[go: up one dir, main page]

JPS5924244A - Multi-sensor manufacturing method - Google Patents

Multi-sensor manufacturing method

Info

Publication number
JPS5924244A
JPS5924244A JP57133686A JP13368682A JPS5924244A JP S5924244 A JPS5924244 A JP S5924244A JP 57133686 A JP57133686 A JP 57133686A JP 13368682 A JP13368682 A JP 13368682A JP S5924244 A JPS5924244 A JP S5924244A
Authority
JP
Japan
Prior art keywords
ion
gate
film
sensor
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57133686A
Other languages
Japanese (ja)
Other versions
JPH0358061B2 (en
Inventor
Hiroyuki Miyagi
宮城 宏行
Takuya Maruizumi
丸泉 琢也
Yoshitada Takada
高田 芳矩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57133686A priority Critical patent/JPS5924244A/en
Publication of JPS5924244A publication Critical patent/JPS5924244A/en
Publication of JPH0358061B2 publication Critical patent/JPH0358061B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To form a plurality of responsive gates independently, by a method wherein a liquid prepared by dissolving ion responsive substance in a proper solvent along with a film matrix material is blown to a gate by an ink jet system to be repeatedly applied thereto in such a manner that the kind of the ion responsive substance is variously changed. CONSTITUTION:A first unit 21 has a gate 21 for a comparison electrode and said gate is coated with an org. polymer film not responsive to an ion. Each gates of other sensor units 23, 25, 27 are coated with ion selecting films respectively responsive to a different kind of ions. The coating of each ion selecting film is performed by such a method that liquid droplets 45 are intermittently blown out from a nozzle 44 and, after passed through charging electrodes 46, the charged liquid droplets are blown out between polarization electrodes 47. In general, voltage is applied to the charging electrodes 46 and the polarization electrodes 47 and the liquid droplets are guided to a gutter 48. By pulsewise cutting off voltage applied to the charging electrodes 46, the liquid droplets are guided to the objective gate on a substrate. A solvent is evaporated to form an ion selecting film.

Description

【発明の詳細な説明】 本発明は電界効果トランジスタ(以下、FETと称す)
を利用したイオンセンサに係り、特に、マルチイオンセ
ンサと、その製造方法に関する。
[Detailed Description of the Invention] The present invention relates to a field effect transistor (hereinafter referred to as FET)
The present invention relates to an ion sensor using a multi-ion sensor, and particularly to a multi-ion sensor and a method for manufacturing the same.

FETf:利用したイオンセンサはBergreldに
よって原理が確認されて以来、各種イオンを選折曲に検
出できるものが開発されている。このイオンセンサは、
感応ゲートにイオン選択膜を塗付して作られる。この感
応ゲートに有機材からカるイオン選択膜を塗付する方法
としてはディップコート法や直接キャスティング法が知
られている(U、 0esch、  S、 Caras
  and  J、  JanataH、pield 
 Effect  TransistorsSensi
tive  to  Sodium  and  A、
rnmonium。
FETf: Since the principle of the ion sensor used was confirmed by Bergreid, sensors capable of selectively detecting various ions have been developed. This ion sensor is
It is made by coating a sensitive gate with an ion-selective membrane. Dip coating methods and direct casting methods are known as methods for applying ion-selective membranes made from organic materials to this sensitive gate (U, Oesch, S, Caras).
and J., Janata H., pield.
Effect Transistors Sensi
tive to Sodium and A,
rnmonium.

Anal、Chem、1981,53.1983−19
86  )。また、無機材を塗付する方法としてはC,
VD (Chemical  vapor  1)ep
ositlon )法やディップコート法が用いられて
いる。
Anal, Chem, 1981, 53.1983-19
86). In addition, methods for applying inorganic materials include C,
VD (Chemical vapor 1)ep
ositelon) method and dip coating method are used.

こnまでに報告された例はいずれも、基板上に1ケある
いは2ケのPETゲートを形成し、イオン感応ゲートを
1ケ形成したものである。したがって、1枚の共通基板
上に複数ケの感応ゲートを有するマルチセンサについて
は従来のイオン感応ゲート形成方法によったのでは、各
ゲート用を相互の干渉が生じないよう独立させることが
困難である。
In all of the examples reported so far, one or two PET gates are formed on a substrate, and one ion-sensitive gate is formed. Therefore, when using the conventional ion-sensitive gate formation method for multi-sensors having multiple sensitive gates on one common substrate, it is difficult to make each gate independent so as not to interfere with each other. be.

本発明の目的は、共通基板上に形成した複数個のゲート
にイオン選択膜を相互に重複しないように塗付し相互干
渉のないF’ETマルチイオンセンサとその製造方法を
提供することにある。
An object of the present invention is to provide an F'ET multi-ion sensor and its manufacturing method, in which ion selective membranes are coated on a plurality of gates formed on a common substrate so as not to overlap with each other, and there is no mutual interference. .

本発明に、イオン感応物質全膜母材と共に適当A溶媒に
浴解した液体を小粒径の液滴として目的とするゲートに
インクジェット方式で吹きつけることにより、微小部分
のみ感応膜を塗布し、イオン感応物質の種類全種々変え
て繰り返し塗付し、複数個の感応ゲート’を独立的に形
成しようというものである。
In the present invention, a sensitive film is applied only to minute portions by spraying a liquid solution dissolved in a suitable solvent A as small droplets onto the target gate using an inkjet method, together with the entire film base material of the ion-sensitive material. The idea is to repeatedly apply different types of ion-sensitive materials to form a plurality of sensitive gates independently.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

第1図から第3図までは、マルチセンサの構成単位とな
る1ケのPETセンサについて示したものである。共通
基板上に複数ケの感応ゲートを形成する場合、各素子全
電気的に独立きせる必要がある。そこで、本発明では次
のような素子構成をとることとした。
FIGS. 1 to 3 show one PET sensor that is a constituent unit of a multi-sensor. When a plurality of sensitive gates are formed on a common substrate, each element must be electrically independent. Therefore, the present invention adopts the following element configuration.

第1図に示すように共通基板1の上にセンサユニット2
が形成されており、リード配線4及びコンタクト5も基
板上に蒸着法などで形成されている。センサユニット2
の大きさは50μm×(200〜400)μm程度であ
る。また、第2図のように共通基板をPシリコンとする
場合にはF’ETゲートの部分を堀り下げて絶縁膜7を
形成した後再びシリコンP層13を形成する。しかる後
、ドレン・ソースを形成するために1層8を拡散によ多
形成する。ドレンソースの上部には酸化膜層9、絶縁膜
層10及びイオン選択膜11を塗付してセンサユニット
とする。
As shown in FIG. 1, a sensor unit 2 is mounted on a common board 1.
are formed, and lead wires 4 and contacts 5 are also formed on the substrate by vapor deposition or the like. Sensor unit 2
The size is approximately 50 μm×(200 to 400) μm. Further, when the common substrate is made of P silicon as shown in FIG. 2, the F'ET gate portion is dug down to form the insulating film 7, and then the silicon P layer 13 is formed again. Thereafter, a layer 8 is formed by diffusion to form a drain/source. An oxide film layer 9, an insulating film layer 10, and an ion selection film 11 are coated on the top of the drain source to form a sensor unit.

第3図はシリコンオンサファイア(sos>m造からな
るセンサユニッIf示す。共通基板12はサファイアで
あシ、その上部にPシリコン層7をエピタキシャル成長
法で形成した。ドレン、ゲート8は拡散法で形成したも
ので、その上部には第2図の場合と同様に酸化膜層9、
絶縁膜10゜及びイオン感応膜11が塗付されている。
FIG. 3 shows a sensor unit If made of silicon on sapphire (sos>m). The common substrate 12 is made of sapphire, and a P silicon layer 7 is formed on top thereof by an epitaxial growth method. The drain and gate 8 are formed by a diffusion method. On top of it, there is an oxide film layer 9, as in the case of FIG.
An insulating film 10° and an ion sensitive film 11 are applied.

第4図に上記の如き方法によりセンサユニットを共通基
板上に4ケ形成したマルチイオンセンサを示す。第1ユ
ニツト21は比較電極用ゲート22を有する。該ゲート
にイオン等に応答しない有機高分子膜が塗付される。他
のセンサユニット23.25.27の各ゲートはそれぞ
れ異種のイオンに応答するイオン選択膜が塗付されてい
る。
FIG. 4 shows a multi-ion sensor in which four sensor units are formed on a common substrate by the method described above. The first unit 21 has a gate 22 for comparison electrode. An organic polymer film that does not respond to ions or the like is applied to the gate. Each gate of the other sensor units 23, 25, 27 is coated with an ion-selective membrane that responds to different types of ions.

本発明によるイオン選択膜の塗付方法を第5図に示す。A method of applying an ion selective membrane according to the present invention is shown in FIG.

この方法は従来インクジェットプリンタに採用されてい
たもので液滴45をノズル44から間欠的に吹き出させ
、帯電用電極46を通した後、偏向電極47の間を通し
て吹き出すようにした。通常は帯電電極46及び偏向電
極に電圧を印加しておき、液滴はガター48に導かれる
。パルス的に帯電電極46の印加電圧を切ることにょシ
、液滴は基板上の目的とするゲートに導かれる。この際
、装置の誤動差を防ぐために小口径の開口部41を有す
るマスク材40を用いてもよい。溶媒を蒸発させてイオ
ン選択膜を形成する。
This method has been used in conventional inkjet printers, in which droplets 45 are intermittently blown out from a nozzle 44, passed through a charging electrode 46, and then blown out between deflection electrodes 47. Usually, a voltage is applied to the charging electrode 46 and the deflection electrode, and the droplets are guided to the gutter 48. By cutting off the voltage applied to the charging electrode 46 in a pulsed manner, the droplet is guided to the intended gate on the substrate. At this time, a mask material 40 having a small-diameter opening 41 may be used to prevent errors in the apparatus. The solvent is evaporated to form an ion-selective membrane.

本発明の発明者らは直径1.5mの基板から々るマルチ
センサを試作した。センサユニットの大きさは50μm
 X 300μmとし、ゲート部分は50μm×50μ
mとした。第4図の如く4ケのセンサユニットと1ケの
金電極29を該基板上に形成した。第5図の有機膜塗付
装置を用いてゲート膜を形成した。比較電極用感応膜と
してはポリイミドアミド樹脂を用い、これをジメチルホ
ルムアミドに溶解した液体として、第5図の容器42内
に入れた。イオン選択膜としては、K+電極用としてパ
リノマイシンを、Na+電極電極用合方リガンドt−電
極用第4級アンモニウム塩をそれぞれ、可塑剤及びポリ
塩化ビニル(PVC)とともにテトラヒドロフランに溶
解した液体を用いた。
The inventors of the present invention prototyped a multi-sensor made from a substrate with a diameter of 1.5 m. The size of the sensor unit is 50μm
x 300μm, gate part is 50μm x 50μm
It was set as m. As shown in FIG. 4, four sensor units and one gold electrode 29 were formed on the substrate. A gate film was formed using the organic film coating apparatus shown in FIG. A polyimide amide resin was used as the sensitive membrane for the reference electrode, and this was dissolved in dimethylformamide and placed in a container 42 in FIG. 5 as a liquid. As the ion-selective membrane, a liquid in which palinomycin for the K+ electrode and a quaternary ammonium salt for the Na+ electrode and the combined ligand T-electrode were dissolved in tetrahydrofuran together with a plasticizer and polyvinyl chloride (PVC) was used. .

液滴吹き出しノズルの径は25μmとした。液滴の吹き
出しには超音波発振器43を用い、通常は超音波発振子
を連続的に作動させた。帯電電極の電圧をパルス的に切
る方法で各溶液をゲート上に吹きつけ、その回数で膜厚
を調整した。1ケの液滴がゲート上では直径約50μm
の大きさに広がるので、液滴の数は1〜3ケとし、ゲー
ト上の膜の広が、!lllを100μm以内とした。液
滴の塗付後、室温で溶媒を揮発させて感応膜を形成した
The diameter of the droplet blowing nozzle was 25 μm. An ultrasonic oscillator 43 was used to blow out the droplets, and normally the ultrasonic oscillator was operated continuously. Each solution was sprayed onto the gate by cutting off the voltage of the charged electrode in a pulsed manner, and the film thickness was adjusted by the number of sprays. One droplet has a diameter of approximately 50 μm on the gate.
, so the number of droplets should be 1 to 3, and the spread of the film on the gate, ! lll was set within 100 μm. After applying the droplets, the solvent was evaporated at room temperature to form a sensitive film.

本実施例に示す感応ゲートの塗付方法では、目的とする
ゲート上にのみイオン選択膜及び、比較電極用膜を形成
することができ、そ扛ぞれ異種のイオンセンサを形成す
ることができる。したがって夫々のイオンセンサの選択
性は単独の基板上に形成した場合と同等である。また、
吹きつける液滴の数で膜厚を制御することができ、再現
性のよいマルチイオンセンサ’に’ff作することがで
きる。
In the method of coating the sensitive gate shown in this example, the ion selection film and the reference electrode film can be formed only on the target gate, and different types of ion sensors can be formed. . Therefore, the selectivity of each ion sensor is equivalent to that when formed on a single substrate. Also,
The film thickness can be controlled by the number of droplets sprayed, making it possible to create a multi-ion sensor with good reproducibility.

以上説明したように、本発明によ扛ば、共通基板上に形
成した腹数個のゲートにイオン選択膜を相互に重複しな
いように塗付することができ相互干渉を生じることがな
い。
As described above, according to the present invention, ion selective membranes can be applied to several gates formed on a common substrate without overlapping each other, and mutual interference will not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、第2図及び第3図σ本発
明の実施例を示す図、第4図はマルチイオンセンサの実
施例を示す図、第5図はゲート形成方法を示す図である
。 ■・・・基板、2・・・センサユニット(FET)、3
・・・感応ゲート、4・・・リード、5・・・コンタク
ト、6・・・Pシリコン基板、7・・・絶縁膜、8・・
・ドレン、ソース、9・・・酸化膜、10・・・絶縁膜
、11・・・イオン選択膜、12・・・サファイア基板
、13・・・Pシリコン、21・・・比較電極ユニット
、23,25.27・・・イオンセンサユニット、22
・・・比較ゲート、24゜26.28・・・イオン感応
ゲート、29・・・金電極。 、//
Figure 1 is a diagram showing the principle configuration of the present invention, Figures 2 and 3 are diagrams showing an embodiment of the present invention, Figure 4 is a diagram showing an embodiment of a multi-ion sensor, and Figure 5 is a diagram showing a gate formation method. FIG. ■... Board, 2... Sensor unit (FET), 3
...Sensitive gate, 4...Lead, 5...Contact, 6...P silicon substrate, 7...Insulating film, 8...
- Drain, source, 9... Oxide film, 10... Insulating film, 11... Ion selective membrane, 12... Sapphire substrate, 13... P silicon, 21... Reference electrode unit, 23 , 25.27... Ion sensor unit, 22
...Comparison gate, 24°26.28...Ion sensitive gate, 29...Gold electrode. , //

Claims (1)

【特許請求の範囲】 1、基板上に複数のイオン選択性絶縁ゲート型電界効果
トランジスタを形成したマルチイオンセンサにおいて、
ウェル状あるいは島状P形シリコンの表層部にN形シリ
コンドレーン・ソース部會形成し、該上部ヲ酸化膜及び
絶縁膜で被覆したセンナユニットを上記基板上に複数箇
形成し、個々のセンサユニット毎に少くても1箇の比較
電極用ゲート膜と複数のイオン選択電極用ゲート膜を形
成したことを特徴とする電界効果トランジスタ形マルチ
イオンセンサ。 2 シリコンあるいはサファイアからなる基板上にウェ
ル状P形シリコンあるいは島状P形シリコンを複数箇形
成する第1のステップと、前記P形シリコンの表層部に
n形シリコンあらなるドレン・ソース部を形成する第2
のステップと、該第20ステツプの形成後、上部を酸化
膜および絶縁膜で被覆してセンサユニツIf形成する第
3のステップと、個々のセンサユニットの感応ゲート上
にイオン選択性を有しない高分子膜材を適当な揮発性溶
媒に溶解した液体あるいは少くてもイオン選択性物質と
高分子膜材とを適当な揮発性溶媒に溶解した液体をノズ
ルを用いて前記ゲート部相当の粒径としこれe[接ある
いは前記感応ゲート部相当位置に開口部を有するマスク
材を介して前記感応ゲートに噴きつける第4のステップ
と、第4のステップの噴きつけ後前記溶媒を蒸発させて
少くても1個の比較電極用ゲート膜と複数のイオン選択
電極を形成する第5のステップとからなることを特徴と
する電界効果トランジスタ形マルチイオンセンナの製造
方法。
[Claims] 1. A multi-ion sensor in which a plurality of ion-selective insulated gate field effect transistors are formed on a substrate,
An N-type silicon drain/source part is formed on the surface layer of the well-shaped or island-shaped P-type silicon, and a plurality of sensor units, each of which is covered with an oxide film and an insulating film, are formed on the substrate, and individual sensor units are formed. A field effect transistor type multi-ion sensor, characterized in that at least one gate film for comparison electrodes and a plurality of gate films for ion selection electrodes are formed for each gate film. 2. A first step of forming a plurality of well-shaped P-type silicon or island-shaped P-type silicon on a substrate made of silicon or sapphire, and forming drain/source parts made of n-type silicon on the surface layer of the P-type silicon. Second to do
After the formation of the 20th step, a third step of forming a sensor unit If by covering the upper part with an oxide film and an insulating film, and forming a polymer having no ion selectivity on the sensitive gate of each sensor unit. A liquid in which the membrane material is dissolved in a suitable volatile solvent or a liquid in which at least an ion-selective substance and a polymeric membrane material are dissolved in a suitable volatile solvent is made into a particle size corresponding to the gate part using a nozzle. e [a fourth step of spraying onto the sensitive gate through a mask material having an opening in contact with or at a position corresponding to the sensitive gate, and after the spraying in the fourth step, the solvent is evaporated and at least 1 A method for manufacturing a field effect transistor type multi-ion sensor, comprising a fifth step of forming a gate film for comparison electrodes and a plurality of ion selection electrodes.
JP57133686A 1982-08-02 1982-08-02 Multi-sensor manufacturing method Granted JPS5924244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57133686A JPS5924244A (en) 1982-08-02 1982-08-02 Multi-sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57133686A JPS5924244A (en) 1982-08-02 1982-08-02 Multi-sensor manufacturing method

Publications (2)

Publication Number Publication Date
JPS5924244A true JPS5924244A (en) 1984-02-07
JPH0358061B2 JPH0358061B2 (en) 1991-09-04

Family

ID=15110501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57133686A Granted JPS5924244A (en) 1982-08-02 1982-08-02 Multi-sensor manufacturing method

Country Status (1)

Country Link
JP (1) JPS5924244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US6028189A (en) * 1997-03-20 2000-02-22 University Of Washington Solvent for oligonucleotide synthesis and methods of use
US6306594B1 (en) 1988-11-14 2001-10-23 I-Stat Corporation Methods for microdispensing patterened layers
US6384210B1 (en) 1997-03-20 2002-05-07 University Of Washington Solvent for biopolymer synthesis, solvent microdroplets and methods of use
JP2014032209A (en) * 2013-10-18 2014-02-20 Seiko Epson Corp Method for manufacturing sensor element and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639454A (en) * 1979-09-10 1981-04-15 Olympus Optical Co Ltd Chemical suybstance detector by using chemical sensitive element with structure of insulated-gate field-effect transistor
JPS5672339A (en) * 1979-11-16 1981-06-16 Kuraray Co Ltd Fet multisensor
JPS57104851A (en) * 1980-12-23 1982-06-30 Shindengen Electric Mfg Co Ltd Semiconductor sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639454A (en) * 1979-09-10 1981-04-15 Olympus Optical Co Ltd Chemical suybstance detector by using chemical sensitive element with structure of insulated-gate field-effect transistor
JPS5672339A (en) * 1979-11-16 1981-06-16 Kuraray Co Ltd Fet multisensor
JPS57104851A (en) * 1980-12-23 1982-06-30 Shindengen Electric Mfg Co Ltd Semiconductor sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US5554339A (en) * 1988-11-14 1996-09-10 I-Stat Corporation Process for the manufacture of wholly microfabricated biosensors
US5837446A (en) * 1988-11-14 1998-11-17 I-Stat Corporation Process for the manufacture of wholly microfabricated biosensors
US6306594B1 (en) 1988-11-14 2001-10-23 I-Stat Corporation Methods for microdispensing patterened layers
US7074610B2 (en) 1988-11-14 2006-07-11 I-Stat Corporation System and method of microdispensing and arrays of biolayers provided by same
US6028189A (en) * 1997-03-20 2000-02-22 University Of Washington Solvent for oligonucleotide synthesis and methods of use
US6384210B1 (en) 1997-03-20 2002-05-07 University Of Washington Solvent for biopolymer synthesis, solvent microdroplets and methods of use
JP2014032209A (en) * 2013-10-18 2014-02-20 Seiko Epson Corp Method for manufacturing sensor element and semiconductor device

Also Published As

Publication number Publication date
JPH0358061B2 (en) 1991-09-04

Similar Documents

Publication Publication Date Title
Morozov et al. Electrospray deposition as a method for mass fabrication of mono-and multicomponent microarrays of biological and biologically active substances
JP2019529947A (en) Electrochemical sensor and method for forming electrochemical sensor
JP2005057110A5 (en)
JPS5924244A (en) Multi-sensor manufacturing method
US6387724B1 (en) Method of fabricating silicon-on-insulator sensor having silicon oxide sensing surface
US20050279987A1 (en) Nanostructure sensor device with polymer recognition layer
US20100109168A1 (en) Connecting microsized devices using ablative films
US4772377A (en) Membrane anchor for ion-selective electrodes
WO2020211547A1 (en) Digital microfluidic substrate and digital microfluidic chip
JPS63223557A (en) Production of semiconductor biosensor
EP1678488A1 (en) Novel sensor configuration
JP2009103518A (en) Method for manufacturing functional film
US8664700B2 (en) Bio material receiving device and methods of manufacturing and operating the same
JP5397333B2 (en) Semiconductor device, sensor element, and method of manufacturing semiconductor device
JP4587539B2 (en) Apparatus for detecting analytes in samples based on organic materials
JPH065755B2 (en) Thin film transistor
EP0211609A2 (en) Chemically sensitive semiconductor devices and their production
JP5109617B2 (en) Cell electrophysiology measurement device
JPS6321545A (en) Manufacture of moisture sensor
US10573669B2 (en) Method for fabricating array substrate, array substrate, and display device
KR102363387B1 (en) 2D structure sensor using fluorinated graphene
CN105161620A (en) Organic semiconductor element structure and manufacturing method
JPS6388438A (en) Mosfet chemical electrode
JP5692331B2 (en) Sensor element and method for manufacturing semiconductor device
JPS63208751A (en) Condensation sensor