JPH0636673B2 - Drive - Google Patents
DriveInfo
- Publication number
- JPH0636673B2 JPH0636673B2 JP59054282A JP5428284A JPH0636673B2 JP H0636673 B2 JPH0636673 B2 JP H0636673B2 JP 59054282 A JP59054282 A JP 59054282A JP 5428284 A JP5428284 A JP 5428284A JP H0636673 B2 JPH0636673 B2 JP H0636673B2
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric body
- piezoelectric
- vibration
- driving
- driven
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006073 displacement reaction Methods 0.000 claims description 30
- 230000002194 synthesizing effect Effects 0.000 claims description 26
- 230000033001 locomotion Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/0005—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
- H02N2/001—Driving devices, e.g. vibrators
- H02N2/002—Driving devices, e.g. vibrators using only longitudinal or radial modes
- H02N2/0025—Driving devices, e.g. vibrators using only longitudinal or radial modes using combined longitudinal modes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/026—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/103—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は被駆動体に駆動力を与える駆動装置に関し、さ
らに詳しくは圧電効果を示す圧電体を用いて被駆動体に
駆動力を与える駆動装置に関するものである。Description: TECHNICAL FIELD The present invention relates to a drive device that applies a driving force to a driven body, and more specifically, a drive device that applies a driving force to a driven body using a piezoelectric body having a piezoelectric effect. It relates to the device.
被駆動体に駆動力を与える駆動装置としては、一般的に
電気入力を用いるものと流体入力を用いるものとに大別
できる。前者の駆動装置の代表的なものは電磁力を利用
した電動モータであり、また後者の駆動装置の代表的な
ものは油空圧モータ,油空圧シリンダ等である。Drive devices that apply a driving force to a driven body can be roughly classified into those that use electrical input and those that use fluid input. A typical example of the former drive device is an electric motor utilizing electromagnetic force, and a typical example of the latter drive device is an oil-pneumatic motor, an oil-pneumatic cylinder or the like.
一方、近年では圧電体の開発に伴ない、この圧電体を用
いた駆動装置が種々提案されている。この圧電体は電圧
をかけると歪が生じる現象、いわゆる逆圧電効果を発揮
するもので、古くから知られているものである。この圧
電体を用いた駆動装置の一方式としては、1973年1
1月に発行されたアイ・ビー・エム テクニカル ディ
スクロージャー ビルテイン 16巻6号(IBM Te
chnical Disclosure Bulletine,Vol.16,No.6)に
示されたものや、特開昭53−82286 号公報に記載された
もののように、一方向に歪形態を有する2個の圧電体を
柔機構を介して直交方向に連結して組み合わせ、それら
の直交方向の歪を合成する機構になっているものがあ
る。On the other hand, in recent years, along with the development of the piezoelectric body, various drive devices using the piezoelectric body have been proposed. This piezoelectric body exhibits a phenomenon that distortion occurs when a voltage is applied, that is, a so-called inverse piezoelectric effect, and has been known for a long time. One method of a driving device using this piezoelectric material is as follows:
IBM Technical Disclosure Biltain Vol. 16, No. 6, published in January (IBM Te
chnical Disclosure Bulletine, Vol.16, No. 6) and the one described in Japanese Patent Laid-Open No. 53-82286, a flexible mechanism is provided for two piezoelectric bodies having a strained form in one direction. There is a mechanism in which the distortions in the orthogonal directions are combined by connecting and combining them in the orthogonal directions via.
この種の駆動装置における圧電体の配置では、一方の圧
電体はその駆動端部と被駆動体との接触,非接触の動作
あるいは押付力の変化を与えるのみで被駆動体の駆動力
には関与しておらず、他方の圧電体のみが駆動力を発生
する構造になっている。このため、効率が悪いものであ
る。さらには、正転または逆転時のいずれか一方で駆動
力発生側の圧電体に引張応力がかかるため、圧電体の耐
久性に難かある。とくに近年、圧電体の低電圧駆動と大
変位化を目的とし積層型圧電体が開発されているが、こ
の積層型圧電体に引張応力をかけることは、その寿命に
著しい悪影響を及ぼすものである。In the arrangement of the piezoelectric bodies in this type of driving device, one of the piezoelectric bodies only makes a contact or non-contact operation between the driving end portion of the piezoelectric body and the driven body or changes the pressing force, and the driving force of the driven body is not changed. It has a structure in which only the other piezoelectric body does not participate and generates a driving force. Therefore, the efficiency is low. Furthermore, the tensile force is applied to the piezoelectric body on the driving force generating side during either forward rotation or reverse rotation, so the durability of the piezoelectric body is difficult. In particular, in recent years, a laminated piezoelectric material has been developed for the purpose of low voltage driving and large displacement of the piezoelectric material. However, applying tensile stress to this laminated piezoelectric material has a significant adverse effect on its life. .
本発明は上述の事柄に基づいてなされたもので、高効率
で駆動力を伝達することができ、しかも良好な耐久性を
有する圧電体を利用した駆動装置を提供することを目的
としたものである。The present invention has been made based on the above matters, and an object of the present invention is to provide a driving device using a piezoelectric body that can transmit a driving force with high efficiency and that has good durability. is there.
上記課題を解決するために、本発明の駆動装置において
は、ベース上に互いに交叉するように配された第1およ
び第2の圧電体と、これら圧電体の振動を合成して駆動
力を発生する振動合成部材と、第1および第2の圧電体
に振動を励起させるための電力供給手段とを有し、振動
合成部材を被駆動体に接触させ被駆動体を駆動する駆動
装置において、第1および第2の圧電体は、その変位方
向が振動合成部材と被駆動体との接触部中心における法
線に対し線対称となるよう斜交して配置され、振動合成
部材は、第1の圧電体と第2の圧電体に相対する部分を
夫々有し、第1の圧電体に相対する部分には第1の圧電
体の変位方向には剛で前記第2の圧電体の変位方向には
柔である柔機構が形成され、第2の圧電体に相対する部
分には第2の圧電体の変位方向には剛で前記第2の圧電
体の変位方向には柔である柔機構が形成される。In order to solve the above-mentioned problems, in the driving device of the present invention, the driving force is generated by synthesizing the vibrations of the first and second piezoelectric bodies arranged on the base so as to intersect with each other. A drive unit for driving the driven body by bringing the vibration synthesizing member into contact with the driven body. The first and second piezoelectric bodies are obliquely arranged so that their displacement directions are line-symmetric with respect to the normal line at the center of the contact portion between the vibration synthesizing member and the driven body. The piezoelectric body and the second piezoelectric body have respective portions facing each other, and the portion facing the first piezoelectric body is rigid in the displacement direction of the first piezoelectric body and is in the displacement direction of the second piezoelectric body. A flexible mechanism is formed, and the second piezoelectric body is formed in a portion facing the second piezoelectric body. Is the direction of displacement in the displacement direction of the at Tsuyoshi second piezoelectric flexible mechanism is a soft is formed.
第1の圧電体と第2の圧電体とが、振動合成部材と被駆
動体との接触部における駆動方向の法線に対し線対称と
なるように斜交して配置されている。さらに、振動合成
部材は、柔機構により夫々の圧電体の変位力を減殺しな
いようにしている。このため、第1の圧電体の振動と第
2の圧電体の振動とに位相差をつけた駆動を行うと、振
動合成部材には楕円軌跡を有する合成振動が生じる。こ
の合成振動は駆動端部を介して被駆動体に伝達され、被
駆動体はそれによって駆動する。被駆動体の駆動に寄与
する駆動方向の変位は、この発明の構成では、両圧電体
の変位量の合成として得られるので非常に大きなものと
なり、また、圧電体の被駆動体に対する押付力も両圧電
体の押付力の合成となるので非常に大きなものとなる。The first piezoelectric body and the second piezoelectric body are obliquely arranged so as to be line-symmetric with respect to the normal line of the driving direction at the contact portion between the vibration synthesizing member and the driven body. Further, the vibration synthesizing member does not reduce the displacement force of each piezoelectric body by the flexible mechanism. Therefore, when driving is performed with a phase difference between the vibration of the first piezoelectric body and the vibration of the second piezoelectric body, synthetic vibration having an elliptical locus is generated in the vibration synthesizing member. This combined vibration is transmitted to the driven body via the driving end portion, and the driven body is driven thereby. The displacement in the driving direction that contributes to the driving of the driven body is very large because it is obtained as a combination of the displacement amounts of both piezoelectric bodies in the configuration of the present invention, and the pressing force of the piezoelectric body against the driven body is also large. Since the pressing force of the piezoelectric body is combined, it becomes very large.
そして、上記構成では、駆動方向の法線に対し第1と第
2圧電体が線対称となっているので、正逆いずれの方向
に被駆動体を駆動する場合でも駆動特性は一定となるば
かりでなく、両方の圧電体には常に圧縮応力しか加わら
ないので、圧電体の破損を防止できる。Further, in the above configuration, the first and second piezoelectric bodies are line-symmetric with respect to the normal line of the driving direction, so that the driving characteristics are not only constant when the driven body is driven in either forward or reverse directions. Not only that, since compressive stress is always applied to both piezoelectric bodies, damage to the piezoelectric bodies can be prevented.
以下本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の駆動装置の一実施例を示すもので、図
において、1および2は直方体形状の圧電体で、この圧
電体は例えばチタン酸ジルコン酸鉛〔Pb(Zr,Ti)
O3〕(省略PZT)を用い、低電圧で大変位を得る積
層体構造をなしている。10はセラミクス等の耐摩耗性
材料でできた振動合成部材の駆動端部、11は被駆動体
である。FIG. 1 shows an embodiment of the driving device of the present invention. In the figure, reference numerals 1 and 2 denote rectangular parallelepiped piezoelectric bodies, which are, for example, lead zirconate titanate [Pb (Zr, Ti).
O 3 ] (abbreviated PZT) is used to form a laminated structure capable of large displacement at low voltage. Reference numeral 10 is a driving end portion of a vibration synthesizing member made of a wear resistant material such as ceramics, and 11 is a driven body.
17は被駆動体11と前記駆動端部10の接触点におけ
る接平面に対して±45゜の傾斜面17Aを有するベー
スで、このベース17の傾斜面17Aにはそれぞれ圧電
体1,2の底面が固着されている。Reference numeral 17 denotes a base having an inclined surface 17A of ± 45 ° with respect to a tangent plane at a contact point between the driven body 11 and the driving end portion 10. The inclined surface 17A of the base 17 has bottom surfaces of the piezoelectric bodies 1 and 2, respectively. Is stuck.
したがって被駆動体11と駆動端部10の接触点におけ
る法線すなわち駆動方向に対して±45゜の変位成分を
それぞれの圧電体は持つものである。すなわち圧電体
1,2の機械的変位の方向はそれぞれ矢印5と矢印6で
表わされるように、被駆動体11の駆動方向に対し±4
5゜で斜交している。圧電体1,2と駆動端部10の間
には柔機構を有する振動合成部材18が設けられてい
る。この振動合成部材18は圧電体1に相対する部分1
8aと圧電体2に相対する部分18bとを含み、しかも
それらが一体化されて振動を合成している。部材18の
一部18aは、矢印5の方向には力を剛に伝え、矢印5
と直角方向には柔であるように、矢印5の方向にスリッ
トを入れた板ばね構造とする。同様に振動合成部材18
の一部18bは、矢印6の方向には力を剛に伝え、矢印
6と直角方向には柔であるように、矢印6の方向にスリ
ットを入れた板ばね構造とする。したがって圧電体1の
変位は圧電体2に妨げられることなく駆動端10を矢印
5の方向に変位させ、逆に圧電体2の変位は圧電体1に
妨げられることなく駆動端10を矢印6の方向に変位さ
せる。駆動端部10の下面は力の伝達を考慮して圧電体
1,2の変位方向の矢印5,6とそれぞれ直交する面を
持ち、さらに駆動端部10と振動合成部材18および圧
電体1,2は一体となって固着されている。また振動合
成部材18とベース17の間に弾性部材19を設け、圧
電体1,2に常に圧縮力がかかるようにする。ベース1
7は固定壁20に設けられる。また被駆動体11は、固
定壁21から弾性部材22,軸受手段23を介して駆動
端部10に押付けられている。12は発信器、13はア
ンプ、14は位相変換器、15はアンプ、16は動作コ
ントローラで、このコントローラ16は発信器12の周
波数および位相変換器14の位相を調整する。Therefore, each piezoelectric body has a displacement component of ± 45 ° with respect to the normal line at the contact point between the driven body 11 and the drive end portion 10, that is, the drive direction. That is, the directions of mechanical displacement of the piezoelectric bodies 1 and 2 are ± 4 with respect to the driving direction of the driven body 11, as indicated by arrows 5 and 6, respectively.
It crosses at an angle of 5 degrees. A vibration synthesizing member 18 having a flexible mechanism is provided between the piezoelectric bodies 1 and 2 and the drive end 10. This vibration synthesizing member 18 has a portion 1 facing the piezoelectric body 1.
8a and a portion 18b facing the piezoelectric body 2, and they are integrated to synthesize vibration. The part 18a of the member 18 rigidly transmits the force in the direction of the arrow 5,
A leaf spring structure is provided in which a slit is formed in the direction of arrow 5 so as to be flexible in the direction perpendicular to. Similarly, the vibration synthesizing member 18
18b has a leaf spring structure in which a slit is formed in the direction of arrow 6 so that the force is rigidly transmitted in the direction of arrow 6 and is flexible in the direction perpendicular to arrow 6. Therefore, the displacement of the piezoelectric body 1 displaces the drive end 10 in the direction of the arrow 5 without being disturbed by the piezoelectric body 2, and conversely the displacement of the piezoelectric body 2 causes the drive end 10 to move in the direction of arrow 6 without being disturbed by the piezoelectric body 1. Displace in the direction. The lower surface of the drive end portion 10 has surfaces orthogonal to the displacement arrows 5 and 6 of the piezoelectric bodies 1 and 2 in consideration of force transmission, and further, the drive end portion 10, the vibration synthesizing member 18, and the piezoelectric body 1, 1. 2 is integrally fixed. An elastic member 19 is provided between the vibration synthesizing member 18 and the base 17 so that the piezoelectric bodies 1 and 2 are always subjected to a compressive force. Base 1
7 is provided on the fixed wall 20. The driven body 11 is pressed against the drive end 10 from the fixed wall 21 via the elastic member 22 and the bearing means 23. Reference numeral 12 is an oscillator, 13 is an amplifier, 14 is a phase converter, 15 is an amplifier, and 16 is an operation controller. The controller 16 adjusts the frequency of the oscillator 12 and the phase of the phase converter 14.
上述した本発明の装置の一実施例の基本的な動作は、圧
電体1,2に適当な位相差をもつ交流電圧をかけると、
それぞれの変位5および6が駆動端部10で合成され、
駆動端部10が楕円軌跡を描くことによって、押し付け
られた被駆動体11を一方向に接触駆動するものであ
る。The basic operation of the above-described embodiment of the device of the present invention is that when an AC voltage having an appropriate phase difference is applied to the piezoelectric bodies 1 and 2,
The respective displacements 5 and 6 are combined at the drive end 10.
The driving end portion 10 draws an elliptical locus so that the pressed driven body 11 is contact-driven in one direction.
次に、上述した本発明の装置の一実施例の動作を第2図
を用いてさらに詳しく説明する。Next, the operation of the above-described embodiment of the apparatus of the present invention will be described in more detail with reference to FIG.
第2図は、第1図に示す本発明の装置の一実施例の動作
を拡大して模式的に表わしたものである。被駆動体11
の接触面に対して±45゜方向に配置された圧電体1,
2のそれぞれの最大振幅をaとすると、駆動端10の運
動範囲は一辺2aの45゜傾いた正方形領域Bの中に入
る。すなわち、圧電体1,2に適当な位相差を持つ最大
振幅電圧を印加すると、駆動端部10の駆動軌跡Aは正
方形Bに内装する楕円となり、その偏平度は電圧の位相
差に依存する。第2図に示した楕円軌跡は両者の位相差
がほぼ120゜に相当するものである。駆動効率を上げ
るためには、接触面に垂直方向の変位はできるだけ小さ
くして、接触面方向の変位を大きくするような偏平な楕
円軌跡で駆動することが望ましいが、本発明によれば、
最大振幅aの圧電体の変位を組み合わせることにより接
触面方向の変位を に近くすることができる。したがって同じ性能の圧電体
を用いた場合、本発明のものは従来のものよりも有効に
圧電体を活用することができる。すなわち、接触面方向
の変位が従来方式より 近くなるため、駆動速度で 駆動力で 近くになり、その出力においては 近く向上し、大幅に効率が向上する。FIG. 2 is an enlarged schematic representation of the operation of the embodiment of the apparatus of the present invention shown in FIG. Driven body 11
Piezoelectric body 1, which is arranged ± 45 ° to the contact surface of
If the maximum amplitude of each of the two is a, the range of motion of the drive end 10 falls within the square region B inclined by 45 ° on the side 2a. That is, when a maximum amplitude voltage having an appropriate phase difference is applied to the piezoelectric bodies 1 and 2, the drive locus A of the drive end portion 10 becomes an ellipse inside the square B, and its flatness depends on the phase difference of the voltage. The elliptical locus shown in FIG. 2 corresponds to a phase difference of approximately 120 ° between the two. In order to increase the driving efficiency, it is desirable to drive a flat elliptical locus so that the displacement in the direction perpendicular to the contact surface is as small as possible and the displacement in the contact surface direction is increased.
The displacement in the contact surface direction can be calculated by combining the displacements of the piezoelectric body with the maximum amplitude a. Can be close to. Therefore, when the piezoelectric body having the same performance is used, the piezoelectric body of the present invention can utilize the piezoelectric body more effectively than the conventional one. That is, the displacement in the contact surface direction is more than that of the conventional method. Drive speed because it will be close By driving force Closer, and in its output Improving near, greatly improving efficiency.
さらには、本発明の一実施例によれば、被駆動体11に
よる駆動端部10への押付力が圧電体1,2には圧縮力
として加わるとともに、ばね部材19によっても、圧電
体1,2に圧縮力が働くため、動作中の圧電体1,2に
は常に圧縮応力が加わり、引張応力に弱い特性をもつ圧
電体の耐久性が大幅に向上する。Further, according to the embodiment of the present invention, the pressing force of the driven body 11 to the driving end portion 10 is applied to the piezoelectric bodies 1 and 2 as a compressive force, and the spring member 19 also causes the piezoelectric bodies 1 and 1 to move. Since a compressive force acts on the piezoelectric body 2, a compressive stress is constantly applied to the piezoelectric bodies 1 and 2 in operation, and the durability of the piezoelectric body having a characteristic weak against tensile stress is greatly improved.
以上述べた本発明の一実施例では、振動合成部材18と
駆動端部10が別部材となっていたが、振動合成部材1
8が被駆動面11に相対する面にセラミックコーティン
グ等の耐摩耗性処理をして駆動端部10を形成してもよ
い。In the above-described embodiment of the present invention, the vibration synthesizing member 18 and the drive end portion 10 are separate members.
The drive end 10 may be formed by subjecting the surface 8 facing the driven surface 11 to abrasion resistance treatment such as ceramic coating.
次に本発明の駆動装置の代表的な各適用例を説明する。Next, typical application examples of the driving device of the present invention will be described.
第3図及び第4図は本発明の駆動装置の一適用例を示す
もので、この適用例は、被駆動体11を回転させるアク
チュエータを構成した一実施例である。第3図,第4図
において第2図と同一番号は同一部分を表わす。第3図
において駆動端部10は皿ねじ24で振動合成部材18
に固定されている。また弾性部材19に相当するものと
して、ベース17の一部にばね性を持たせボルト25で
振動合成部材18とベース17とを結合し、圧電体1,
2に圧縮力を与えている。この実施例の回転アクチュエ
ータでは、第4図に示すように、円板状の固定壁20に
本発明の駆動装置を3ユニット設け、対向する円環状の
被駆動体11を3点接触で支持する構造となっている。
なお第3図では手前の駆動装置のみ表示し、後側の駆動
装置の表示は省略してある。被駆動体11は弾性部材2
2を介してロータ26に固定され、さらに止めリング2
7によって駆動端部10に押し付けられている。ロータ
26は、固定壁20とケーシング28との間に設けられ
た回転軸受によって支持されている。FIG. 3 and FIG. 4 show an application example of the drive device of the present invention, and this application example is an embodiment in which an actuator for rotating the driven body 11 is configured. 3 and 4, the same reference numerals as those in FIG. 2 represent the same parts. In FIG. 3, the drive end portion 10 is a countersunk screw 24 and is used as a vibration synthesizing member 18.
It is fixed to. Further, as a member corresponding to the elastic member 19, a part of the base 17 is made to have a spring property, and the vibration synthesizing member 18 and the base 17 are coupled with each other by the bolt 25, so that the piezoelectric body 1,
2 is given compressive force. In the rotary actuator of this embodiment, as shown in FIG. 4, the disk-shaped fixed wall 20 is provided with three units of the driving device of the present invention, and the opposed annular driven body 11 is supported by three-point contact. It has a structure.
In FIG. 3, only the front drive unit is shown, and the rear drive unit is omitted. The driven body 11 is the elastic member 2
2 is fixed to the rotor 26 via the stop ring 2
It is pressed against the drive end 10 by 7. The rotor 26 is supported by a rotary bearing provided between the fixed wall 20 and the casing 28.
この回転アクチュエータの動作を次に説明する。既に詳
述したように、圧電体1,2に適当な位相差を持つ交流
電圧を印加すると駆動端部10は楕円運動を行う。そこ
で、本回転アクチュエータに設置された3個の駆動装置
の駆動端部10を同期して楕円運動させると、3点で接
触支持されている被駆動体11およびロータ26を連続
して一方向に回転させることができる。なお、圧電体
1,2に印加する電圧の位相差を逆にすれば、当然ロー
タ26は逆回転を行う。The operation of this rotary actuator will be described below. As already described in detail, when an AC voltage having an appropriate phase difference is applied to the piezoelectric bodies 1 and 2, the driving end portion 10 makes an elliptic motion. Therefore, when the driving ends 10 of the three driving devices installed in the present rotary actuator are synchronously moved in an elliptical motion, the driven body 11 and the rotor 26 that are contact-supported at three points are continuously moved in one direction. It can be rotated. If the phase difference between the voltages applied to the piezoelectric bodies 1 and 2 is reversed, the rotor 26 naturally rotates in the reverse direction.
第5図は本発明の駆動装置の他の適用例を示すもので、
この適用例は被駆動体11を直線移動させるアクチュエ
ータを構成した一実施例である。第5図において、対向
した固定壁20a,20bに弾性部材22a,22bを
介して本発明の駆動装置が2個ずつ設けられ、それぞれ
の駆動端部10が被駆動体11を押し付けて支持してい
る。この直線移動アクチュエータの動作は、前述の回転
アクチュエータの動作と同様にそれぞれの駆動装置を同
期させて駆動することにより、被駆動体11を連続して
一方向に駆動するものである。FIG. 5 shows another application example of the driving device of the present invention.
This application example is one example in which an actuator for linearly moving the driven body 11 is configured. In FIG. 5, two driving devices of the present invention are provided on opposing fixed walls 20a, 20b via elastic members 22a, 22b, and each driving end 10 presses and supports the driven body 11. There is. The operation of the linear movement actuator is to drive the driven body 11 continuously in one direction by driving the respective drive devices in synchronization in the same manner as the operation of the rotary actuator.
以上詳述したように、本発明によれば、被駆動体に駆動
力を効率良く伝達でき、しかも圧電体の耐久性を向上さ
せた駆動装置を提供することができるものである。As described in detail above, according to the present invention, it is possible to provide a driving device that can efficiently transmit a driving force to a driven body and further improve the durability of the piezoelectric body.
第1図は本発明の駆動装置の一実施例の構成を示す図、
第2図は本発明の駆動装置の一実施例の動作説明図、第
3図は本発明の駆動装置を適用した回転型アクチュエー
タを一部断面にて示す正面図、第4図は第3図のIV−IV
矢視図、第5図は本発明の駆動装置を適用した直線移動
型アクチュエータを示す図である。 1,2……圧電体、5,6……圧電体の変位方向、7,
8……柔機構、10……駆動端部、11……被駆動体、
12……発信器、13,15……アンプ、14……位相
変換器、16……動作コントローラ、17……ベース、
18……振動合成部材、19……弾性部材。FIG. 1 is a diagram showing a configuration of an embodiment of a driving device of the present invention,
FIG. 2 is an operation explanatory view of an embodiment of the driving device of the present invention, FIG. 3 is a front view showing a rotary actuator to which the driving device of the present invention is applied in a partial section, and FIG. 4 is FIG. IV-IV
FIG. 5 is a diagram showing a linear movement type actuator to which the driving device of the present invention is applied. 1,2 ... Piezoelectric body, 5,6 ... Piezoelectric body displacement direction, 7,
8 ... Flexible mechanism, 10 ... Driving end, 11 ... Driven body,
12 ... Oscillator, 13, 15 ... Amplifier, 14 ... Phase converter, 16 ... Operation controller, 17 ... Base,
18 ... Vibration synthesizing member, 19 ... Elastic member.
Claims (2)
第1の圧電体および第2の圧電体と、 該第1の圧電体および該第2の圧電体の振動を合成して
駆動力を発生する振動合成部材と、 該第1の圧電体および該第2の圧電体に振動を励起させ
るための電力供給手段とを有し、 該振動合成部材と被駆動体とを接触させ該駆動力により
該被駆動体を駆動する駆動装置において、 前記第1の圧電体および前記第2の圧電体は、その変位
方向が前記振動合成部材と該被駆動体との接触部中心に
おける法線に対して線対称となるように斜交して配置さ
れ、 前記振動合成部材は、前記第1の圧電体と前記第2の圧
電体に相対する部分を夫々有し、前記第1の圧電体に相
対する部分には前記第1の圧電体の変位方向に剛で前記
第2の圧電体の変位方向には柔である柔機構が形成さ
れ、前記第2の圧電体に相対する部分には前記第2の圧
電体の変位方向には剛で前記第1の圧電体の変位方向に
は柔である柔機構が形成されていることを特徴とする駆
動装置。1. A driving force by synthesizing vibrations of a first piezoelectric body and a second piezoelectric body and a vibration of the first piezoelectric body and the second piezoelectric body, which are arranged on a base so as to intersect with each other. And a power supply means for exciting the first piezoelectric body and the second piezoelectric body to vibrate, and the vibration synthesizing member and the driven body are brought into contact with each other. In the drive device for driving the driven body by force, the displacement direction of the first piezoelectric body and the second piezoelectric body is a normal line at a center of a contact portion between the vibration synthesizing member and the driven body. The vibration synthesizing members are arranged obliquely so as to be line-symmetrical with respect to each other, and the vibration synthesizing member has portions facing the first piezoelectric body and the second piezoelectric body, respectively. The opposing portions are rigid in the displacement direction of the first piezoelectric body and in the displacement direction of the second piezoelectric body. A flexible mechanism is formed that is flexible and is rigid in the displacement direction of the second piezoelectric body and is flexible in the displacement direction of the first piezoelectric body in a portion facing the second piezoelectric body. A drive device characterized by being formed.
第1の圧電体および第2の圧電体と、 該第1の圧電体および該第2の圧電体の振動を合成して
駆動力を発生する振動合成部材と、 該第1の圧電体および該第2の圧電体に振動を励起させ
るための電力供給手段とを有し、 該振動合成部材と被駆動体とを接触させ該駆動力によっ
て該被駆動体を駆動する駆動装置において、 前記第1の圧電体および前記第2の圧電体は、その変位
方向が前記振動合成部材と該被駆動体との接触部中心に
おける法線に対して略45゜となるように斜交して配置
され、 前記振動合成部材は、前記第1の圧電体と前記第2の圧
電体に相対する部分を夫々有し、前記夫々の圧電体に相
対する部分には前記夫々の圧電体の変位方向には剛で該
変位方向と直交する方向には柔である柔機構が形成さ
れ、 さらに前記振動合成部材と前記ベースとの間には前記第
1および第2の圧電体に圧縮力を付与する弾性部材が設
けられていることを特徴とする駆動装置。2. A driving force by synthesizing vibrations of a first piezoelectric body and a second piezoelectric body and a vibration of the first piezoelectric body and the second piezoelectric body, which are arranged on a base so as to be orthogonal to each other. And a power supply means for exciting the first piezoelectric body and the second piezoelectric body to vibrate, and the vibration synthesizing member and the driven body are brought into contact with each other. In a drive device for driving the driven body by force, the displacement directions of the first piezoelectric body and the second piezoelectric body are normal to a center of a contact portion between the vibration synthesizing member and the driven body. And the vibration synthesizing member has portions facing the first piezoelectric body and the second piezoelectric body, respectively. The opposing portions are rigid in the displacement direction of each piezoelectric body and are orthogonal to the displacement direction. A flexible mechanism is formed on the base plate, and an elastic member that applies a compressive force to the first and second piezoelectric bodies is provided between the vibration synthesizing member and the base. Drive device.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59054282A JPH0636673B2 (en) | 1984-03-23 | 1984-03-23 | Drive |
US06/712,851 US4613782A (en) | 1984-03-23 | 1985-03-18 | Actuator |
CA000476856A CA1236154A (en) | 1984-03-23 | 1985-03-19 | Actuator |
DE8585103356T DE3585167D1 (en) | 1984-03-23 | 1985-03-22 | DRIVE SYSTEM. |
EP85103356A EP0155694B1 (en) | 1984-03-23 | 1985-03-22 | Actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59054282A JPH0636673B2 (en) | 1984-03-23 | 1984-03-23 | Drive |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62279258A Division JPS63171176A (en) | 1987-11-06 | 1987-11-06 | Driving device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60200776A JPS60200776A (en) | 1985-10-11 |
JPH0636673B2 true JPH0636673B2 (en) | 1994-05-11 |
Family
ID=12966205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59054282A Expired - Lifetime JPH0636673B2 (en) | 1984-03-23 | 1984-03-23 | Drive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0636673B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63141680A (en) * | 1986-12-04 | 1988-06-14 | マルコン電子株式会社 | Piezoelectric actuator |
JPS63141681A (en) * | 1986-12-04 | 1988-06-14 | マルコン電子株式会社 | Displacement element |
JP2531582B2 (en) * | 1986-12-25 | 1996-09-04 | マルコン電子株式会社 | Piezoelectric actuator |
JPH0732611B2 (en) * | 1987-11-30 | 1995-04-10 | 日本電気株式会社 | Ultrasonic motor oscillator |
JPH0723037Y2 (en) * | 1989-04-13 | 1995-05-24 | アルプス電気株式会社 | Ultrasonic linear motor |
JPH06303782A (en) * | 1993-04-14 | 1994-10-28 | Hitachi Ltd | Drive |
JP2002112562A (en) | 2000-09-29 | 2002-04-12 | Minolta Co Ltd | Driving unit |
US6967430B2 (en) * | 2003-10-01 | 2005-11-22 | Piezomotor Uppsala Ab | Flat resonating electromechanical drive unit |
US7646137B2 (en) * | 2004-06-11 | 2010-01-12 | Fujinon Corporation | Actuator and its control method and lens device |
DE102016104803B4 (en) * | 2016-03-15 | 2018-01-18 | Physik Instrumente (Pi) Gmbh & Co. Kg | Piezoelectric stepping drive |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5382286A (en) * | 1976-12-28 | 1978-07-20 | Nec Corp | Motor |
-
1984
- 1984-03-23 JP JP59054282A patent/JPH0636673B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS60200776A (en) | 1985-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5200665A (en) | Ultrasonic actuator | |
JPS61224881A (en) | Vibration wave motor | |
JPH0117354B2 (en) | ||
JPH0636673B2 (en) | Drive | |
Ucha | Present status of ultrasonic motors | |
JPH0532991B2 (en) | ||
CN108429486A (en) | Combined planar three-degree-of-freedom ultrasonic motor vibrator and its driving method | |
JPS62259485A (en) | Piezoelectric driving apparatus | |
JP4026930B2 (en) | Vibration wave device and vibration wave drive device | |
JP3118252B2 (en) | Ultrasonic vibrating device and method, and driving device and method using the same | |
JPS59185179A (en) | Supersonic motor | |
US5637948A (en) | Ultrasonic motor | |
JPH05252767A (en) | Ultrasonic motor | |
JPH0417584A (en) | ultrasonic actuator | |
JPH055838Y2 (en) | ||
JP2586045B2 (en) | Vibration motor | |
JPS62285834A (en) | Paper feed device | |
JP2971971B2 (en) | Ultrasonic actuator | |
JPS61173683A (en) | Supersonic drive motor | |
JPH0537673Y2 (en) | ||
JPH062478Y2 (en) | Ultrasonic motor | |
JPS63171176A (en) | Driving device | |
JPS63249480A (en) | Ultrasonic motor | |
JPH0530761A (en) | Surface wave motor | |
JP2622286B2 (en) | Ultrasonic linear motor |