JPS59230473A - Drive device - Google Patents
Drive deviceInfo
- Publication number
- JPS59230473A JPS59230473A JP58104125A JP10412583A JPS59230473A JP S59230473 A JPS59230473 A JP S59230473A JP 58104125 A JP58104125 A JP 58104125A JP 10412583 A JP10412583 A JP 10412583A JP S59230473 A JPS59230473 A JP S59230473A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- piezoelectric body
- drive device
- exhibiting
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 claims abstract description 58
- 230000001747 exhibiting effect Effects 0.000 claims description 25
- 230000010287 polarization Effects 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 8
- 230000033001 locomotion Effects 0.000 abstract description 14
- 238000010008 shearing Methods 0.000 abstract description 7
- 238000006073 displacement reaction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 239000012212 insulator Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/0005—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
- H02N2/001—Driving devices, e.g. vibrators
- H02N2/0045—Driving devices, e.g. vibrators using longitudinal or radial modes combined with torsion or shear modes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/028—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors along multiple or arbitrary translation directions, e.g. XYZ stages
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
- H10N30/202—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement
- H10N30/2023—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using longitudinal or thickness displacement combined with bending, shear or torsion displacement having polygonal or rectangular shape
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は被駆動体に駆動を与える駆動装置に関し、さら
に詳しくは圧電効果を示す圧電体を用いて被駆動体に駆
動力を与える駆動装置に関するものでおる。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a drive device that provides drive to a driven object, and more particularly relates to a drive device that provides driving force to a driven object using a piezoelectric material exhibiting a piezoelectric effect. It's something.
被駆動体に駆動力を与える駆動装置としては、一般的に
電気入力を用いるものと流体入力を用いるものとに大別
できる。前者の駆動装置の代表的なものはモータであり
、また後者の駆動装置の代表的なものは油圧ポンプモー
タ、油圧シリンダ等がある。一方、近年では圧電素子の
開発に伴い、この圧電素子を用いた駆動装置が種々提案
されている。この圧電素子は電圧をかけると、ひずみを
生じる現象、所謂圧電効果を発揮するもので、古くから
知られているものである。この圧電素子を用いた駆動装
置の例としては、特開昭53−82286号公報および
特開昭57−78378号公報に記載のものがある。こ
れらの駆動装置は被駆動体に接触による駆動力を与える
ために、一種のひずみ形態を有する圧電体を直交方向に
組み合わせる構造となっている。また、この直交方向に
組み会わされた圧電体のひずみ形態を、2次元運動を生
起するように合成する柔機構を備える構成となっている
。Drive devices that apply a driving force to a driven body can generally be broadly classified into those that use electrical input and those that use fluid input. A typical example of the former driving device is a motor, and typical examples of the latter driving device include a hydraulic pump motor, a hydraulic cylinder, and the like. On the other hand, in recent years, with the development of piezoelectric elements, various drive devices using piezoelectric elements have been proposed. This piezoelectric element exhibits a so-called piezoelectric effect, a phenomenon that causes distortion when a voltage is applied, and has been known for a long time. Examples of drive devices using this piezoelectric element include those described in Japanese Patent Laid-Open No. 53-82286 and Japanese Patent Laid-Open No. 57-78378. These drive devices have a structure in which piezoelectric bodies having a type of strain form are combined in orthogonal directions in order to apply a driving force to a driven object through contact. Furthermore, the structure includes a flexible mechanism that synthesizes the strain forms of the piezoelectric bodies assembled in the orthogonal directions so as to generate two-dimensional motion.
この種の駆動装置は従来の電磁力から回転トルクを得る
モータに比べて小形、軽量であるので、各種の精密機械
、ロボットおよびOA機器などの駆動源に使用すること
が可能である。This type of drive device is smaller and lighter than a conventional motor that obtains rotational torque from electromagnetic force, so it can be used as a drive source for various precision machines, robots, office automation equipment, and the like.
しかし、この種の駆動装置には上述した小形。However, this type of drive device has the above-mentioned small size.
軽量を維持しながら、さらに高効率で駆動力を伝達し得
ることが要求されているが、前述した柔溝造のために、
駆動力を高効率で伝達し得ないのが現状である。There is a need to be able to transmit driving force with higher efficiency while maintaining light weight, but due to the soft groove structure mentioned above,
The current situation is that driving force cannot be transmitted with high efficiency.
本発明は上述の事柄にもとづいてなされたもので、高効
率で駆動力を伝達することができる駆動装置を提供する
ことを目的とするものである。The present invention has been made based on the above-mentioned matters, and an object of the present invention is to provide a drive device that can transmit driving force with high efficiency.
本発明は上記の目的を達成するために、被駆動体を駆動
する装置において、縦効果のひずみを呈する圧電体もし
くは横効果のひずみを呈する圧電体のいずれか一方の圧
電体とせん断効果のひずみを呈する圧電体とを一体的に
結合せしめ、この一体部に結合した圧電体に、前記各圧
電体の対の電極への電圧印加により生じる縦効果のひず
みまたは横効果のひずみとせん断効果のひずみとの合成
により、周回移動軌跡をもつ移動部を構成し、この移動
部を被駆動体に対する駆動力伝達部としたものである。In order to achieve the above object, the present invention provides a device for driving a driven object, in which either a piezoelectric material exhibiting a longitudinal effect strain or a piezoelectric material exhibiting a transverse effect strain, and a piezoelectric material exhibiting a shear effect strain. A piezoelectric body that exhibits the following characteristics is integrally coupled, and the piezoelectric body coupled to this integral part is subjected to longitudinal effect strain, transverse effect strain, and shear effect strain caused by voltage application to the pair of electrodes of each piezoelectric body. A moving section having a circular movement locus is formed by combining the moving section with the moving section, and this moving section is used as a driving force transmitting section for the driven body.
〔発明の実施例〕 以下本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.
第1図および第2図は本発明の駆動装置の一実施例を示
すもので、図において1は本発明の装置によって駆動さ
れる被駆動体を示す。本発明の駆動装置はこの例では2
個の圧電体2,3を積層して備えている。この圧電体2
,3は例えばチタン酸ジルコン酸鉛(Pb (Zr 、
Ti)Os 〕(tri称PZT)で構成されている。1 and 2 show an embodiment of the driving device of the present invention, and in the figures, 1 indicates a driven body driven by the device of the present invention. In this example, the drive device of the invention has two
The piezoelectric body 2 and 3 are stacked and provided. This piezoelectric body 2
, 3 is, for example, lead zirconate titanate (Pb (Zr,
Ti)Os] (tri-nickel PZT).
圧電体2はその厚み方向に矢印Aで示すように分極処理
されている。また圧電体3は圧電体2の分極Aの方向と
直交するように矢印Aで示すように分極処理されている
。この分極処理は各圧電体2.3に対して事前に行って
もよいし、また圧電体2,3の組付は後に行うことも可
能である。圧電体2はその分極Aと直角な対向表面に対
の電極4A、4Bを備えている。また圧電体3はその分
極Aと平行な対向表面に対の電極5−A、5Bを備えて
いる。対の電極4A、4Bは電源6に接続し、対の電極
5A、5Bは電源7に接続している。前述した電極4A
、4B、5A。The piezoelectric body 2 is polarized as shown by arrow A in its thickness direction. Further, the piezoelectric body 3 is polarized as shown by an arrow A so as to be orthogonal to the direction of polarization A of the piezoelectric body 2. This polarization treatment may be performed on each piezoelectric body 2.3 in advance, or the piezoelectric bodies 2, 3 may be assembled later. The piezoelectric body 2 is provided with a pair of electrodes 4A and 4B on opposing surfaces perpendicular to its polarization A. Further, the piezoelectric body 3 is provided with a pair of electrodes 5-A and 5B on opposing surfaces parallel to the polarization A thereof. The pair of electrodes 4A and 4B are connected to a power source 6, and the pair of electrodes 5A and 5B are connected to a power source 7. The aforementioned electrode 4A
, 4B, 5A.
5Bには例えば電極板、蒸着された電極などが用いられ
る。圧電体3の電極5Bと圧電体2の電極4Aとの間に
は、絶縁体8が設けられている。積層構成された圧電体
2,3における圧電体2は、電極4Bを介して固定板9
に固定されている。固定板9け例えばアルミナセラミッ
クス等の電気絶縁材料で構成されている。圧電体3の電
極5八部分は被駆動体1に接触し被駆動体1に駆動力を
与える移動部となるので、この部分の摩耗を防ぐために
耐摩耗部材10が設けられている。この部材10の取付
けは必須のものではない。この耐摩耗部材10は例えば
アルミナセラミックス等の電気絶縁材料で構成すること
がよい。この耐摩耗部材10および固定板9を導電性材
料で製作した場合には、耐摩耗部材10と電極5Aとの
間および固定板9と電極4Bとの間に、例えば絶縁塗料
の塗布などによる電気絶縁処理を施すことがよい。前述
した電源6,7は例えば正弦波、矩形波、三角波9台形
波等の任意周波数の任意波形を発生することができる。For example, an electrode plate, a vapor-deposited electrode, or the like is used for 5B. An insulator 8 is provided between the electrode 5B of the piezoelectric body 3 and the electrode 4A of the piezoelectric body 2. The piezoelectric body 2 in the laminated piezoelectric bodies 2 and 3 is connected to a fixed plate 9 via an electrode 4B.
Fixed. The fixing plate 9 is made of an electrically insulating material such as alumina ceramics. Since the electrode 58 portion of the piezoelectric body 3 becomes a moving portion that contacts the driven body 1 and applies a driving force to the driven body 1, a wear-resistant member 10 is provided to prevent wear of this portion. Attachment of this member 10 is not essential. This wear-resistant member 10 is preferably made of an electrically insulating material such as alumina ceramics. When the wear-resistant member 10 and the fixing plate 9 are made of conductive materials, electricity can be applied between the wear-resistant member 10 and the electrode 5A and between the fixing plate 9 and the electrode 4B by, for example, applying an insulating paint. It is recommended to perform insulation treatment. The power supplies 6 and 7 described above can generate arbitrary waveforms of arbitrary frequencies, such as sine waves, rectangular waves, triangular waves, and 9 trapezoidal waves.
次に上述した本発明の装置の一実施例の動作を説明する
。Next, the operation of one embodiment of the above-described apparatus of the present invention will be described.
いま、電源6によって正弦波の電圧を圧電体2の電極4
A、4Bに印加すると、圧電体2は第3図中の2点鎖線
で示すようにその分極Aと同方向(所謂圧電ひずみの縦
効果)の振動モードを生じる。また電源7によって正弦
波の電圧を圧電体3の電極5A、5Bに印加すると、圧
電体3は第4図中の2点鎖線で示すようにその分極Aと
直交方向(所謂圧電ひずみのせん断効果)の振動モード
を生じる。このため、電源6,7がら等周波数で90度
の位相差をもつ正弦波の電圧を、それぞれ電極4A、4
Bおよび電極5A、5Bに印加すると、圧電体3の移動
部側となる耐摩耗部材1oは圧電体2の縦効果と圧電体
3のぜん断効果との合成により、第1図および第2図に
示すように直焚座標系のX、Z軸の面内で矢印Bで示す
だ円の周回軌跡運動を生じる。そして、耐摩耗部材1o
はだ円運動の上部で被駆動体1に接触して被駆動体1を
移動させる。これにより、被駆動体1はX線と平行な方
向Cに駆動される。このとき、被駆動体1が直線動可能
に支持されている場合には直線動し、また回転可能に支
持されている場合には回転動することになる。Now, a sinusoidal voltage is applied to the electrode 4 of the piezoelectric body 2 by the power source 6.
When applied to A and 4B, the piezoelectric body 2 generates a vibration mode in the same direction as its polarization A (so-called longitudinal effect of piezoelectric strain), as shown by the two-dot chain line in FIG. Further, when a sinusoidal voltage is applied to the electrodes 5A and 5B of the piezoelectric body 3 by the power supply 7, the piezoelectric body 3 will move in the direction perpendicular to its polarization A (the so-called shear effect of piezoelectric strain), as shown by the two-dot chain line in FIG. ) gives rise to vibrational modes. For this reason, the power supplies 6 and 7 apply a sinusoidal voltage with equal frequency and a phase difference of 90 degrees to the electrodes 4A and 7, respectively.
When a voltage is applied to B and electrodes 5A and 5B, the wear-resistant member 1o on the moving part side of the piezoelectric body 3 has the effect shown in FIGS. 1 and 2 due to the combination of the longitudinal effect of the piezoelectric body 2 and the shear effect of the piezoelectric body 3. As shown in , an elliptical circular locus motion shown by arrow B is generated in the plane of the X and Z axes of the direct firing coordinate system. And wear-resistant member 1o
It contacts the driven body 1 at the top of the elliptical motion and moves the driven body 1. Thereby, the driven body 1 is driven in the direction C parallel to the X-rays. At this time, if the driven body 1 is supported so that it can move linearly, it will move linearly, and if it is supported so that it can rotate, it will move rotationally.
上述した圧電体3の移動部におけるX軸方向の変位量お
よびZ軸方向の変位量を参考までに示すと、次のように
なる。′
圧電体3をZ軸方向1酎、X軸方向2trrrnおよび
Ytdt方向lO間の長さとし、また圧電体2を2軸方
向2胡、X軸方向2wnおよびY軸方向10mmとして
構成し、圧電体の縦効果の圧電定数に、を600X10
”(m/v) 、せん断効果の圧電定数に、を900X
IO−”(m/V)とし、電極4A。For reference, the amount of displacement in the X-axis direction and the amount of displacement in the Z-axis direction in the moving portion of the piezoelectric body 3 described above is as follows. 'The piezoelectric body 3 has a length of 1 mm in the Z-axis direction, 2 mm in the X-axis direction, and 10 mm in the Ytdt direction, and the piezoelectric body 2 has a length of 2 mm in the 2-axis direction, 2 mm in the X-axis direction, and 10 mm in the Y-axis direction. The piezoelectric constant of the longitudinal effect is 600X10
”(m/v), the piezoelectric constant of the shear effect, is 900X
IO-” (m/V) and electrode 4A.
4Bおよび電極5A、5Bに90度位相差で周波数がと
もにl0KH2のIKVの正弦電圧を印加した場合、圧
電体3の移動部におけるX軸方向の最大変位量り、は
=0.9(μm) ・・・・・・・・・・
・・・・・(1)となる。またZ軸方向の最大変位量り
、は−〇、6(μm) ・・・・・・・
・・・・・・・・(2)となる。さらに、X軸方向の最
大送り速度Vえはy!=0.g(μm)XIO’(1/
S)= 9 (拡n/ S・) ・・・
・・・・・・・・・(3)となる。When an IKV sine voltage with a 90 degree phase difference and a frequency of 10KH2 is applied to 4B and electrodes 5A and 5B, the maximum displacement in the X-axis direction of the moving part of the piezoelectric body 3 is = 0.9 (μm).・・・・・・・・・
...(1). Also, the maximum displacement in the Z-axis direction is -〇, 6 (μm)...
......(2). Furthermore, the maximum feed speed in the X-axis direction Vehay! =0. g(μm)XIO'(1/
S)=9 (expansion n/S・)...
......(3).
なお、上述の一実施例は被駆動体1を第1図においてX
軸方向に沿う矢印C方向に移動させる場合を示したが、
電源6.7からの電圧の位相を逆向きでしかも90度位
相差を与えれば、圧電体3の移動部となる耐摩耗部材1
0を第1図に示す矢印Bと逆方向のだ円軌跡をもりで運
動させることができる。これにより、被駆動体1は上述
とは逆方向に移動するっ
まだ、上述の一実施例に衰いては、圧電体3の移動部に
設けた耐摩耗部材10tだ円軌跡運動させだが、電@i
6.7から等位相で異なる周波数の正弦波電圧を出力す
ることにより、第5図に示すように耐摩耗部材10をリ
サージュ波形の周回軌跡をもって運動させることができ
る。この場合には被駆動体lは図面上圧−右−左の繰返
の移動を行う。また、電源6,7から等周波数の矩形波
電圧を90度位相差をもって出力すると、第6図に示す
ように耐摩耗部材10は角形の周回軌跡をもって運動す
る。さらに、電源6.7から等周波数の三角波電圧を9
0度位相差をもって出力すると、第7図に示すように耐
摩耗部材10は菱形の周回軌跡をもって運動する。また
、電源6.7から等周波数で90度位相差をもつ台形波
電圧を出力すると、第8図に示すように、耐摩耗部材1
0は六角形状の周回軌跡をもって運動する。このように
、電源6.7から出力する電圧の波形1位相および周波
数を変えることにより、被駆動体1を接触駆動するだめ
の耐摩耗部材10の移動部を任意に選定することができ
る。Note that in the above-mentioned embodiment, the driven body 1 is shown as X in FIG.
Although the case of moving in the direction of arrow C along the axial direction is shown,
If the phase of the voltage from the power supply 6.7 is reversed and a 90 degree phase difference is given, the wear-resistant member 1 becomes the moving part of the piezoelectric body 3.
0 can be moved with a harpoon along an elliptical locus in the opposite direction to arrow B shown in FIG. As a result, while the driven body 1 moves in the opposite direction to that described above, the wear-resistant member 10t provided on the moving part of the piezoelectric body 3 is moved in an elliptical trajectory, but the electric current @i
By outputting sinusoidal voltages of equal phase and different frequencies from 6.7, the wear-resistant member 10 can be moved with a Lissajous waveform orbit as shown in FIG. In this case, the driven body 1 repeatedly moves from right to left in the drawing. Further, when rectangular wave voltages of equal frequency are outputted from the power sources 6 and 7 with a phase difference of 90 degrees, the wear-resistant member 10 moves along a rectangular orbit as shown in FIG. Furthermore, a triangular wave voltage of equal frequency is applied from the power supply 6.7 to 9
When the output is performed with a phase difference of 0 degrees, the wear-resistant member 10 moves with a rhombic orbit as shown in FIG. In addition, when a trapezoidal wave voltage with an equal frequency and a 90 degree phase difference is output from the power source 6.7, as shown in Fig. 8, the wear-resistant member 1
0 moves with a hexagonal orbit. In this manner, by changing the waveform phase and frequency of the voltage output from the power source 6.7, the moving portion of the wear-resistant member 10 that is to contact drive the driven body 1 can be arbitrarily selected.
以上述べた本発明の一実施例によれば、2種類の圧電体
の積層組み合わせにより、耐摩耗部材lOを周回軌跡を
もって移動させることができるので、被駆動体1を接触
駆動させるための簡単な構成のアクチュエータを提供す
ることができる。According to the embodiment of the present invention described above, the wear-resistant member 10 can be moved along a circular trajectory by the laminated combination of two types of piezoelectric bodies. The actuator can be provided with a configuration.
まだ、2種類の圧電体はその間に低剛性の介在物を介す
ることなく接合されているので、そのひずみ変形を駆動
力として被駆動体に効率良く伝達することかできる。Still, since the two types of piezoelectric bodies are joined without intervening a low-rigidity intermediate between them, the strain deformation can be efficiently transmitted to the driven body as a driving force.
第9図は本発明の駆動装置の他の実施例を示すもので、
この図において第1図および第2図と同符号のものは同
一部分を示す。この実施例は第1図に示す実施例との比
較において、圧電体2の分極Aの方向がX軸方向と平行
となるように配置構成したものである。これ以外の構成
は第1図に示す実施例と同様であるので、その詳細な構
成の説明は省略する。FIG. 9 shows another embodiment of the drive device of the present invention,
In this figure, the same reference numerals as in FIGS. 1 and 2 indicate the same parts. In comparison with the embodiment shown in FIG. 1, this embodiment is arranged so that the direction of polarization A of the piezoelectric body 2 is parallel to the X-axis direction. Since the configuration other than this is the same as that of the embodiment shown in FIG. 1, detailed explanation of the configuration will be omitted.
次に上述した本発明の装置の他の実施例の動作を説明す
る。Next, the operation of another embodiment of the apparatus of the present invention described above will be explained.
圧電体2の電極4A、4Bに電源6により交番電圧を印
加すると、圧電体2は第10図の2点鎖線で示すように
圧電体2のひずみ形態の一種である横効果によってその
分極入方向と直交する方向に縮み変形する。また圧電体
3の電極5A、5Bに電源7により交番電圧を印加する
と、圧電体3は第11図の2点鎖線で示すように、せん
断効果によってその分極入方向と平行な方向に変形する
。When an alternating voltage is applied to the electrodes 4A and 4B of the piezoelectric body 2 by the power source 6, the piezoelectric body 2 changes its polarization direction due to the transverse effect, which is a type of strain form of the piezoelectric body 2, as shown by the two-dot chain line in FIG. Shrinks and deforms in the direction perpendicular to Further, when an alternating voltage is applied to the electrodes 5A and 5B of the piezoelectric body 3 by the power source 7, the piezoelectric body 3 is deformed in a direction parallel to its polarization direction due to a shearing effect, as shown by the two-dot chain line in FIG.
このため、電源6,7により6対の電極4A。Therefore, six pairs of electrodes 4A are generated by the power sources 6 and 7.
4Bおよび5A、5Bに任意の電圧差2周波数差および
位相差をもつ電圧を同時に印加することによって、第1
図に示す実施例と同様に耐摩耗部材lOを任意の周回軌
跡をもって移動させることができる。By simultaneously applying voltages having arbitrary voltage differences, two frequency differences, and a phase difference to 4B, 5A, and 5B, the first
Similarly to the embodiment shown in the figure, the wear-resistant member 10 can be moved with any circular trajectory.
この実施例においては、第1図に示す実施例と同様な条
件において、その変位量を示すと、耐摩耗部材10はZ
軸方向に−0,25μmすなわち縮み方向に0.25μ
m変位し、またX軸方向に0.6μm袈位するどそして
、X軸方向の最大送り速就は9mm/sになる。In this example, under the same conditions as the example shown in FIG.
-0.25μm in the axial direction, i.e. 0.25μm in the shrinkage direction
When it is displaced by 0.6 μm in the X-axis direction, the maximum feed speed in the X-axis direction becomes 9 mm/s.
第12図および第13図は本発明の装置のさらに他の実
施例ケ示すもので、この図において第1図および第2図
中の符号と同符号のものは同一部分である。これらの実
施例は第1図に示す縦効果を住じる複数個の圧電体2と
せん断効果を生じる複数個の圧電体3とを2軸方向に沿
って積層構成したものである。第12図に示す実施例は
隣接する各圧電体2,3の各分極入方向を同一とした場
合である。この場合には隣接した圧電体2,3の各間に
2つの極性の異なる電極4A、4Bおよび5A、5I3
を設ける必要があるため、これらの電極間には電気絶縁
体11が設けられている。第13図に7]りす実施例は
各圧電体2,3の隣接する圧電体2,3の各分極入方向
を逆向きとしたものである。この場合には隣接する各圧
電体2,3の分極入方向が逆向きであるため、電気絶縁
体11を設ける必要がないと共に各圧電体2.3の隣接
する部分の電体を共通の電極12とすることができる。FIGS. 12 and 13 show still another embodiment of the apparatus of the present invention, in which the same reference numerals as those in FIGS. 1 and 2 represent the same parts. In these embodiments, a plurality of piezoelectric bodies 2 exhibiting a longitudinal effect and a plurality of piezoelectric bodies 3 producing a shearing effect are laminated in biaxial directions as shown in FIG. 1. The embodiment shown in FIG. 12 is a case where the polarization directions of the adjacent piezoelectric bodies 2 and 3 are the same. In this case, two electrodes 4A, 4B and 5A, 5I3 of different polarity are provided between adjacent piezoelectric bodies 2, 3.
Therefore, an electrical insulator 11 is provided between these electrodes. In the embodiment shown in FIG. 13, the polarization directions of the adjacent piezoelectric bodies 2 and 3 are opposite to each other. In this case, since the polarization directions of the adjacent piezoelectric bodies 2 and 3 are opposite, there is no need to provide the electric insulator 11, and the electric bodies in adjacent parts of the piezoelectric bodies 2 and 3 are connected to a common electrode. It can be 12.
これにより第12図の実施例に比べて電極への配線数を
少なくすることができる。This allows the number of wires to be connected to the electrodes to be reduced compared to the embodiment shown in FIG.
上述した第12図および第13図に示す本発明の装置の
さらに他の実施例によれば、積層された複数個の圧電体
2の縦効果と積層された複数個の圧電体のせん断効果と
の合成により、その移動部となる耐摩耗部材10はX、
Z軸面内での周回移動軌跡をもって移動する。この耐摩
耗部材1.0の周回移動により、被駆動体1をX軸方向
に移動させることができる。このように、圧電体2,3
を多数積層することにより、小さな電圧で移動部に大き
な変位量を与えることができる。また、せん断効果を示
す圧電体2は電圧印加方向がその分極A向と直交するた
め、高電圧の印加により、その分極劣化を最小限に抑え
ることができる。According to still another embodiment of the device of the present invention shown in FIGS. 12 and 13 described above, the longitudinal effect of the plurality of stacked piezoelectric bodies 2 and the shear effect of the plurality of stacked piezoelectric bodies 2 are combined. By combining, the wear-resistant member 10 that becomes the moving part becomes X,
It moves with a circular movement locus within the Z-axis plane. This circular movement of the wear-resistant member 1.0 allows the driven body 1 to be moved in the X-axis direction. In this way, piezoelectric bodies 2, 3
By stacking a large number of layers, a large amount of displacement can be applied to the moving part with a small voltage. Furthermore, since the voltage application direction of the piezoelectric body 2 exhibiting a shearing effect is perpendicular to the direction of polarization A, deterioration of its polarization can be minimized by applying a high voltage.
第14図〜第17図は本発明の駆動装置の他の実施例を
示すもので、この図において第1図および第9図と同符
号のものは同一部分を示す。これらの実施例は第9図に
示す横効果を生じる複数個の圧電体2とせん断効果を生
じる複数個の圧電体3とを積層して構成したものである
。第14図に示す実施例は複数個の圧電体2と複数個の
圧電体3との各分極A方向を同一となるようにZ軸方向
に積層構成したものである。この場合には隣接した各圧
電体2,3の各間に2つの極性の異なる電極を設ける必
要があるため、これらの電極間には電気絶縁体11が設
けられている。第15図に示す実施例は隣接する各圧電
体2,3の各分極入方向を逆向きにしたものである。こ
の場合には瞬接する各圧電体2.3の各分極入方向が逆
向きであるだめ、電気絶縁体を隣接する各圧電体2,3
の各間に設ける必要がないと共に、各圧電体2.3の隣
接する部分の電極を共通の電極12とすることができる
。これにより、第14図の実施例に比べて電極への配線
数を少なくすることができる。FIGS. 14 to 17 show other embodiments of the drive device of the present invention, and in these figures, the same reference numerals as in FIGS. 1 and 9 indicate the same parts. These embodiments are constructed by laminating a plurality of piezoelectric bodies 2 that produce a transverse effect and a plurality of piezoelectric bodies 3 that produce a shear effect as shown in FIG. In the embodiment shown in FIG. 14, a plurality of piezoelectric bodies 2 and a plurality of piezoelectric bodies 3 are laminated in the Z-axis direction so that their respective polarization A directions are the same. In this case, since it is necessary to provide two electrodes of different polarity between each of the adjacent piezoelectric bodies 2 and 3, an electrical insulator 11 is provided between these electrodes. In the embodiment shown in FIG. 15, the polarization directions of the adjacent piezoelectric bodies 2 and 3 are reversed. In this case, the polarization directions of the piezoelectric bodies 2 and 3 that are in instantaneous contact must be reversed, and the electric insulators must be
There is no need to provide a common electrode 12 between adjacent piezoelectric bodies 2.3. Thereby, the number of wirings to the electrodes can be reduced compared to the embodiment shown in FIG. 14.
第14図および第15図に示す実施例によれは、圧電体
2,3の多数積層により小さな電圧で大きな変位量を得
ることができる。第16図に示す実施例および棺17図
に示す実施例は第9図に示す横効果を発揮する複数個の
圧電体2をX軸方向に沿って配置したものであり、第1
6図に示す実施例は各圧゛進体2の分極A方向を同一方
向にしだものである。まだ第17図に示す実施例は隣接
する各圧電体20分極八へ向を逆向きにしたものである
。この場合には第15図に示す実施例と同様に各圧電体
2の隣接する部分の電極を共通の電極12とすることが
できる。この第16図および第17図に示す実施例にお
いては、横効果を発揮する複数個の各圧電体2に加える
印加電圧を、第9図に示す単一の圧電体へのそれよりも
小さくすることができる。すなわち、第9図に示す実施
例における圧電体2のZ軸方向の寸法をAx、X軸方向
の寸法を72+印加電圧をVo 、横効果を示す圧電定
数をdとすると、第9図に示す圧電体2のZ軸方向の変
位量り、は次の(4)式のようになる。According to the embodiment shown in FIGS. 14 and 15, a large amount of displacement can be obtained with a small voltage by laminating a large number of piezoelectric bodies 2 and 3. The embodiment shown in FIG. 16 and the embodiment shown in FIG. 17 are those in which a plurality of piezoelectric bodies 2 exhibiting the transverse effect shown in FIG.
In the embodiment shown in FIG. 6, the polarization A direction of each pressurized body 2 is made to be in the same direction. In the embodiment shown in FIG. 17, the polarization directions of the adjacent piezoelectric bodies 20 are reversed. In this case, similar to the embodiment shown in FIG. 15, the electrodes of adjacent portions of each piezoelectric body 2 can be made into a common electrode 12. In the embodiments shown in FIGS. 16 and 17, the voltage applied to each of the plurality of piezoelectric bodies 2 exhibiting a transverse effect is made smaller than that applied to the single piezoelectric body shown in FIG. be able to. That is, assuming that the dimension of the piezoelectric body 2 in the Z-axis direction in the example shown in FIG. 9 is Ax, the dimension in the X-axis direction is 72+applied voltage Vo, and the piezoelectric constant indicating the transverse effect is d, as shown in FIG. The displacement of the piezoelectric body 2 in the Z-axis direction is expressed by the following equation (4).
ここで、印加電圧Voを低くして、変位量り。Here, reduce the applied voltage Vo and measure the displacement.
を大きくするには、上記の(4)式において圧電体2の
X軸方向の寸法t2を小さくし、Z軸方向の寸法t1を
大きくしなければならない。しかし、X軸方向の寸法t
2はこれに連結する圧電体3との結合による剛性低下を
防ぐために、その寸法t2を小さくすることができない
。ところが、圧電体2をX軸方向にn個積層すれば、−
1のZ軸方向の変位量Dt6は次の(5)式のようにな
る。In order to increase , the dimension t2 of the piezoelectric body 2 in the X-axis direction must be decreased and the dimension t1 of the piezoelectric body 2 in the Z-axis direction must be increased in the above equation (4). However, the dimension t in the X-axis direction
2 cannot have its dimension t2 reduced in order to prevent a decrease in rigidity due to coupling with the piezoelectric body 3 connected thereto. However, if n piezoelectric bodies 2 are stacked in the X-axis direction, -
The displacement amount Dt6 in the Z-axis direction of 1 is expressed by the following equation (5).
この(5)式から明らかなように、(4)式における変
位量り、と(5)式の変位量り、oを等量にするには(
4)式における印加電圧V。に対し1/11の印加電圧
で良い。すなわち、第16図および第17図に示す実施
例において横効果を発揮する各圧電体2への印加電圧は
第9図に示す実施例の単一の圧電体2に比べて小さくす
ることができる。As is clear from this equation (5), in order to make the displacement amount in equation (4) and the displacement amount o in equation (5) equal,
4) Applied voltage V in formula. An applied voltage of 1/11 of that is sufficient. That is, in the embodiments shown in FIGS. 16 and 17, the voltage applied to each piezoelectric body 2 that exhibits a transverse effect can be made smaller compared to the single piezoelectric body 2 in the embodiment shown in FIG. .
第18図〜第23図は本発明の駆動装置のさらに他の実
施例を示すもので、これらの各実施例は第12図〜第1
7図に示す実施例にさらにもう1種類のせん断効果を発
揮する複数個の圧電体3人を設けたものである。これら
の圧電体3Aはその分極入方向が圧電体3の分&A方向
に対して直交するように、圧電体3上に積層されている
。これらの圧電体3Aの電極5A、5Bおよび共通の電
極12は電源7Aに接続される。この電源7Aからの電
圧印加により、圧電体3AはY、Z軸面内でせん断効果
によるひずみ変形を生じる。FIGS. 18 to 23 show still other embodiments of the drive device of the present invention, and each of these embodiments is shown in FIGS. 12 to 1.
In addition to the embodiment shown in FIG. 7, a plurality of three piezoelectric bodies that exhibit another type of shearing effect are added. These piezoelectric bodies 3A are stacked on the piezoelectric body 3 so that the direction of polarization is perpendicular to the direction &A of the piezoelectric body 3. Electrodes 5A, 5B of these piezoelectric bodies 3A and a common electrode 12 are connected to a power source 7A. Due to this voltage application from the power source 7A, the piezoelectric body 3A undergoes strain deformation due to a shearing effect within the Y and Z axis planes.
第18図および第19図に示す実施例は圧電体2の縦効
果のひずみと圧電体3および圧電体3Aの谷せん断効果
のひずみとの合成にょシ、その移動部となる耐摩耗部材
10は3次元的な周回移動軌跡を描く。すなわち、耐摩
耗部材1oはX、Z軸面内での周回移動軌跡をZ軸回り
にある角度θ変位した位置で運動する。これにより、耐
摩耗部材lOは被駆動体1をX軸に対して角度θをもっ
た方向に移動させることができる。In the embodiment shown in FIGS. 18 and 19, the strain of the longitudinal effect of the piezoelectric body 2 and the strain of the valley shear effect of the piezoelectric body 3 and the piezoelectric body 3A are combined, and the wear-resistant member 10 serving as a moving part thereof is Draw a three-dimensional circular movement trajectory. That is, the wear-resistant member 1o moves at a position displaced by a certain angle θ around the Z-axis from the orbital locus within the X- and Z-axis planes. Thereby, the wear-resistant member IO can move the driven body 1 in a direction having an angle θ with respect to the X-axis.
第20図〜第23図に示す実施例は圧電体2の横効果の
ひずみと圧電体3および圧電体3Aの各ぜん断効果のひ
ずみの合成とにより、第18図および第19図の実施例
と同様にその移動部となる11rJ′岸粍部材10は3
次元的な周回移動軌跡を描き、被駆動体1をX軸に対し
て角度θをもった方向に移動させることができる。The embodiment shown in FIGS. 20 to 23 is based on the combination of the transverse effect strain of the piezoelectric body 2 and the shear effect strain of the piezoelectric body 3 and the piezoelectric body 3A. Similarly, the 11rJ' shoreline member 10 which becomes the moving part is 3
It is possible to draw a dimensional circular movement locus and move the driven body 1 in a direction having an angle θ with respect to the X axis.
次に本発明の駆動装置の代衣的な通用例を第24図〜第
27図を用いて以下に説明する。Next, a practical example of the driving device of the present invention will be explained below using FIGS. 24 to 27.
第24図に示す本発明の駆動装置Tの適用例は、被駆動
体lを直線または平面内で移動させるようにしたもので
ある。ずなわち、ベース13上に軸受14によって被駆
動体1を直線または平面内で移動可能に支持し、この被
駆動体1に対向する部分に、本発明の駆動装置Tを複数
個並設し、これらの本発明の駆動装置Tに交番電圧を印
加して、その被駆動体側部を交互に2次元もしくは3次
元の移動軌跡をもつ周回運動させる。この周回運動によ
り、この駆動装置Tは被駆動体1の表面に接離を繰シ返
す。これにより、被駆動体1は直線動または平面内にお
ける一方向および平面内における一方向に対しである角
度をもった平面内で移動する。また第25図に示すよう
に、本発明の駆動装置Tによって回転テーブル15を回
転駆動することも可能である。An application example of the driving device T of the present invention shown in FIG. 24 is one in which a driven body 1 is moved in a straight line or in a plane. That is, a driven body 1 is supported on a base 13 by a bearing 14 so as to be movable in a straight line or in a plane, and a plurality of drive devices T of the present invention are arranged in parallel at a portion facing the driven body 1. , an alternating voltage is applied to these drive devices T of the present invention to cause the side portions of the driven body to alternately move around in a two-dimensional or three-dimensional movement locus. Due to this circular motion, the driving device T repeatedly approaches and separates from the surface of the driven body 1. As a result, the driven body 1 moves in a straight line or in one direction within the plane and at an angle with respect to one direction within the plane. Further, as shown in FIG. 25, it is also possible to rotationally drive the rotary table 15 by the drive device T of the present invention.
第26図に示す本発明の駆動装置Tの通用例は、被駆動
体を回転動させるようにしたものである。A commonly used example of the drive device T of the present invention shown in FIG. 26 is one in which a driven body is rotated.
すなわち、ケーシング16内に軸受17によって被駆動
体となる軸18を回転可能に支持し、この軸18の外周
に対向するケーシング16の内面ニ、本発明の駆動装置
Tを複数個周方向に設け、この本発明の駆動装置Tに交
番電圧を印加することにより、本発明の駆動装置1゛は
軸外周に対向する部分の周回運動により、軸18の外周
に接離を繰り返す。これによシ、軸18は回転動する。That is, a shaft 18 serving as a driven body is rotatably supported within the casing 16 by a bearing 17, and a plurality of drive devices T of the present invention are provided in the circumferential direction on the inner surface of the casing 16 facing the outer periphery of the shaft 18. By applying an alternating voltage to the drive device T of the present invention, the drive device 1' of the present invention repeatedly approaches and separates from the outer circumference of the shaft 18 by circular movement of the portion facing the outer circumference of the shaft. This causes the shaft 18 to rotate.
第27図に示す適用例は、第26図に示す通用例と同様
に被駆動体を回転動させるものであり、この適用し0は
軸18に設けた円板体190表面に対向するように本発
明の駆動装置Tt配装したものである。このように構成
することにより、上述の適用例と同様に円板体19の回
転を通して軸18を回転動させることができる。The application example shown in FIG. 27 rotates the driven body in the same way as the general example shown in FIG. The driving device Tt of the present invention is installed. With this configuration, the shaft 18 can be rotated through the rotation of the disc body 19, similar to the above application example.
なお、第26図および第27図に示す適用例は軸18を
回転動させる場合について説明したが、軸18を固定し
、ケーシング16を回転可能に支持すれは、ケーシング
16を軸18の回りに回転動させることができる。Note that the application examples shown in FIGS. 26 and 27 have been described with reference to the case where the shaft 18 is rotated, but if the shaft 18 is fixed and the casing 16 is rotatably supported, the casing 16 can be rotated around the shaft 18. It can be rotated.
以上述べたように、本発明の駆動装置は被駆動体を直線
動および回転動可能なアクチュエータを提供することが
できる。As described above, the drive device of the present invention can provide an actuator capable of linearly and rotatably moving a driven body.
また上述した各実施例は圧電体における周回運動する移
動部を被駆動体に接触させて、被駆動体を駆動するので
、従来にくらべて駆動力を高剛性をもって被駆動体に伝
達できる。その結果、効率が良好であると共に駆動力伝
達の信頼性が高いものでるる。さらに、駆動力伝達を良
好にするために、本発明の駆動装置の移動部と被駆動体
とのすべりを防ぐだめのゴム体、粗面形成等の摩擦係数
が犬なる方策を用いることがよい。また、本発明におい
ては、上述したような駆動装置の移動部と被駆動体との
接触駆動以外に、磁気力を用いた反撥、吸引による非接
触駆動も可能である。また、上述した各実施例において
、圧電体2,3,3Aは直方体の形状を示したが、この
形状に限られるものではない。まだ、圧電体2,3,3
Aの個数およびその組合せは前述した実施例に限定され
ることなく、任意に選定し得ることは可能である。Furthermore, in each of the above-described embodiments, the rotating moving part of the piezoelectric body is brought into contact with the driven body to drive the driven body, so that the driving force can be transmitted to the driven body with higher rigidity than in the past. As a result, the efficiency is good and the reliability of driving force transmission is high. Furthermore, in order to improve the transmission of driving force, it is preferable to use a rubber body to prevent slippage between the moving part of the drive device of the present invention and the driven body, or to use measures such as forming a rough surface to reduce the coefficient of friction. . Further, in the present invention, in addition to the contact drive between the moving part of the drive device and the driven body as described above, non-contact drive by repulsion or attraction using magnetic force is also possible. Further, in each of the above-described embodiments, the piezoelectric bodies 2, 3, and 3A have a rectangular parallelepiped shape, but are not limited to this shape. Still piezoelectric body 2, 3, 3
The number of A's and the combination thereof are not limited to the above-mentioned embodiments, and can be arbitrarily selected.
まだ各実施例を複数個並設することも可能である。It is still possible to arrange a plurality of each embodiment in parallel.
以上詳述したように、本発明によれば、被駆動体に駆動
力を効率良く伝達することができるものである。As described in detail above, according to the present invention, driving force can be efficiently transmitted to the driven body.
【図面の簡単な説明】
第1図は本発明の駆動装置の一実施例を示す正面図、第
2図はその斜視図、第3図および第4図は本発明の駆動
装置を構成する各圧電体の動作を説明する正面図、第5
図〜第8図は第1図に示す本発明の駆動装置における移
動部の周回移動軌跡の他の例を示す図、第9図は本発明
の駆動装置の他の実施例を示す斜視図、第10図および
第11図は第9図に示す本発明の駆動装置の他の実施例
を構成する各圧電体の動作を説明する正面図、第12図
〜第23図は本発明の駆動装置のさらに他の実施例の構
成を示す正面図、第24図〜第27図は本発明の駆動装
置の適用例を示す図である。
1・・・被駆動体、2,3,3A・・・圧電体、4A、
・4B、5A、5B・・・電極、6,7・・・電源、8
・・・絶縁体、9・・・固定板、10・・・耐摩耗部材
、11・・・電’f3S 図
第 乙 図 片 7 図¥J B
図
デ
第1θ図 箭21図
第1t図 rl″7図
て服図 万1?図[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a front view showing one embodiment of the drive device of the present invention, FIG. 2 is a perspective view thereof, and FIGS. 3 and 4 are each part of the drive device of the present invention. Front view explaining the operation of the piezoelectric body, No. 5
8 are diagrams showing other examples of the circular movement locus of the moving part in the drive device of the present invention shown in FIG. 1, FIG. 9 is a perspective view showing another embodiment of the drive device of the present invention, 10 and 11 are front views illustrating the operation of each piezoelectric body constituting another embodiment of the drive device of the present invention shown in FIG. 9, and FIGS. 12 to 23 are front views of the drive device of the present invention. FIGS. 24 to 27 are front views showing the configuration of still other embodiments of the present invention, and FIGS. 24 to 27 are diagrams showing application examples of the drive device of the present invention. 1... Driven body, 2, 3, 3A... Piezoelectric body, 4A,
・4B, 5A, 5B...electrode, 6,7...power supply, 8
...Insulator, 9...Fixing plate, 10...Abrasion resistant member, 11...Electrical 'f3S Figure No. B Figure Piece 7 Figure ¥J B
Diagram 1θ Diagram 21 Diagram 1t Diagram rl''7 Diagram 1:1? Diagram
Claims (1)
ずみを呈する圧電体もしくは横効果のひずみを呈する圧
電体のいずれか一方の圧電体とせん断効果のひずみを呈
する圧電体とを一体的に結合せしめ、この一体部に結合
した圧電体に、前記各圧電体の対の電極への電圧印加に
より生じる縦効果のひずみまたは横効果のひずみとせん
断効果のひずみとの合成により、周回移動軌跡をもつ移
動部を構成し、この移動部を被駆動体に対する駆動力伝
達部としたことを特徴とする駆動装置。 2、特許請求の範囲第1項記載の駆動装置において、一
体部に結合される圧電体は、縦効果のひずみを呈する圧
電体とせん断効果のひずみを呈する圧電体とで構成した
ことを特徴とする駆動装置。 3、特許請求の範囲第1項記載の駆動装置において、一
体部に結合される圧電体は、横効果のひずみを呈する圧
電体とせん断効果のひずみを呈する圧電体とで構成した
ことを特徴とする駆動装置。 4、特許請求の範囲第1項記載の駆動装置において、一
体部に結合される圧電体は、縦効果のひずみを呈する圧
電体と、せん断効果のひずみを呈する第1の圧電体と、
この第1の圧電体のせん断効果のひずみと直交するせん
断効果のひずみを呈する第2の圧電体とで構成したこと
を特徴とする駆動装置。 5、特許請求の範囲第1項記載の駆動装置において、一
体部に結合される圧電体は、横効果のひずみを呈する圧
電体と、せん断効果のひずみを呈する第1の圧電体と、
この第1の圧電体のせん断効果のひずみと直交するせん
断効果のひずみを呈する第2の圧電体とで構成したこと
を特徴とする駆動装置。 6、特許請求の範囲第2項〜第5項のいずれかに記載の
駆動装置において、6異なるひずみ形態を呈する圧電体
はそれぞれ複数個の圧電体で構成されていることを特徴
とする駆動装置。 7、特許請求の範囲第4項または第5項記載の駆動装置
において、横効果のひずみを呈する複数個の圧電体は並
設して結合されているととを特徴とする駆動装置。 8、特許請求の範囲第6項または第7項記載の駆動装置
において、6異なるひずみ形態を呈する複数個の圧電体
はその分極方向が同一方向であることを特徴とする駆動
装置。 9、特許請求の範囲第6項または第7項記載の駆動装置
において、6異なるひずみ形態を呈する複数個の圧電体
はその分極方向が互いに逆向きであることを特徴とする
駆動装置。 10、特許請求の範囲第9項記載の駆動装置において、
隣接する圧電体の電極を共通の電極としたことを特徴と
する駆動装置。 11、特許請求の範囲第1項〜第10項のいずれかに記
載の駆動装置において、圧電体の移動部に耐摩耗部材を
設けたことを特徴とする駆動装置。 12、特許請求の範囲第11項記載の駆動装置において
、耐摩耗部材は摩耗係数が大きい材質で構成したことを
特徴とする駆動装置。[Claims] 1. In a driving device for driving a driven object, a piezoelectric material exhibiting longitudinal effect strain or a piezoelectric material exhibiting transverse effect strain, and a piezoelectric material exhibiting shear effect strain. A combination of longitudinal effect strain or transverse effect strain and shear effect strain caused by voltage application to the pair of electrodes of each piezoelectric body, which is integrally connected to the piezoelectric body and connected to this integral part. A driving device characterized in that a moving part having a circumferential locus is configured, and this moving part is used as a driving force transmitting part to a driven body. 2. The drive device according to claim 1, characterized in that the piezoelectric body coupled to the integral part is composed of a piezoelectric body exhibiting a longitudinal effect strain and a piezoelectric body exhibiting a shear effect strain. drive device. 3. The drive device according to claim 1, characterized in that the piezoelectric body coupled to the integral part is composed of a piezoelectric body exhibiting transverse effect strain and a piezoelectric body exhibiting shear effect strain. drive device. 4. In the drive device according to claim 1, the piezoelectric bodies coupled to the integral part include a piezoelectric body exhibiting longitudinal effect strain, and a first piezoelectric body exhibiting shear effect strain;
A drive device comprising a second piezoelectric body exhibiting a shear effect strain orthogonal to the shear effect strain of the first piezoelectric body. 5. In the drive device according to claim 1, the piezoelectric bodies coupled to the integral part include a piezoelectric body exhibiting transverse effect strain, and a first piezoelectric body exhibiting shear effect strain;
A drive device comprising a second piezoelectric body exhibiting a shear effect strain orthogonal to the shear effect strain of the first piezoelectric body. 6. The driving device according to any one of claims 2 to 5, wherein each of the piezoelectric bodies exhibiting six different strain forms is composed of a plurality of piezoelectric bodies. . 7. A drive device according to claim 4 or 5, characterized in that a plurality of piezoelectric bodies exhibiting transverse effect distortion are arranged in parallel and coupled. 8. The driving device according to claim 6 or 7, wherein the plurality of piezoelectric bodies exhibiting six different strain forms have polarization directions in the same direction. 9. The driving device according to claim 6 or 7, wherein the plurality of piezoelectric bodies exhibiting six different strain forms have polarization directions opposite to each other. 10. In the drive device according to claim 9,
A driving device characterized in that electrodes of adjacent piezoelectric bodies are used as a common electrode. 11. A drive device according to any one of claims 1 to 10, characterized in that a wear-resistant member is provided in the moving portion of the piezoelectric body. 12. The drive device according to claim 11, wherein the wear-resistant member is made of a material with a large wear coefficient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58104125A JPS59230473A (en) | 1983-06-13 | 1983-06-13 | Drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58104125A JPS59230473A (en) | 1983-06-13 | 1983-06-13 | Drive device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59230473A true JPS59230473A (en) | 1984-12-25 |
Family
ID=14372397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58104125A Pending JPS59230473A (en) | 1983-06-13 | 1983-06-13 | Drive device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59230473A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6260482A (en) * | 1985-09-10 | 1987-03-17 | Rion Co Ltd | piezoelectric actuator |
JPS62135278A (en) * | 1985-12-04 | 1987-06-18 | Taga Denki Kk | Drive method of ultrasonic vibrator |
JPS62213584A (en) * | 1986-03-13 | 1987-09-19 | Rion Co Ltd | High frequency piezoelectric drive motor |
JPS62216677A (en) * | 1986-03-18 | 1987-09-24 | 神鋼電機株式会社 | Oval vibrator |
JPS62239875A (en) * | 1986-04-09 | 1987-10-20 | Taga Electric Co Ltd | Drive control method for ultrasonic vibrator |
JPS6384173A (en) * | 1986-09-29 | 1988-04-14 | Mitsubishi Kasei Corp | Piezoelectric actuator |
JPS63307788A (en) * | 1987-06-09 | 1988-12-15 | Ngk Spark Plug Co Ltd | Piezoelectric driver |
EP0360975A2 (en) * | 1988-09-30 | 1990-04-04 | Rockwell International Corporation | Piezoelectric actuator |
JP2005333735A (en) * | 2004-05-20 | 2005-12-02 | Japan Science & Technology Agency | Precision high speed moving method and apparatus using composite piezo element |
JP2006006021A (en) * | 2004-06-17 | 2006-01-05 | Taiheiyo Cement Corp | Piezoelectric actuator and driving device |
JP2007221988A (en) * | 2006-01-17 | 2007-08-30 | Seiko Instruments Inc | Piezoelectric actuator and electronic apparatus using same |
WO2010113505A1 (en) * | 2009-03-31 | 2010-10-07 | 株式会社ニコン | Piezoelectric actuator and lens barrel |
WO2010143438A1 (en) * | 2009-06-10 | 2010-12-16 | 株式会社ニコン | Drive device, lens barrel, and camera |
JP2010288355A (en) * | 2009-06-10 | 2010-12-24 | Nikon Corp | Drive device, lens barrel, and camera |
JP2011004512A (en) * | 2009-06-18 | 2011-01-06 | Nikon Corp | Drive unit, lens barrel and camera |
JP2011010419A (en) * | 2009-06-24 | 2011-01-13 | Nikon Corp | Drive device, lens barrel and camera |
JP2011041335A (en) * | 2009-08-06 | 2011-02-24 | Nikon Corp | Piezoelectric actuator, lens barrel, and camera |
JP2011101560A (en) * | 2009-11-09 | 2011-05-19 | Nikon Corp | Drive device, lens barrel and camera |
US20120081804A1 (en) * | 2010-09-30 | 2012-04-05 | Nikon Corporation | Driving mechanism, lens barrel, and camera |
JP2012078400A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Driving device, lens barrel and camera |
JP2012080606A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Driving device, lens barrel, and camera |
JP2012080611A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Piezoelectric actuator, lens barrel, and camera |
JP2012078391A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Driving device, lens barrel and camera |
JP5668683B2 (en) * | 2009-06-15 | 2015-02-12 | 株式会社ニコン | Piezoelectric actuator, lens barrel and camera |
-
1983
- 1983-06-13 JP JP58104125A patent/JPS59230473A/en active Pending
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6260482A (en) * | 1985-09-10 | 1987-03-17 | Rion Co Ltd | piezoelectric actuator |
JPS62135278A (en) * | 1985-12-04 | 1987-06-18 | Taga Denki Kk | Drive method of ultrasonic vibrator |
JPS62213584A (en) * | 1986-03-13 | 1987-09-19 | Rion Co Ltd | High frequency piezoelectric drive motor |
JPS62216677A (en) * | 1986-03-18 | 1987-09-24 | 神鋼電機株式会社 | Oval vibrator |
JPS62239875A (en) * | 1986-04-09 | 1987-10-20 | Taga Electric Co Ltd | Drive control method for ultrasonic vibrator |
JPS6384173A (en) * | 1986-09-29 | 1988-04-14 | Mitsubishi Kasei Corp | Piezoelectric actuator |
JPS63307788A (en) * | 1987-06-09 | 1988-12-15 | Ngk Spark Plug Co Ltd | Piezoelectric driver |
EP0360975A2 (en) * | 1988-09-30 | 1990-04-04 | Rockwell International Corporation | Piezoelectric actuator |
JP2005333735A (en) * | 2004-05-20 | 2005-12-02 | Japan Science & Technology Agency | Precision high speed moving method and apparatus using composite piezo element |
JP4519517B2 (en) * | 2004-05-20 | 2010-08-04 | 独立行政法人科学技術振興機構 | Precision high speed moving method and apparatus using composite piezo element |
JP2006006021A (en) * | 2004-06-17 | 2006-01-05 | Taiheiyo Cement Corp | Piezoelectric actuator and driving device |
JP2007221988A (en) * | 2006-01-17 | 2007-08-30 | Seiko Instruments Inc | Piezoelectric actuator and electronic apparatus using same |
US8693116B2 (en) | 2009-03-31 | 2014-04-08 | Nikon Corporation | Piezoelectric actuator and lens barrel |
JP2015008631A (en) * | 2009-03-31 | 2015-01-15 | 株式会社ニコン | Piezoelectric actuator and lens barrel |
CN103973158A (en) * | 2009-03-31 | 2014-08-06 | 株式会社尼康 | Piezoelectric actuator and lens barrel |
JP5633508B2 (en) * | 2009-03-31 | 2014-12-03 | 株式会社ニコン | Piezoelectric actuator and lens barrel |
CN102365815A (en) * | 2009-03-31 | 2012-02-29 | 株式会社尼康 | Piezoelectric actuator and lens barrel |
US9154053B2 (en) | 2009-03-31 | 2015-10-06 | Nikon Corporation | Piezoelectric actuator and lens barrel |
WO2010113505A1 (en) * | 2009-03-31 | 2010-10-07 | 株式会社ニコン | Piezoelectric actuator and lens barrel |
WO2010143438A1 (en) * | 2009-06-10 | 2010-12-16 | 株式会社ニコン | Drive device, lens barrel, and camera |
JP2010288355A (en) * | 2009-06-10 | 2010-12-24 | Nikon Corp | Drive device, lens barrel, and camera |
CN102460937A (en) * | 2009-06-10 | 2012-05-16 | 株式会社尼康 | Drive device, lens barrel, and camera |
US8981620B2 (en) | 2009-06-10 | 2015-03-17 | Nikon Corporation | Driving mechanism, lens barrel, and camera |
JP5668683B2 (en) * | 2009-06-15 | 2015-02-12 | 株式会社ニコン | Piezoelectric actuator, lens barrel and camera |
JP2011004512A (en) * | 2009-06-18 | 2011-01-06 | Nikon Corp | Drive unit, lens barrel and camera |
JP2011010419A (en) * | 2009-06-24 | 2011-01-13 | Nikon Corp | Drive device, lens barrel and camera |
JP2011041335A (en) * | 2009-08-06 | 2011-02-24 | Nikon Corp | Piezoelectric actuator, lens barrel, and camera |
JP2011101560A (en) * | 2009-11-09 | 2011-05-19 | Nikon Corp | Drive device, lens barrel and camera |
CN102447418A (en) * | 2010-09-30 | 2012-05-09 | 株式会社尼康 | Driving mechanism, lens barrel, and camera |
CN102447417A (en) * | 2010-09-30 | 2012-05-09 | 株式会社尼康 | Driving device, lens barrel, and camera |
US8797661B2 (en) | 2010-09-30 | 2014-08-05 | Nikon Corporation | Driving mechanism, lens barrel and camera |
CN102447416A (en) * | 2010-09-30 | 2012-05-09 | 株式会社尼康 | Piezoelectric actuator, lens barrel, and camera |
JP2012078391A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Driving device, lens barrel and camera |
JP2012080611A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Piezoelectric actuator, lens barrel, and camera |
JP2012080606A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Driving device, lens barrel, and camera |
JP2012078400A (en) * | 2010-09-30 | 2012-04-19 | Nikon Corp | Driving device, lens barrel and camera |
US20120081804A1 (en) * | 2010-09-30 | 2012-04-05 | Nikon Corporation | Driving mechanism, lens barrel, and camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59230473A (en) | Drive device | |
KR100954529B1 (en) | Toroidal Piezoelectric Ultrasonic Resonator and Piezoelectric Ultrasonic Rotating Motor | |
US10236797B2 (en) | Ultrasonic motor | |
US8299682B2 (en) | Ultrasonic motor | |
US8294334B2 (en) | Ultrasonic motor | |
US7851972B2 (en) | Vibration actuator | |
US7638927B2 (en) | Vibration actuator | |
CN108429486A (en) | Combined planar three-degree-of-freedom ultrasonic motor vibrator and its driving method | |
JPS59230472A (en) | Drive device | |
CN110661445B (en) | Parallel three-degree-of-freedom piezoelectric resonance self-actuating mechanism and excitation method thereof | |
JPH0636673B2 (en) | Drive | |
JP4918122B2 (en) | Ultrasonic motor and electronic device with ultrasonic motor | |
Takemura et al. | Development of a Bar-shaped Ultrasonic Motor for Multi-degrees of freedom Motion | |
Hu et al. | A piezoelectric spherical motor with two degree-of-freedom | |
US8299683B2 (en) | Ultrasonic motor | |
EP3491732B1 (en) | Actuator | |
JPS6020775A (en) | Rotary actuator | |
JPH0824428B2 (en) | Ultrasonic motor | |
JPH0491677A (en) | ultrasonic motor | |
KR100712591B1 (en) | Omni-directional ultrasonic piezo actuator system | |
JPS62236368A (en) | Ultrasonic motor | |
JP5118795B2 (en) | Stacked sandwich ultrasonic motor with improved torque | |
KR101641649B1 (en) | Piezoelectric actuator and electronic device comprising the same | |
JPH02146967A (en) | ultrasonic actuator | |
JPS62135278A (en) | Drive method of ultrasonic vibrator |