[go: up one dir, main page]

JPS5927008B2 - thin film magnetic head - Google Patents

thin film magnetic head

Info

Publication number
JPS5927008B2
JPS5927008B2 JP14223479A JP14223479A JPS5927008B2 JP S5927008 B2 JPS5927008 B2 JP S5927008B2 JP 14223479 A JP14223479 A JP 14223479A JP 14223479 A JP14223479 A JP 14223479A JP S5927008 B2 JPS5927008 B2 JP S5927008B2
Authority
JP
Japan
Prior art keywords
recording medium
elements
magnetic recording
magnetic head
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14223479A
Other languages
Japanese (ja)
Other versions
JPS5665329A (en
Inventor
伸征 紙中
謙二 金井
紀台 能智
登 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14223479A priority Critical patent/JPS5927008B2/en
Publication of JPS5665329A publication Critical patent/JPS5665329A/en
Publication of JPS5927008B2 publication Critical patent/JPS5927008B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
    • G11B5/397Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read with a plurality of independent magnetoresistive active read-out elements for respectively transducing from selected components
    • G11B5/3974Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read with a plurality of independent magnetoresistive active read-out elements for respectively transducing from selected components from the same information track, e.g. frequency bands

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は磁気記録媒体上に記録された記録情報を再生す
る薄膜磁気ヘッドに関するもので、記録媒体を停止して
いる場合においても、情報を読み 。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film magnetic head for reproducing recorded information recorded on a magnetic recording medium, and for reading information even when the recording medium is stopped.

取ることができ、かつ、安定で長寿命な磁気ヘッドを実
現することを目的とする。従来、第1図に示すように磁
気抵抗効果素子(以下、単にMR素子とよぷ)1を基板
2上に形成し、外部への取出し電極3を設けて、磁気記
録媒体4上に記録されたトラック5からの信号情報を再
生する使い方をしていた。
The purpose of the present invention is to realize a magnetic head that is stable and has a long service life. Conventionally, as shown in FIG. 1, a magnetoresistive element (hereinafter simply referred to as an MR element) 1 is formed on a substrate 2, an external extraction electrode 3 is provided, and information is recorded on a magnetic recording medium 4. It was used to reproduce signal information from track 5.

この場合、一つの情報の流れを蓄積している一つのトラ
ックに対して、MR素子は1個を配するというのが通常
であつた。また、MR素子1は磁気記録媒体4側に露呈
するように構成され、トラック上に書き込まれた最短記
録波長成分に対しても、スペース損失が極力少なくなる
ようにして使用されてきた。MR素子の動作原理につい
ては、すでに各種文献、特許情報に明らかになつている
ので、説明は省略するが、磁気記録媒体からの記録情報
によつてそのMR素子の電気的抵抗が変化するので、M
R素子の両端に導体層を形成し、たとえば直流電流をM
R素子に流すことにより、MR素子両端の電圧が、記録
情報に対応することになる。MR素子の場合には、この
ように磁束量に応答するため、MR素子と磁気記録媒体
との相対速度がきわめて遅くなつても、信号検出は可能
であり、その電圧レベルは前記相対速度に無関係である
点が、相対速度に依存する巻線型磁気ヘツドと大きく異
なる点である。しかし、完全に磁気記録媒体が停止した
場合においては、通常の信号処理では、S/N比がとれ
ず、扱えない。第1図に示すような、MR素子が1個し
かない場合について説明する。すなわち、磁気記録媒体
からの記録情報により、MR素子の磁化が回転し、MR
素子の比抵抗がΔρ変化したとする。MR素子厚み50
0λ、素子巾10μm素子長さ100μm、非磁場中で
の比抵抗ρが25μΩ・?とする素子の抵抗値Rぱ50
Ω素子に流す直流電流jを5mAとすると、電圧変化Δ
e−(Δρ/ρ)Rjで表わせる。ΔρMax/ρは8
3%Ni−17%Feパーマロイの場合、約1.5%程
度とするとΔEmax=3.75mVの交流出力が得ら
れ、信号レベルとしては十分である。しかし、記録媒体
が停止した場合、直流電圧レベル250mVに対して直
流電圧レベル変化3.75mVを感知する必要があり、
ドリフトがあつて正確な検知にはなり得ない。このよう
な直流レベル再生には通常ブリツジを組んで、そのブリ
ツジ回路の一辺にMR素子を配置し、他辺に補償用素子
を配置する構成で処理できる。このような補償用素子を
同一基板上に設けて磁気記録媒体停止時の記録情報を得
る場合の構成法については、これまで考えられない。
In this case, one MR element was usually arranged for one track storing one flow of information. Further, the MR element 1 is configured to be exposed to the magnetic recording medium 4 side, and has been used in such a manner that space loss is minimized even for the shortest recording wavelength component written on a track. The operating principle of the MR element is already clarified in various documents and patent information, so the explanation will be omitted, but since the electrical resistance of the MR element changes depending on the recorded information from the magnetic recording medium, M
A conductor layer is formed on both ends of the R element, and for example, direct current is
By flowing the R element, the voltage across the MR element corresponds to recorded information. In the case of an MR element, since it responds to the amount of magnetic flux in this way, signal detection is possible even if the relative speed between the MR element and the magnetic recording medium becomes extremely slow, and the voltage level is independent of the relative speed. This is a major difference from a wire-wound magnetic head, which depends on relative velocity. However, when the magnetic recording medium completely stops, normal signal processing cannot handle the problem because the S/N ratio cannot be obtained. A case where there is only one MR element as shown in FIG. 1 will be described. That is, the magnetization of the MR element is rotated by the recorded information from the magnetic recording medium, and the MR
Assume that the resistivity of the element changes by Δρ. MR element thickness 50
0λ, element width 10μm, element length 100μm, resistivity ρ in a non-magnetic field is 25μΩ・? The resistance value of the element Rp50
If the DC current j flowing through the Ω element is 5 mA, the voltage change Δ
It can be expressed as e-(Δρ/ρ)Rj. ΔρMax/ρ is 8
In the case of 3% Ni-17% Fe permalloy, if it is about 1.5%, an AC output of ΔEmax=3.75 mV is obtained, which is sufficient as a signal level. However, when the recording medium stops, it is necessary to sense a DC voltage level change of 3.75 mV against a DC voltage level of 250 mV.
Accurate detection cannot be achieved due to drift. Such DC level reproduction can usually be achieved by constructing a bridge, arranging an MR element on one side of the bridge circuit, and arranging a compensation element on the other side. Up to now, no configuration method has been thought of in which such compensation elements are provided on the same substrate to obtain recorded information when the magnetic recording medium is stopped.

本発明はこのような目的を具体化する薄膜磁気ヘッドを
提供するものである。
The present invention provides a thin film magnetic head that embodies these objects.

一般に、磁気記録媒体停止時の記録情報が必要とされる
使い方としては、同期信号の再生があり、この同期信号
は通常きわめて繰返周波数の低い矩形波信号である。
Generally, the use of recorded information when a magnetic recording medium is stopped involves reproduction of a synchronization signal, and this synchronization signal is usually a rectangular wave signal with an extremely low repetition frequency.

たとえば磁気録画再生装置(VTR)の場合、1フイー
ルドの垂直同期区間に対応して30Hzの矩形波が記録
される。磁気テープ速度が3.3crn/秒の場合、繰
返周波数に対応した磁気テープ上の波長は1.imとき
わめて長 こ波長である。このような同期信号の読取り
が磁気テープ停止時においても可能であれば、停止時で
の磁気テープ位置が正確に検知でき、原理的には、スチ
ル動作および可変速度におけるスローモーシヨン、早送
り機能が可能となる。すなわち、磁気 4テープ位置が
正確にわかることにより、ビデオヘツドの姿勢を制御す
れば、再生開始直後から正しいビデオ信号トラツク位置
上を追従できるため、ゆらぎがない良質な再生画面を得
ることができる。これに関する回路処理および原理につ
いては本発明と直接係わりあいがないので省略する。第
2図は本発明の第1の実施例の平面図、第3図はそのA
−A断面図である。
For example, in the case of a magnetic recording/reproducing device (VTR), a 30 Hz rectangular wave is recorded corresponding to the vertical synchronization section of one field. When the magnetic tape speed is 3.3 crn/sec, the wavelength on the magnetic tape corresponding to the repetition frequency is 1.3 crn/sec. im, which is an extremely long wavelength. If it is possible to read such synchronization signals even when the magnetic tape is stopped, the magnetic tape position can be accurately detected when the magnetic tape is stopped, and in principle, still operation and slow motion and fast forward functions at variable speeds are possible. becomes. That is, if the position of the video head is controlled by accurately knowing the position of the magnetic tape, it is possible to follow the correct video signal track position immediately after the start of playback, making it possible to obtain a high-quality playback screen without fluctuations. The circuit processing and principles related to this are not directly related to the present invention and will therefore be omitted. FIG. 2 is a plan view of the first embodiment of the present invention, and FIG. 3 is its A.
-A sectional view.

ガラスまたAl2O3等の非磁性基板6上に磁気抵抗効
果を有する材料、たとえばFe−Ni合金、またはNi
−CO合金等を蒸着等の技術により付着させ、ホトリソ
グラフイ技術により基板6上に第1、第2のMR素子7
,8を形成する。
A material having a magnetoresistive effect, such as Fe-Ni alloy or Ni
-CO alloy or the like is deposited by a technique such as vapor deposition, and the first and second MR elements 7 are formed on the substrate 6 by a photolithography technique.
, 8.

MR素子7,8の厚み、素子巾w、長さlは、用途に応
じて最適値が選択される設計事項であるが、おおむね、
厚みとしては200〜4000λ、wとしては10〜3
0ttmである。第1、第2のMR素子の形状はほぼ同
一とする。長さlは実質的なMR素子の長さを示したも
ので、外部回路への接続のための導体層9とはその両端
部で接続される必要があるため、実際にエツチングで形
成されるのはlより長い。その端部での接続をより安定
にするため、端部での巾はWより広いこともあり得るし
、端部での形状も各種考えられる。ただし、実質的なM
R素子の長さ1の範囲においては、MR素子は巾wを有
し、細長い矩形状である。通常、MR素子はその長手方
向に磁化容易軸を有するように、生成される。
The thickness, element width w, and length l of the MR elements 7 and 8 are design matters whose optimal values are selected depending on the application, but in general,
Thickness is 200-4000λ, w is 10-3
It is 0ttm. The shapes of the first and second MR elements are substantially the same. The length l indicates the actual length of the MR element, which is actually formed by etching because it needs to be connected at both ends to the conductor layer 9 for connection to an external circuit. is longer than l. In order to make the connection at the end more stable, the width at the end may be wider than W, and various shapes at the end are possible. However, the actual M
In the range of length 1 of the R element, the MR element has a width w and has an elongated rectangular shape. Typically, an MR element is produced so that it has an axis of easy magnetization in its longitudinal direction.

次いで前述したと同様な方法で導体層9が同様に形成さ
れる。導体層9の材質としては、Al.Al/Au.C
r/Au等が用いられる。導体層9は第1、第2のMR
素子7,8の両端と接続し、外部回路と接続可能とする
。この具体例においては、第1、第2のMR素子7,8
の端部のうち、一方がパターンにおいて共通に導体層9
′で接続される構成をとつている。
The conductor layer 9 is then similarly formed in a manner similar to that described above. The material of the conductor layer 9 is Al. Al/Au. C
r/Au etc. are used. The conductor layer 9 is the first and second MR.
It is connected to both ends of elements 7 and 8 to enable connection to an external circuit. In this specific example, the first and second MR elements 7, 8
One of the ends of the conductor layer 9 is common in the pattern.
′ is connected.

これは外部回路との接続をパターン内で行なうもので、
外部接続端子の数を減らすのに効果的である。ついで外
部接続部を除き、薄膜部を蔽うために、保護層として、
SiOSiO2、Al2O3等の非磁性絶縁層10を形
成し、ガラス、Al2O3等の非磁性保持板11を接着
する。12は接着層を示す。
This is to connect to the external circuit within the pattern.
This is effective in reducing the number of external connection terminals. Then, to cover the thin film part except for the external connection part, as a protective layer,
A nonmagnetic insulating layer 10 made of SiOSiO2, Al2O3, etc. is formed, and a nonmagnetic holding plate 11 made of glass, Al2O3, etc. is bonded. 12 indicates an adhesive layer.

ただし、基板6、保持板11は用途により、フエライト
等の磁性体が使用される場合もある。最終的には磁気記
録媒体摺接面側13は所定のところまで、かつ所定の形
状に研削、研磨される。第4図には、第2の具体例の平
面図を示している。ここで異なるのは第2のMR素子8
の形状が第1のMR素子7と異なる点である。すなわち
、第1のMR素子7が細長い矩形状であるに対して、第
2のMR素子8は屈曲した形状を有する。製造上で簡便
さから、第1、第2のMR素子7,8とも同一組成、同
一厚みを有し、かつ電気的には第1、第2のMR素子7
,8とも同一抵抗を示すような形状が選択される。この
例によれば、第2のMR素子8を配置する領域をきわめ
て小さくでき、ヘツドをより小型化できる可能性があり
、基板当りのヘツド数を多くとることができる。さらに
マルチチヤンネルヘツドの場合には、より高密度な実装
が可能となる。さらに具体的に説明すると、第2図に示
すように、第1のMR素子7が磁気記録媒体と近い側に
配置され第2のMR素子8が磁気記録媒体に遠い側に配
置される。
However, depending on the purpose, a magnetic material such as ferrite may be used for the substrate 6 and the holding plate 11. Finally, the magnetic recording medium sliding surface side 13 is ground and polished to a predetermined location and into a predetermined shape. FIG. 4 shows a plan view of the second specific example. The difference here is that the second MR element 8
This is different from the first MR element 7 in its shape. That is, while the first MR element 7 has an elongated rectangular shape, the second MR element 8 has a bent shape. For ease of manufacturing, the first and second MR elements 7 and 8 have the same composition and the same thickness, and electrically, the first and second MR elements 7 and 8 have the same composition and the same thickness.
, 8 are selected such that they exhibit the same resistance. According to this example, the area in which the second MR element 8 is arranged can be made extremely small, and the head can be further downsized, allowing for a large number of heads per substrate. Furthermore, in the case of multi-channel heads, higher density packaging is possible. More specifically, as shown in FIG. 2, the first MR element 7 is arranged on the side closer to the magnetic recording medium, and the second MR element 8 is arranged on the side farther from the magnetic recording medium.

この場合、第2のMR素子8が磁気記録媒体からの情報
をできるだけ検出しないことが望ましく、第1のMR素
子7との間隔Sをとる。Sを無制限に大きくすることは
意味がなく、かえつて製造上の量産率を低下させる。た
とえばVTRのコントロール信号は30Hzの矩形波飽
和記録されており、前述したようにテープ速度が3.3
CTrL/秒の時その繰返記録波長λは1.1mmであ
る。その場合の磁気記録媒体からの距離に対する再生出
力の関係は実験的に第5図の実線のようになる。再生波
形はパルス状であり、高周波成分を含むため、正弦波再
生波形とした場合のスペース損失の計算値−54.6d
BX(記録媒体からの距離/記録波長)すなわち第5図
の破線の特性と比べて減衰の仕方が早い。したがつて、
第2のMR素子8は、磁気記録媒体より最大記録波長の
ほぼ0.3倍以上離れていれば、4信号減衰が40dB
以上とれることがわかる。一方、第1のMR素子7の位
置は、素子の安定性、磁気記録媒体との摺接によるスパ
イク状の熱ノイズの影響を避けるため、磁気記録媒体と
接しない構成をとるようにする。これはまた、摩耗によ
るヘツド寿命に対していちじるしく効果的である。磁気
記録媒体から20μm離れた場合、信号減衰はほぼ9d
B程度であり、十分な信号レベルであり、パルス半値巾
も、磁気記録媒体に接した場合が250マイクロ秒に比
較して、600マイクロ秒と若干拡がる程度である。こ
のように第1のMR素子7を磁気記録媒体から20pm
離れた位置におき、第2のMR素子8かつ第1のMR素
子7よりさらに最大記録波長の約0.3倍の距離だけ奥
に離れた場合は、第1のMR素子7と第2のMR素子8
の信号比は約30dB以上とれることがわかる。この比
は第1のMR素子7からの出力電圧と第2のMR素子8
からの出力電圧が差動増幅器により処理される回路を考
慮すると、同相のため信号レベルが等価的に3%小さい
ことに相当するわけで、十分かつ妥当な値と言える。V
TRのコントロール信号再生の場合では、通常クロスト
ークの点については、問題ない。
In this case, it is desirable that the second MR element 8 detects as little information from the magnetic recording medium as possible, and a distance S is maintained between the second MR element 8 and the first MR element 7. Increasing S without limit is meaningless, and would actually lower the mass production rate. For example, the control signal of a VTR is recorded with a 30Hz rectangular wave saturation, and as mentioned above, the tape speed is 3.3.
At CTrL/sec, the repetitive recording wavelength λ is 1.1 mm. In this case, the relationship between the reproduction output and the distance from the magnetic recording medium is experimentally shown as the solid line in FIG. Since the reproduced waveform is pulse-like and contains high frequency components, the calculated space loss when using a sine wave reproduced waveform is -54.6d.
The attenuation is faster than BX (distance from recording medium/recording wavelength), that is, the characteristic indicated by the broken line in FIG. Therefore,
If the second MR element 8 is separated from the magnetic recording medium by approximately 0.3 times the maximum recording wavelength, the four-signal attenuation is 40 dB.
It turns out that you can get more than that. On the other hand, the first MR element 7 is positioned so that it does not come into contact with the magnetic recording medium in order to ensure stability of the element and avoid the influence of spike-like thermal noise due to sliding contact with the magnetic recording medium. This also has a significant effect on head life due to wear. When 20 μm away from the magnetic recording medium, the signal attenuation is approximately 9 d.
B, which is a sufficient signal level, and the pulse half-width is also slightly wider to 600 microseconds, compared to 250 microseconds when in contact with a magnetic recording medium. In this way, the first MR element 7 is placed at a distance of 20 pm from the magnetic recording medium.
If the second MR element 8 and the first MR element 7 are placed at a distant position, and the distance is approximately 0.3 times the maximum recording wavelength, the first MR element 7 and the second MR element 7 MR element 8
It can be seen that the signal ratio of approximately 30 dB or more can be obtained. This ratio is the output voltage from the first MR element 7 and the output voltage from the second MR element 8.
Considering a circuit in which the output voltage from the output voltage is processed by a differential amplifier, this corresponds to a signal level equivalently being reduced by 3% due to the common phase, which can be said to be a sufficient and appropriate value. V
In the case of TR control signal reproduction, there is usually no problem with crosstalk.

すなわち、コントロールトラツクに隣接するトラツクと
しては、ビデオ信号トラツクであり、周波数帯域がかな
り異るため、適当なフイルタ回路を通すことにより、そ
の弁別を容易に行なえる。別の用途として、隣接トラツ
クに類似の信号成分があるような場合には、クロストー
クについての考慮が必要であるが、実験的には、100
ttmオフトラツクになつた時、オントラツク時に比べ
て、信号は40dB減衰する(矩形波飽和記録)。した
がつて、第2のMR素子8と第1のMR素子7との間隔
Sを決定する場合、隣接トラツクとの間隔を考慮するの
ではなく、磁気記録媒体上の最大記録波長に対して、ど
の程度とするかが重要なのである。さらに、本発明では
、第1のMR素子7と第2のMR素子8のそれぞれの端
部のうち一方が共通の導体層9″で接続されており、か
つ、導体層9′が第1のMR素子7、第2のMR素子8
の対向する間隔に配置され、その導体層9″の巾が第1
、第2のMR素子7,8の長さlより大きくとつている
That is, the tracks adjacent to the control track are video signal tracks, and since their frequency bands are quite different, they can be easily distinguished by passing them through an appropriate filter circuit. In another application, when adjacent tracks have similar signal components, it is necessary to consider crosstalk.
When the signal becomes off-track, the signal is attenuated by 40 dB compared to when it is on-track (rectangular wave saturation recording). Therefore, when determining the spacing S between the second MR element 8 and the first MR element 7, instead of considering the spacing between adjacent tracks, it is determined based on the maximum recording wavelength on the magnetic recording medium. What is important is how much. Furthermore, in the present invention, one of the respective ends of the first MR element 7 and the second MR element 8 is connected by a common conductor layer 9'', and the conductor layer 9' is MR element 7, second MR element 8
are arranged at opposing intervals, and the width of the conductor layer 9'' is the first
, is longer than the length l of the second MR elements 7 and 8.

すなわち、第1、第2のMR素子7,8の温度的環境条
件はできるだけ等しいことが熱的ドリフト等の点で有利
であるためで、熱伝導率のよい導体層91で熱伝導率を
良好にした構成をとつている。このことをさらに助長す
るため、第1、第2のMR素子7,8はその上部に同じ
非磁性絶縁層10、非磁性保持板11を有し、周囲の状
態を類似にするような構成に注意が払われている。この
ような具体的な構成については従来例にはないが、基本
的に、熱的ドリフト等を補償することは、特開昭52−
33508の明細書内でも指摘があるように既知である
。しかし、前述した熱的スパイクノイズの補償について
は本発明の主たる目的ではなく、本発明の王たる用途の
場合においては、きわめて長波長を扱うため、信号成分
をどれだけ第1、第2のMR素子で弁別するかがポイン
トとなる。すなわち、磁気記録媒体が約3.3(1/秒
以下ときわめて遅い速度で走行するため、磁気記録媒体
との摺接による熱的ノイズはほとんど問題にならないし
、第1のMR素子自体も磁気記録媒体と直接摺接しない
ので、熱的スパイクノイズはいちじるしく低減する。実
験的にはこの熱的スパイクノイズは記録媒体の材質、表
面状態、環境にもかかわるが、走行速度10cTrL/
秒以下では、きわめて小さいことが確かめられた。MR
素子の感度を高めるため、バイアス磁界をMR素子に印
加するが、この方法については、本発明と直接関係ない
ので説明を省略する。
That is, it is advantageous in terms of thermal drift, etc., that the temperature environmental conditions of the first and second MR elements 7 and 8 be as equal as possible, and the conductor layer 91 with good thermal conductivity can improve the thermal conductivity. The structure is as follows. In order to further promote this, the first and second MR elements 7 and 8 have the same non-magnetic insulating layer 10 and non-magnetic holding plate 11 on their upper parts, so that the surrounding conditions are similar. Attention is being paid. Although there is no conventional example of such a specific configuration, basically, compensation for thermal drift, etc.
This is known as pointed out in the specification of No. 33508. However, compensation for the thermal spike noise mentioned above is not the main purpose of the present invention, and in the case of the main application of the present invention, extremely long wavelengths are handled, so how much signal components are compensated for by the first and second MR. The key point is whether the elements can be used for discrimination. In other words, since the magnetic recording medium travels at an extremely slow speed of about 3.3 (1/sec) or less, thermal noise due to sliding contact with the magnetic recording medium is hardly a problem, and the first MR element itself is also magnetic. Since there is no direct sliding contact with the recording medium, thermal spike noise is significantly reduced.Experimentally, this thermal spike noise is related to the material, surface condition, and environment of the recording medium, but at a running speed of 10 cTrL/
It was confirmed that it is extremely small in seconds or less. M.R.
In order to increase the sensitivity of the element, a bias magnetic field is applied to the MR element, but a description of this method will be omitted since it is not directly related to the present invention.

以上のような本発明の構成によれば、第1、第2のMR
素子を、記録波長を考慮した位置関係に配置することに
より、磁気記録媒体停止時においても、良好な情報再生
が可能となる。
According to the configuration of the present invention as described above, the first and second MR
By arranging the elements in a positional relationship that takes into account the recording wavelength, it is possible to reproduce information favorably even when the magnetic recording medium is stopped.

さらに、第1のMR素子が磁気記録媒体と直接摺接しな
いので、ヘツドの安定性、寿命特性をいちじるしく改善
することができる。
Furthermore, since the first MR element does not come into direct sliding contact with the magnetic recording medium, the stability and life characteristics of the head can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例における薄膜磁気ヘツドを用いた装置の
斜視図、第2図は本発明の一実施例における薄膜磁気ヘ
ツドの平面図、第3図は第2図のA−A断面図、第4図
は本発明の他の実施例における薄膜磁気ヘツドの平面図
、第5図は本発明の薄膜磁気ヘツドを説明するための特
性図である。 7,8・・・・・・MR素子、6・・・・・・基板、9
,9″・・・・・・導体層、10・・・・・・非磁性絶
縁層、11・・・・・・保持板、12・・・・・・接着
層。
FIG. 1 is a perspective view of a conventional device using a thin film magnetic head, FIG. 2 is a plan view of a thin film magnetic head according to an embodiment of the present invention, and FIG. 3 is a sectional view taken along line A-A in FIG. FIG. 4 is a plan view of a thin film magnetic head according to another embodiment of the present invention, and FIG. 5 is a characteristic diagram for explaining the thin film magnetic head of the present invention. 7, 8...MR element, 6...substrate, 9
, 9''... Conductor layer, 10... Nonmagnetic insulating layer, 11... Holding plate, 12... Adhesive layer.

Claims (1)

【特許請求の範囲】[Claims] 1 同一基板上に、磁気抵抗効果を有する素子を複数個
配置し、この素子のうち2素子を組合わせることにより
、所定の再生機能を生ぜしめる磁気ヘッドとし、この2
素子のうち、第1の素子を記録媒体により近い位置に配
置し、第2の素子は第1の素子から記録媒体上に記録さ
れた最大記録波長の0.3以上記録媒体より遠ざかる位
置に配置し、かつ停止または10cm/秒以下の速度で
走行する上記記録媒体に矩形波記録された情報を、前記
第1の素子による出力と前記第2の素子による出力の差
として再生することを特徴とする薄膜磁気ヘッド。
1. A magnetic head that produces a predetermined reproduction function by arranging a plurality of elements having a magnetoresistive effect on the same substrate and combining two of these elements;
Among the elements, the first element is arranged at a position closer to the recording medium, and the second element is arranged at a position farther from the recording medium than the first element by 0.3 or more of the maximum recording wavelength recorded on the recording medium. and the information recorded in the rectangular wave on the recording medium that is stopped or running at a speed of 10 cm/sec or less is reproduced as the difference between the output from the first element and the output from the second element. Thin film magnetic head.
JP14223479A 1979-11-02 1979-11-02 thin film magnetic head Expired JPS5927008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14223479A JPS5927008B2 (en) 1979-11-02 1979-11-02 thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14223479A JPS5927008B2 (en) 1979-11-02 1979-11-02 thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS5665329A JPS5665329A (en) 1981-06-03
JPS5927008B2 true JPS5927008B2 (en) 1984-07-03

Family

ID=15310538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14223479A Expired JPS5927008B2 (en) 1979-11-02 1979-11-02 thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS5927008B2 (en)

Also Published As

Publication number Publication date
JPS5665329A (en) 1981-06-03

Similar Documents

Publication Publication Date Title
US6078479A (en) Magnetic tape head with flux sensing element
US5255141A (en) Read-write magnetic head with flux sensing read element
US5218497A (en) Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith
KR100260804B1 (en) Thin film magnetic head
JPH08185612A (en) Mr head and its production
US4644432A (en) Three pole single element magnetic read/write head
US4581663A (en) Buried servo recording system having dual transducers
US5722157A (en) Method of making an induction and magnetoresistance type composite magnetic head
US5436779A (en) Integrated yoke magnetoresistive transducer with magnetic shunt
US5241439A (en) Combined read/write thin film magnetic head with two pairs of flux guides
JPS61107520A (en) Multi-channel magnetoresistance effect type magnetic head
JPH0439737B2 (en)
KR0145034B1 (en) Magnetic transducer and a media drive containing the magnetic transducer
US5535077A (en) Magnetoresistive head having magnetically balanced magnetoresistive elements laminated on opposite sides of an electrically conductive film
JPH064832A (en) Combine thin film magnetic head
JP2596934B2 (en) Magnetic head
JPH05151536A (en) Coupling reading/writing magnetic head
JPS5927008B2 (en) thin film magnetic head
US6333840B1 (en) Magnetic recording apparatus
US5933298A (en) System comprising a magnetic head, measuring device and a current device
JPH08185613A (en) Magneto-resistive thin-film magnetic head and its production
JPH0441415B2 (en)
JPH0444610A (en) Composite thin film magnetic head and its manufacturing method
EP0638893A2 (en) Magnetic head with flux sensing element for recording/reproducing on tape
JPS60150222A (en) Thin film magnetic head