas, rare gas, combustion gas, etc. or reducing the pressure, or the synthesis of polyolefins, polyesters, etc. that have a smooth flat film or plate shape. A method of covering with an article made of a material such as resin, glass, stainless steel, or aluminum or a method of covering with a cylindrical glass is used. When coating an article with a film, plate, or cylindrical shape and curing the coating with actinic rays, the article to be coated must be transparent to actinic rays, such as polyolefin, polyester, or glass. In some cases, it is possible to irradiate actinic light through the coating, but when using an opaque coating such as stainless steel,
Actinic light must be irradiated through the plate-shaped substrate. In carrying out the present invention, it is preferable to use a continuous method in which the plate-shaped product is manufactured by continuous extrusion molding or continuous cast plate manufacturing until the completion of pre-curing, and then a cross-linked curable resin material is applied and pre-cured. . Forming of a plate-like article having a precured coating on its surface can be carried out in the same manner as when the plate-shaped article does not have a coating on its surface.

たとえば空気循環式加熱炉、赤外線炉、空気対流炉ぁる
ぃは局部加熱ヒータ等により適当な温度に加熱した状態
で、目的の成形体の形態が得られるように設計された雌
型、雄型、あるいは雌雄型の型枠を用い、折り曲げ、単
曲面成形、フリーブロー、フリープレス、押し込み、真
空成形等によつて所望の形態に成形を行うことができる
。ただし、このとき予備硬化された塗布物の限界伸びの
範囲内で行なう必要があり、限界伸びを越えた伸びが塗
布物に与えられた場合には塗布物に亀裂が入つて実用に
供さない。予備硬化された塗布物を表面に有する板状品
を成形した後に、塗布物の硬化を完了させる方法は、塗
布物の予備硬化を行なう方法と同様の方法で行なうこと
ができる。この後硬化の場合もはや成形を行なうことは
ないので、十分に硬化を行なうことが望ましい。この後
硬化の場合には、予備硬化のときと異なり、フイルム状
、板状、あるいは円筒状の形態を有する物品で被覆する
ことは、はなはだしく煩雑であるために酸素の重合禁止
効果を除去するためには、不活性ガス雰囲気下もしくは
減圧下に硬化することが好ましい。もしくは、すでに予
備硬化された状態においては酸素の重合禁止効果は予備
硬化される前と比べて大巾に小さくなつているので装置
面の簡略化を考慮して、大気中で硬化を行なうことも好
ましい。以上に記載したごとく、本発明の特徴は、架橋
硬化性樹脂材料の硬化を2段に分けて行ない、第1段の
硬化によつて、成形性の十分に残された硬化度の段階で
平滑な塗膜面を形成させ、第2段の硬化によつて成形後
の十分な耐摩耗性を付与させることによつて、従来不可
能であつた耐摩粍性にすぐれ複雑な形態に成形された合
成樹脂成形品を工業的に製造することを可能にしたこと
にある。
For example, air circulation heating furnaces, infrared ray furnaces, and air convection furnaces are used to produce female and male molds that are designed to obtain the desired shape of a molded product when heated to an appropriate temperature using a local heater, etc. Alternatively, the desired shape can be formed by bending, single curved surface molding, free blowing, free press, pressing, vacuum forming, etc. using a male and female mold. However, at this time, it is necessary to carry out the process within the limit elongation of the pre-cured coating material, and if the coating material is elongated beyond the critical elongation limit, the coating material will crack and cannot be used for practical purposes. . After molding a plate-shaped article having a precured coating material on its surface, curing of the coating material can be completed in the same manner as the method for precuring the coating material. In the case of post-curing, since no further molding is performed, it is desirable to carry out sufficient curing. In the case of this post-curing, unlike the case of pre-curing, it is extremely complicated to cover with an article having a film, plate, or cylindrical shape, so it is necessary to remove the polymerization inhibiting effect of oxygen. For this purpose, it is preferable to cure under an inert gas atmosphere or under reduced pressure. Alternatively, in the pre-cured state, the polymerization inhibiting effect of oxygen is greatly reduced compared to before pre-curing, so in consideration of simplifying the equipment, curing may be carried out in the atmosphere. preferable. As described above, the feature of the present invention is that the cross-linked curable resin material is cured in two stages, and the first stage cures the material to make it smooth and smooth at the stage of hardening where sufficient moldability remains. By forming a coating film surface and imparting sufficient abrasion resistance after molding through the second stage of curing, it is possible to mold into complex shapes with excellent abrasion resistance that were previously impossible. The goal is to make it possible to industrially manufacture synthetic resin molded products.

これらの耐摩粍性にすぐれ複雑な形態に成形された合成
樹脂成形品の用途としては、螢光灯カバー、街灯カバー
等の照明用品、計器カバー、時計ガラス等の計器関係用
品、デイスプレ一用器具、シヨーケース等をあげること
ができ、耐摩耗性を必要とされる合成樹脂成形品の用途
に広い利用があげられる。以下、実施例によつて本発明
を更に詳しく説明する。
These synthetic resin molded products, which have excellent abrasion resistance and are molded into complex shapes, are used for lighting supplies such as fluorescent light covers and streetlight covers, instrument covers and watch glasses, and display equipment. , case, etc., and is widely used in synthetic resin molded products that require wear resistance. Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例申、部は重量部を表わす。In Examples, parts represent parts by weight.

実施例 1 厚さ3m1のメタクリル樹脂板状品を65℃に加温した
1・6へキサンジオールジアクリレート20部、トリメ
チロールエタントリアクリレート80部、ベンゾインエ
チルエーテル1.5部よりなる組成液中に3分間浸漬し
、毎分50cmの速度で引き上げ、窒素気流中にて東芝
高圧水銀灯H4OOOL/3で3秒間照射した。
Example 1 A methacrylic resin plate with a thickness of 3 m1 was heated to 65°C in a composition liquid consisting of 20 parts of 1,6 hexanediol diacrylate, 80 parts of trimethylolethane triacrylate, and 1.5 parts of benzoin ethyl ether. The sample was immersed in water for 3 minutes, pulled up at a speed of 50 cm per minute, and irradiated for 3 seconds with a Toshiba high-pressure mercury lamp H4OOOL/3 in a nitrogen stream.

こうして得られた、両面に予備硬化された塗膜を有する
メタクリル樹脂板は、流れ模様、ゴミ、歪等がなく、処
理前のメタクリル樹脂板と同様に美麗な外観を有してい
た。
The thus obtained methacrylic resin plate having precured coating films on both sides had no flow patterns, dust, distortion, etc., and had a beautiful appearance similar to the methacrylic resin plate before treatment.

なお、このときの塗膜厚は両面ともに28ミクロンで、
塗膜のゲル含量は86.3%であつた。なお、ゲル含量
の測定は次の方法によつた。板状体基材より硬化皮膜を
剥ぎ取つた試料(重量W。y)を50℃でアセトンに浸
漬して溶解分を溶出させた後、恒量になるまで乾燥して
(乾燥重量Wly)次式により求める。こうして得られ
た積層板の鉛筆硬度は処理前のメタクリル樹脂板と同じ
く2Hであつた。予備硬化して得られた積層板を140
℃に加熱して、表面にネルを貼り付けた単曲面成形用雄
雌木型を用いて単曲面成形した。
The coating thickness at this time was 28 microns on both sides.
The gel content of the coating was 86.3%. The gel content was measured by the following method. A sample (weight W.y) from which the cured film has been peeled off from the plate-like base material is immersed in acetone at 50°C to elute the dissolved content, and then dried to a constant weight (dry weight Wly) to obtain the following formula: Find it by The pencil hardness of the laminate thus obtained was 2H, the same as that of the methacrylic resin plate before treatment. The laminate obtained by pre-curing was heated to 140
℃ and molded into a single curved surface using male and female wooden molds for molding single curved surfaces with flannel attached to the surface.

成形曲率半径(以下Rと呼ぷ)を徐々に小さくしていき
、塗膜面に亀裂の発生するRを測定した。Rが40關で
は亀裂が発生しなかつたが、Rが30mmでは亀裂が発
生した。加熱成型して得られたR4O龍の積層成形品を
空気中で東芝高圧水銀灯H4OOOL/3で2分間照射
した。
The molding radius of curvature (hereinafter referred to as R) was gradually decreased, and the R at which cracks occurred on the coating surface was measured. No cracks occurred when R was 40 mm, but cracks occurred when R was 30 mm. The R4O dragon laminate molded product obtained by heat molding was irradiated in the air with a Toshiba high pressure mercury lamp H4OOOL/3 for 2 minutes.

こうして得られた成形品の鉛筆硬度は8Hと耐摩粍性に
優れ、またR4Om77!と成形性も優れた積層成形品
であつた。印1蛤柘111 厚さ3mmのメタクリル樹脂板状品を65℃に加温した
1・6ヘキサンジオールジアクリレート20部、トリメ
チロールエタントリアクリレート80部、ベンゾインエ
チルエーテル1,5部よりなる組成液中に3分間浸漬し
、毎分50cmの速度で引き上げ、窒素気流中にて東芝
高圧水銀灯H4OOOL/3で2分間照射し、鉛筆硬度
8Hを有する積層板を得た。
The thus obtained molded product has a pencil hardness of 8H, which shows excellent abrasion resistance, and R4Om77! It was a laminated molded product with excellent moldability. Mark 1 Clam 111 A composition liquid consisting of 20 parts of 1,6 hexanediol diacrylate, 80 parts of trimethylolethane triacrylate, and 1.5 parts of benzoin ethyl ether prepared by heating a 3 mm thick methacrylic resin plate to 65°C. The sample was immersed in the solution for 3 minutes, pulled up at a speed of 50 cm per minute, and irradiated for 2 minutes with a Toshiba high-pressure mercury lamp H4OOOL/3 in a nitrogen stream to obtain a laminate having a pencil hardness of 8H.

この積層板を140℃に加熱して雄雌木型を用いて単曲
面したところ、Rが150mmでは亀裂が発生せず、R
が125mmでは亀裂が発生した。
When this laminate was heated to 140°C and made into a single curved surface using male and female wooden molds, no cracks occurred when the radius was 150 mm.
However, cracks occurred at 125 mm.

実施例1のごとく、40mmf)Rに成形することは全
く不可能であつた。実施例 2 厚さ2m71Lのビスフエノール一Aポリカーボネート
樹脂板(三菱ガス化学社製、商標名「ユーピロン」)に
トリメチロールプロパントリアクリレート100部、ベ
ンゾインメチルエーテル1部よりなる組成液を塗布し、
その上に厚さ38ミクロンのポリエステルフイルムをか
ぶせて気泡が残らぬように展延し、ポリエステルフイル
ムを通して英光社水冷式高圧水銀灯PIH3OOOで5
秒間照射した。
As in Example 1, it was completely impossible to mold to 40 mmf)R. Example 2 A composition solution consisting of 100 parts of trimethylolpropane triacrylate and 1 part of benzoin methyl ether was applied to a bisphenol-A polycarbonate resin plate (manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name "Iupilon") with a thickness of 2 m and 71 L,
A polyester film with a thickness of 38 microns was placed on top of it, and it was spread out so as not to leave any air bubbles.
Irradiated for seconds.

ポリエステルフイルムを剥離して得られた積層板の処理
面は鉛筆硬度4Bであり、他方未処理面は4Bであつた
The treated side of the laminate obtained by peeling off the polyester film had a pencil hardness of 4B, while the untreated side had a pencil hardness of 4B.

なおこのときの塗膜の厚みは21ミクロン、塗膜のゲル
含量は72.8%であつた。こうして得られた積層板を
180℃に加熱し、処理面が外側になるようにして雄雌
木型で単曲面成形したところ、Rが10m71Lでは亀
裂が発生せず、Rが5m7!Lでは亀裂が発生した。
The thickness of the coating film at this time was 21 microns, and the gel content of the coating film was 72.8%. When the thus obtained laminate was heated to 180°C and molded into a single curved surface using male and female wooden molds with the treated surface facing outward, no cracks occurred when the radius was 10m71L, and the radius was 5m7! Cracks occurred in L.

Rが10龍に成形された積層成形品を窒素気流中にて英
光社水冷式高圧水銀灯PlH3OOOで5分間照射し、
鉛筆硬度8Hと耐摩粍性に優れた成形品を得ることがで
きた。
A laminated molded product with R of 10 dragons was irradiated for 5 minutes with an Eikosha water-cooled high-pressure mercury lamp PlH3OOO in a nitrogen stream.
A molded product with a pencil hardness of 8H and excellent abrasion resistance could be obtained.

他方、成形前に鉛筆硬度8Hを有するまでに硬化した積
層板の成形性は、Rが300mmでは亀裂が発生しなか
つたが、Rが200mmでは亀裂が発生し成形不可能で
あつた。
On the other hand, regarding the formability of the laminate that was cured to a pencil hardness of 8H before forming, no cracks occurred when R was 300 mm, but cracks occurred when R was 200 mm, making it impossible to form.

実施例 3 連続して毎分2mの速度で供給される巾700mm、厚
さ4mmの連続したアクリル樹脂板を、底部が60℃に
保たれたペンタエリスリトールテトラアクリレート50
部、1・4ブタンジオールジアクリレート45部、メチ
ルメタクリレート5部、ベンゾインイソプロピルエーテ
ル2部、モノメチルエーテル化ハイドロキノン0.5部
よりなる組成液で満たされたU字型の形態を有する槽の
一方の口より連続的に供給し、他方の口より連続的に上
記組成液の塗膜を両面に有する積層板をとり出し、窒素
気流中にて、オーク製作所製超高圧水銀灯CHM33O
Oで両面より2秒間照射して、連続的に予備硬化された
塗膜を有する積層板を得た。
Example 3 A continuous acrylic resin plate with a width of 700 mm and a thickness of 4 mm, which is continuously fed at a speed of 2 m/min, was coated with pentaerythritol tetraacrylate 50 whose bottom part was kept at 60°C.
One side of a U-shaped tank filled with a composition liquid consisting of 1,4 parts, 45 parts of 1,4-butanediol diacrylate, 5 parts of methyl methacrylate, 2 parts of benzoin isopropyl ether, and 0.5 parts of monomethyl etherified hydroquinone. The laminate having a coating film of the above-mentioned composition liquid on both sides was continuously supplied from the opening, and the laminate having a coating film of the above-mentioned composition liquid on both sides was continuously taken out from the other opening.
The laminate was irradiated with O for 2 seconds from both sides to obtain a laminate having a continuously precured coating film.

この処理された積層板の鉛筆硬度は2Hであり、塗膜の
厚さは両面ともに35ミクロンで、ゲル含量は84−7
%であつた。上記積層板の単曲面成形限界Rは、Rが5
0龍では亀裂が発生しなかつたが、Rが407f1mで
は亀裂が発生し成形不可能であつた。
The pencil hardness of this treated laminate is 2H, the coating thickness is 35 microns on both sides, and the gel content is 84-7.
It was %. The single curved surface forming limit R of the above laminate is R = 5
No cracks occurred in the case of 0 Dragon, but cracks occurred in the case of R of 407 f1m, making it impossible to form.

成形可能であつたRが5011の成形品を大気中で、オ
ーク製作所製超高圧水銀灯CHM33OOで2分間照射
し、鉛筆硬度7Hの成形品を得た。
The molded product with R of 5011, which could be molded, was irradiated for 2 minutes in the air with an ultra-high pressure mercury lamp CHM33OO manufactured by Oak Seisakusho, to obtain a molded product with a pencil hardness of 7H.

他方、成形前に鉛筆硬度7Hを有するまでに硬化した積
層板の成形性は、Rが600mmでは亀裂が発生しなか
つたが、Rが450龍では亀裂が発生し成形不可能であ
つた。実施例 4 連続して毎分2mの速度で供給される巾700關、厚さ
2mmのエンドレスのビスフエノール一Aポリカーボネ
ート樹月諏に、トリメチローノレプロパントリアクリレ
ート30部、ネオペンチルグリコールジアクリレート7
0部、ベンゾインブチルエーテル1部、2−メチルアン
トラキノン0.2部よりなる組成液を塗布し、上からス
テンレス製の鏡面を有す半径1mのドラムで圧着し、塗
布物を介在させて樹脂板とドラムとを接触させた状態に
しつつ、樹脂板を通して東芝高圧水銀灯H2OOOで1
0秒間照射した。
On the other hand, regarding the formability of the laminate that was cured to a pencil hardness of 7H before forming, no cracks occurred when R was 600 mm, but cracks occurred when R was 450 mm, making it impossible to form. Example 4 30 parts of trimethylonolepropane triacrylate and 7 parts of neopentyl glycol diacrylate were added to an endless bisphenol-A polycarbonate tree with a width of 700 mm and a thickness of 2 mm that was continuously fed at a speed of 2 m/min.
A composition solution consisting of 0 parts of benzoin butyl ether, 1 part of benzoin butyl ether, and 0.2 parts of 2-methylanthraquinone was applied, and the resin plate was pressed with a stainless steel drum with a radius of 1 m and a mirror surface made of stainless steel. While keeping it in contact with the drum, heat it with a Toshiba high pressure mercury lamp H2OOO through the resin plate.
Irradiated for 0 seconds.

こうして得られた積層板の鉛筆硬度は4Bであり、18
0℃における単曲面成形では、Rが10mmでは亀裂が
発生せず、Rが511mでは亀裂が発生し成形不可能で
あつた。
The pencil hardness of the laminate thus obtained was 4B and 18
When molding a single curved surface at 0° C., no cracks occurred when R was 10 mm, and cracks occurred when R was 511 m, making molding impossible.

RlOm7!Lに成形された積層成形品を大気中にて東
芝高圧水銀灯H2OOOで5分間照射したところ、鉛筆
硬度は7Hとなつた。
RlOm7! When the laminated molded product formed into L was irradiated with a Toshiba high-pressure mercury lamp H2OOO for 5 minutes in the air, the pencil hardness was 7H.

他方、成形前に鉛筆硬度が7Hを有するまでに硬化し、
積層板の成形性は、Rが1507!t1!tでは亀裂が
発生せず、Rが100mmでは亀裂が発生し成形不可能
であつた。
On the other hand, it is hardened to a pencil hardness of 7H before molding,
The moldability of the laminate is R is 1507! t1! When R was 100 mm, cracks were generated and molding was impossible.

実施例 5 厚さ6.mmのメタクリル樹脂板を70℃に加温したト
リメチロールエタントリアクリレート50部、テトラエ
チレングリコール50部、ベンゾインイソブチルエーテ
ル1.5部よりなる組成液中に3分間浸漬し、毎分30
cmの速度で引き上げ、窒素気流中にて、松下螢光ケミ
カルランプFLR6OEHで1分間照射した。
Example 5 Thickness 6. A methacrylic resin plate of 1.0 mm in diameter was immersed for 3 minutes in a solution containing 50 parts of trimethylolethane triacrylate, 50 parts of tetraethylene glycol, and 1.5 parts of benzoin isobutyl ether heated to 70°C, and the
The sample was lifted up at a speed of 1.5 cm and irradiated for 1 minute with a Matsushita fluorescent chemical lamp FLR6OEH in a nitrogen stream.

この予備硬化された塗膜を有する積層板は、鉛筆硬度2
Hを有し、150℃における単曲面成形限界Rは、Rが
30mmでは亀裂が発生しなかつたが、Rが25mmで
は亀裂が発生し成形不可能であつた。
The laminate with this pre-cured coating has a pencil hardness of 2
Regarding the single curved surface forming limit R at 150° C., when R was 30 mm, no cracks occurred, but when R was 25 mm, cracks occurred and forming was impossible.

成形可能であつたRが30mmの成形品を窒素気流中で
オーク製作所製超高圧水銀灯CHM33OOで5分間照
射し、鉛筆硬度8Hのものを得た。
A molded product with a radius of 30 mm that could be molded was irradiated for 5 minutes with an ultra-high pressure mercury lamp CHM33OO manufactured by Oak Seisakusho in a nitrogen stream to obtain a product with a pencil hardness of 8H.

他方、成形前に鉛筆硬度8Hになるまで硬化したものは
、R6OOmmでは亀裂が発生しなかつたが、R45O
mmでは亀裂が発生し成形不可能であつた。
On the other hand, when the material was hardened to a pencil hardness of 8H before molding, no cracks occurred with R6OOmm, but with R45O
mm, cracks occurred and molding was impossible.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可塑性合成樹脂板状品表面に耐摩耗性を付与する
ラジカル重合性の架橋硬化性樹脂材料を塗布し、該塗布
物を板状品表面上で紫外線を照射することにより予備硬
化させて平滑な塗膜面を形成させ、ついで予備硬化され
た塗布物を有する前記合成樹脂板状品を成形し、その後
予備硬化された塗布物に紫外線を照射して後硬化を行う
ことを特徴とする耐摩耗性に優れた表面を有する熱可塑
性合成樹脂成形品の製造法。
1 A radically polymerizable crosslinked curable resin material that imparts wear resistance is applied to the surface of a thermoplastic synthetic resin plate, and the coated material is precured by irradiating ultraviolet rays onto the surface of the plate to make it smooth. forming a coating film surface, then molding the synthetic resin plate-like article having the pre-cured coating material, and then post-curing the pre-cured coating material by irradiating it with ultraviolet rays. A method for manufacturing thermoplastic synthetic resin molded products that have a surface with excellent abrasion resistance.
JP51082662A 1976-07-12 1976-07-12 Method for manufacturing synthetic resin molded products with surfaces with excellent wear resistance Expired JPS5933129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51082662A JPS5933129B2 (en) 1976-07-12 1976-07-12 Method for manufacturing synthetic resin molded products with surfaces with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51082662A JPS5933129B2 (en) 1976-07-12 1976-07-12 Method for manufacturing synthetic resin molded products with surfaces with excellent wear resistance

Publications (2)

Publication Number Publication Date
JPS537771A JPS537771A (en) 1978-01-24
JPS5933129B2 true JPS5933129B2 (en) 1984-08-14

Family

ID=13780637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51082662A Expired JPS5933129B2 (en) 1976-07-12 1976-07-12 Method for manufacturing synthetic resin molded products with surfaces with excellent wear resistance

Country Status (1)

Country Link
JP (1) JPS5933129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192119U (en) * 1984-05-25 1985-12-20 アルパイン株式会社 Disk player pick-up adjustment mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787320A (en) * 1980-11-21 1982-05-31 Hashimoto Forming Co Ltd Manufacture of resin molded article
JPS61241833A (en) * 1985-04-19 1986-10-28 Nec Corp Instruction code access controller
WO2010120422A1 (en) * 2009-04-15 2010-10-21 3M Innovative Properties Company Process and apparatus for coating with reduced defects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60192119U (en) * 1984-05-25 1985-12-20 アルパイン株式会社 Disk player pick-up adjustment mechanism

Also Published As

Publication number Publication date
JPS537771A (en) 1978-01-24

Similar Documents

Publication Publication Date Title
SU900796A3 (en) Process for producing cast product
US5049321A (en) Method for forming coated plastic optical elements
US4273799A (en) Method for producing a synthetic resin molded product having an abrasion resistant surface
JPS6364458B2 (en)
JPH07121992B2 (en) Method for providing a scratch-resistant and weather-resistant coating on a molded body
JPS63312311A (en) Production of methacrylic polymer molded article
JPS5930170B2 (en) Method for manufacturing plastic molded products with wear-resistant coating
JPS6336348B2 (en)
JPS5933129B2 (en) Method for manufacturing synthetic resin molded products with surfaces with excellent wear resistance
JP2949121B2 (en) Ultraviolet curing method
JPS6052182B2 (en) paint composition
EP1060878A1 (en) Photocurable sheet, moldings thereof, and processes for producing the same
JPH04220411A (en) Uv-curining coating composition, abrasion resistant uv-stabilized thermoplastic composite, and its preparation
JPH04166311A (en) Manufacture of molded object
JPS6220513A (en) Production of methacrylic resin formed article
JPS6035256B2 (en) Molded product with laminated resin layer and its manufacturing method
JPS6050593B2 (en) Molded product with laminated resin layer and its manufacturing method
JP3277606B2 (en) Method for producing scratch-resistant non-glare synthetic resin plate
JPS61108520A (en) Manufacture of synthetic resin molding excellent in surface characteristics
JP2824109B2 (en) Decorative molded article and method for producing the same
JP3507502B2 (en) Method for producing transparent organic glass substrate and substrate thus obtained
JP2657294B2 (en) Manufacturing method of surface cured synthetic resin molded product
JPS60215030A (en) Production of abrasion-resistant synthetic resin molding
JPH0569845B2 (en)
JPS60149634A (en) Production of abrasion-resistant synthetic resin molding